Index of main notations

Chap. 1

$\Omega=\mathcal{C}\left(\mathbb{R}_{+} \rightarrow \mathbb{R}\right)$: the space of continuous functions from \mathbb{R}_{+}to \mathbb{R}
$\left(X_{t}, t \geq 0\right)$: the set of coordinates on this space
$\left(\mathcal{F}_{t}, t \geq 0\right)$: the natural filtration of $\left(X_{t}, t \geq 0\right)$
$\mathcal{F}_{\infty}=\underset{t \geq 0}{\vee} \mathcal{F}_{t}$
$b\left(\mathcal{F}_{t}\right)$: the space of bounded real valued \mathcal{F}_{t} measurable functions
$\left(W_{x}, x \in \mathbb{R}\right)$: the set of Wiener measures on $\left(\Omega, \mathcal{F}_{\infty}\right)$
$W=W_{0}$
$W_{x}(Y)$: the expectation of the r.v. Y with respect to W_{x}
($L_{t}^{y}, y \in \mathbb{R}, t \geq 0$) : the bicontinuous process of local times
($L_{t}:=L_{t}^{0}, t \geq 0$) the local time at level 0
$\left(\tau_{l}:=\inf \left\{t \geq 0 ; L_{t}>l\right\}, l \geq 0\right):$ the right continuous inverse of $\left(L_{t}, t \geq 0\right)$
q : a positive Radon measure on \mathbb{R}
\mathcal{I} : the set of positive Radon measures on \mathbb{R} s.t. $0<\int_{-\infty}^{\infty}(1+|x|) q(d x)<\infty$
δ_{a} : the Dirac measure at a
$\left(A_{t}^{(q)}:=\int_{0}^{t} q\left(X_{s}\right) d s=\int_{\mathbb{R}} L_{t}^{y} q(d y), t \geq 0\right):$ the additive functional associated with q
($\left.W_{x, \infty}^{(q)}, x \in \mathbb{R}\right)$: the family of probabilities on $\left(\Omega, \mathcal{F}_{\infty}\right)$ obtained by Feynman-Kac penalisation
$\left(M_{x, s}^{(q)}, s \geq 0\right)$: the martingale density of $W_{x, \infty}^{(q)}$ with respect to W_{x}
γ_{q} : a scale function
$\varphi_{q}, \varphi_{q}^{ \pm}$: solutions of the Sturm-Liouville equation $\varphi^{\prime \prime}=q \varphi$
$\left(\mathbf{W}_{x}, x \in \mathbb{R}\right)$: a family of positive σ-finite measures on $\left(\Omega, \mathcal{F}_{\infty}\right)$
$L^{1}\left(\Omega, \mathcal{F}_{\infty}, \mathbf{W}\right)$ (resp. $\left.L_{+}^{1}\left(\Omega, \mathcal{F}_{\infty}, \mathbf{W}\right)\right)$: the Banach space of
\mathbf{W}-integrable r.v.'s (resp. the cone of positive and \mathbf{W}-integrable r.v.'s)
$\left(M_{t}(F), t \geq 0\right):$ a martingale associated with $F \in L^{1}\left(\Omega, \mathcal{F}_{\infty}, \mathbf{W}\right)$
$g_{a}:=\sup \left\{s \geq 0 ; X_{s}=a\right\} \quad ; \quad g_{0}=g$
$g_{a}^{(t)}:=\sup \left\{s \leq t, X_{s}=a\right\} \quad ; \quad g_{0}^{(t)}=g^{(t)}$
$\sigma_{a}:=\sup \left\{s \geq 0 ; X_{s} \in[-a, a]\right\} ; \sigma_{a, b}:=\sup \left\{s \geq 0 ; X_{s} \in[a, b]\right\}$
$f_{Z}^{(P)}$: density of the r.v. Z under P
$T:$ a $\left(\mathcal{F}_{t}, t \geq 0\right)$ stopping time
$P_{0}^{(3)}$ (resp. $\widetilde{P}_{0}^{(3)}$): the law of a 3-dimensional Bessel process (resp. of the opposite of a 3 -dimensional Bessel process) started at 0
$P_{0}^{(3, \text { sym })}=\frac{1}{2}\left(P_{0}^{(3)}+\widetilde{P}_{0}^{(3)}\right)$
$W_{0}^{\tau_{l}}$: the law of a 1-dimensional Brownian motion stopped at τ_{l}
$\Pi_{0,0}^{(t)}$: the law of the Brownian bridge $\left(b_{u}, 0 \leq u \leq t\right)$ of length t and s.t. $b_{0}=b_{t}=0$
$\omega \circ \widetilde{\omega}$: the concatenation of ω and $\widetilde{\omega}(\omega, \widetilde{\omega} \in \Omega)$
$\omega=\left(\omega_{t}, \omega^{t}\right)$: decomposition of ω before and after t
