
Introduction

Secondary characteristic classes are one of the most invariant tools in studying

foliations. The Godbillon–Vey class is the most significant, and is extensively stud-

ied. It is well-known that it admits continuous deformations [65], [41]. On the other

hand, when foliations are assumed to admit certain transversal structures, it often

become rigid or trivial [12], [63], [20], [14], [44], [57]. In this monograph, secondary

characteristic classes (secondary classes for short) of transversely holomorphic fo-

liations are studied. It is known that the Godbillon–Vey class is decomposed into

a product of another secondary class and a power of the Chern class ([64], [3]).

We will call this secondary class the imaginary part of the Bott class. The Bott

class is a complex secondary class in the sense that it is an invariant of transversely

holomorphic foliations, and that it is a cohomology class with coefficients in C or

C/Z. The definition of the Bott class is quite similar to that of the Godbillon–Vey

class, however, it can be found already in [17] (see also [18, p. 49]). A lot of ex-

amples of non-trivial Godbillon–Vey classes are known for real foliations [65], [41].

On the other hand, such examples are barely known for transversely holomorphic

foliations. There is a paper of Rasmussen [64], where some examples are given by

using actions of complex Lie groups such as SL(n;C). The construction makes use

of the existence of certain lattices of which the existence seems unknown [51]. In

this monograph, we will first show that this difficulty can be avoided in a natural

way, and construct some examples of the same kind by using other semisimple Lie

groups. More precisely, we will show the following in Chapter 3.
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Theorem A.

1) For each q, there are transversely holomorphic foliations of complex co-

dimension q of which the Godbillon–Vey classes are non-trivial.

2) If q is odd and q ≥ 3, then there are at least two transversely holomorphic fo-

liations of complex codimension q which are non-cobordant as real foliations

of codimension 2q. If q = 5, then there are at least three transversely holo-

morphic foliations such that none of them are cobordant as real foliations

of real codimension 10.

Moreover, these foliations can be realized as locally homogeneous foliations.

Two foliations or Γ -structures F1 of M1 and F2 of M2 are said to be cobordant

if there is a manifold M equipped with a (transversely holomorphic) foliation F
such that ∂M =M1 �M2 and that F|M1

= F1, F|M2
= F2.

We will compute the Godbillon–Vey class by using the theory due to Kamber–

Tondeur [49], which says that the characteristic mapping from H∗(WO2q) or

H∗(WUq) is factored through the Lie algebra cohomology (Theorems 3.1.8 and

3.1.14). For completeness of the exposition, we will give a proof by following

Baker [12].

Once the non-triviality is shown, the rigidity makes sense. Indeed, it is known

that the Bott class admits continuous deformations [17], [19]. Therefore, one can

expect that the Godbillon–Vey class also admits continuous deformations in the

category of transversely holomorphic foliations. It is however not the case. Indeed,

the above-mentioned formula for the Godbillon–Vey class implies that it is in the

image of secondary classes of higher codimensional foliations. For real foliations,

it is well-known that there is a natural map from H∗(WOq+1) to H∗(WOq) such

that the image consists of rigid classes, namely, classes rigid under deformations.

A counterpart for transversely holomorphic foliations is the mapping H∗(WUq+1)

to H∗(WUq), and it is also well-known that the image consists of rigid classes



INTRODUCTION xv

(see Chapter 4 for the definition of deformations of transversely holomorphic foli-

ations). The Godbillon–Vey class is an element of H∗(WOq), and not in the image

of H∗(WOq+1). On the other hand, the Godbillon–Vey class for transversely holo-

morphic foliations is an element of H∗(WUq), and in the image of H∗(WUq+1).

We are interested not only in actual deformations but infinitesimal deformations.

Derivatives of secondary classes can be defined with respect to actual deformations

as well as infinitesimal deformations in a unified manner. They are studied by

Heitsch [39], [40], [42]. In the last paper, derivatives of real secondary classes with

respect to infinitesimal deformations are obtained. Also, derivatives of certain type

of cocycles are obtained for complex secondary classes. We will complete his defin-

itions, and introduce derivatives of classes in H∗(WUq). In Chapter 4, the following

is shown.

Theorem B. The Godbillon–Vey class is rigid under both actual and infini-

tesimal deformations in the category of transversely holomorphic foliations.

Indeed, Theorem B is valid for classes which belong to the image of the natural

map H∗(WUq+1) → H∗(WUq) (Theorems B1 and B2).

This monograph is organized as follows. First of all, basic notions and general

constructions of secondary classes are recalled. In Chapter 2, we review relation

between real and complex secondary classes. In Chapter 3, Theorem A is shown in

steps. Firstly, the theory of Kamber–Tondeur is recalled in Section 3.1. As a result,

it will be shown that secondary classes of locally homogeneous foliations are realized

in the Lie algebra cohomology. Some related known results in the real category are

also recalled. Calculations of Lie algebra cohomology using the unitary trick will be

explained in Section 3.2. The construction of examples is carried out in Section 3.3.

They are constructed on the complex simple groups of type An, Bn, Cn and G2.

These examples will have some common properties and it will be shown that the

groups of type Dn, En and F4 cannot have foliations having these properties.
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In Chapter 4, Theorem B is shown. The proof is separately given for smooth

deformations and for infinitesimal deformations.

In Chapter 5, relations with the residue of Heitsch [41], [43] are discussed. A

relation of infinitesimal derivatives of the Bott class and a certain cohomological

invariant introduced by Fuks [28], Lodder [56] and Kotschick [55] is also shown

(Theorem 5.14). The rigidity of the Godbillon–Vey class also follows from the

theorem. It is not difficult but we think that it is new.

In the last chapter, an attempt to formulate a version of Duminy’s theorem

for transversely holomorphic foliations is briefly given. Duminy’s theorem for real

codimension-one foliations is significant because it deeply relates the Godbillon–

Vey class with dynamical properties of foliations. We will explain that there is

an analogue for transversely holomorphic foliations of complex codimension one,

though it is quite weaker than the original one.

The most part of this monograph is based on a preprint [4]. Basic materials and

definition of infinitesimal derivatives are added. Alternative proofs of the rigidity

of the Godbillon–Vey classes are also added. One is Corollary 4.3.30, which can be

found in [10], and the other one is Theorem 5.14.