$\Gamma^{+}=\left\{\omega \in \Omega ; X_{t} \xrightarrow[t \rightarrow \infty]{\longrightarrow} \infty\right\}, \Gamma^{-}=\left\{\omega \in \Omega ; X_{t}(\omega) \underset{t \rightarrow \infty}{\longrightarrow}-\infty\right\}$
$\mathbf{W}^{+}=1_{\Gamma^{+}} \cdot \mathbf{W}, \quad \mathbf{W}^{-}=1_{\Gamma^{-}} \cdot \mathbf{W}$
$W^{F}\left(F \in L_{+}^{1}\left(\Omega, \mathcal{F}_{\infty}, \mathbf{W}\right)\right)$: the finite measure defined on $\left(\Omega, \mathcal{F}_{\infty}\right)$ by : $W^{F}(G)=\mathbf{W}(F \cdot G)$
\mathcal{C} : the class of "good" weight processes for which Brownian penalisation holds
$\left(\nu_{x}^{(q)}, x \in \mathbb{R}\right)$: a family of σ-finite measures associated with the additive functional $\left(A_{t}^{(q)}, t \geq 0\right)$
$\left(Z_{t}, t \geq 0\right)$: a positive Brownian supermartingale
$Z_{\infty}:=\lim _{t \rightarrow \infty} Z_{t} \quad W$ a.s. $; z_{\infty}:=\lim _{t \rightarrow \infty} \frac{Z_{t}}{1+\left|X_{t}\right|} \quad \mathbf{W}$ a.s.
$\left(\Delta_{t}(F), t \geq 0\right),\left(\Sigma_{t}(F), t \geq 0\right):$ two quasimartingales associated with $F \in L^{1}\left(\Omega, \mathcal{F}_{\infty}, \mathbf{W}\right)$
$\left(\Phi_{s}, s \geq 0\right):$ a predictable positive process
$\left(k_{s}(F), s \geq 0\right)$ a predictable process such that $\mathbf{W}\left(F \mid \mathcal{F}_{g}\right)=k_{g}(F)\left(F \in L_{+}^{1}\left(\Omega, \mathcal{F}_{\infty}, \mathbf{W}\right)\right)$
$\left(\chi_{t}, t \geq 0\right):$ a $\mathcal{C}\left(\mathbb{R}_{+} \rightarrow \mathbb{R}\right)$ valued Markov process
$\left(\mathbb{P}_{t}, t \geq 0\right)$: the semigroup associated to $\left(\chi_{t}, t \geq 0\right)$
$\mathbf{W}_{x}^{a, b}=a \mathbf{W}_{x}^{+}+b \mathbf{W}_{x}^{-}$
$\widetilde{\mathbf{W}}^{a, b}=\int d x \mathbf{W}_{x}^{a, b}:$ is an invariant measure for $\left(\chi_{t}, t \geq 0\right)$
$\widetilde{\Omega}=\mathcal{C}\left(\mathbb{R} \rightarrow \mathbb{R}_{+}\right)$: the space of continuous functions from \mathbb{R} to \mathbb{R}_{+}
$<q, l>:=\int_{\mathbb{R}} l(x) q(d x), q \in \mathcal{I}, l \in \widetilde{\Omega}$
$\mathcal{L}: \Omega \rightarrow \widetilde{\Omega}$ defined by $\mathcal{L}\left(X_{t}, t \geq 0\right)=\left(L_{\infty}^{y}, y \in \mathbb{R}\right)$
$\left(Q_{t}, t \geq 0\right):$ the semigroup associated with the Markov process $\left(\left(X_{t}, L_{t}^{\bullet}\right), t \geq 0\right)$ which is $\mathbb{R} \times \widetilde{\Omega}$ valued
$\mathcal{G}:$ the infinitesimal generator of $\left(Q_{t}, t \geq 0\right)$
$\left(\widetilde{\Lambda}^{a, b}, a, b \geq 0\right):$ a family of invariant measures for $\left(\left(X_{t}, L_{t}^{\bullet}\right), t \geq 0\right)$
$\left(\boldsymbol{\Lambda}_{x}, x \in \mathbb{R}\right):$ a family of positive and σ-finite measures on $\widetilde{\Omega}$
$\theta: \mathbb{R} \times \widetilde{\Omega} \rightarrow \widetilde{\Omega}$ defined by $\theta(x, l)(y)=l(x-y) \quad(x, y \in \mathbb{R}, l \in \widetilde{\Omega})$
$\left(L_{t}^{X^{-} \bullet}, t \geq 0\right):$ a $\widetilde{\Omega}$ valued Markov process
$\left(\bar{Q}_{t}, t \geq 0\right)$: the semigroup associated with $\left(L_{t}^{X_{t}-\bullet}, t \geq 0\right)$
$\overline{\mathcal{G}}$: the infinitesimal generator of $\left(\bar{Q}_{t}, t \geq 0\right)$
$\boldsymbol{\Lambda}^{a, b}=a \mathbf{\Lambda}^{+}+b \mathbf{\Lambda}^{-}$

Chap. 2

$\Omega=\mathcal{C}\left(\mathbb{R}_{+} \rightarrow \mathbb{C}\right)$: the space of continuous functions from \mathbb{R}_{+}to \mathbb{C}
$\left(X_{t}, t \geq 0\right):$ the coordinate process on Ω
$\left(W_{x}^{(2)}, x \in \mathbb{C}\right)$ the set of Wiener measures ; $W_{0}^{(2)}=W^{(2)}$
\mathcal{J} : the set of positive Radon measures on \mathbb{C} with compact support
$\left(A_{t}^{(q)}:=\int_{0}^{t} q\left(X_{s}\right) d s, t \geq 0\right):$ the additive functional associated with $\left.q \in \mathcal{J}\right)$
$\left(W_{z, \infty}^{(2, q)}, z \in \mathbb{C}\right)$: the set of probabilities obtained by Feynman-Kac penalisations associated with $q \in \mathcal{I} ; W_{0, \infty}^{(2, q)}=W_{\infty}^{(2, q)}$
$\left(M_{s}^{(2, q)}, s \geq 0\right):$ the martingale density of $W_{z, \infty}^{(2, q)}$ with respect to $W_{z}^{(2)}$
$\varphi_{q}:$ a solution of Sturm-Liouville equation $\Delta \varphi=q \varphi$
Δ : the Laplace operator
$\left(\mathbf{W}_{z}^{(2)}, z \in \mathbb{C}\right):$ a family of positive and σ-finite measures on $\left(\Omega, \mathcal{F}_{\infty}\right)$
$\mathbf{W}_{0}^{(2)}=\mathbf{W}^{(2)}$
C : the unit circle in \mathbb{C}
$\left(L_{t}^{(C)}, t \geq 0\right):$ the continuous local time process on C
$\left(\tau_{l}^{(C)}, l \geq 0\right):$ the right continuous inverse of $\left(L_{t}^{(C)}, t \geq 0\right)$
$\left(R_{t}, t \geq 0\right):$ the process solution of (2.2.6)
$P_{1}^{(2, \log)}:$ the law of process $\left(R_{t}, t \geq 0\right)$
($\rho_{u}, u \geq 0$) : a 3-dimensional Bessel process starting from 0.
$\left(H_{t}:=\int_{0}^{t} \frac{d s}{R_{s}^{2}}, t \geq 0\right)$
$g_{C}:=\sup \left\{s \geq 0 ; X_{t} \in C\right\}$
$W_{0}^{\left(2, \tau_{l}^{(C)}\right)}$: the law of a \mathbb{C}-valued Brownian motion stopped at $\tau_{l}^{(C)}$
$\widetilde{P}_{1}^{(2, \log)}$: the law of $\left(X_{g_{C}+s}, s \geq 0\right)$
∇ : the gradient operator
K_{0} : the Bessel Mc Donald function with index 0
$T_{1}^{(3)}:=\inf \left\{u ; \rho_{u}=1\right\}$
$\left(R_{t}^{(\delta)}, t \geq 0\right)$: the process solution of (2.3.19)
$\left(M_{t}^{(2)}(F), t \geq 0\right):$ the Brownian martingale associated with $F \in L^{1}\left(\Omega, \mathcal{F}_{\infty}, \mathbf{W}^{(2)}\right)$

Chap. 3

$\Omega=\mathcal{C}\left(\mathbb{R}_{+} \rightarrow \mathbb{R}_{+}\right)$: the space of continuous functions from \mathbb{R}_{+}to \mathbb{R}_{+}
S : the scale function
m : the speed measure
$\left(X_{t}, t \geq 0, P_{x}, x \in \mathbb{R}_{+}\right)$: the canonical process associated with S and m
$\left(\mathcal{F}_{t}, t \geq 0\right)$: the natural filtration of $\left(X_{t}, t \geq 0\right) ; \mathcal{F}_{\infty}=\underset{t \geq 0}{\vee} \mathcal{F}_{t}$
$L=\frac{d}{d m} \frac{d}{d S}$: the infinitesimal generator of ($X_{t}, t \geq 0$)
$p(t, x, \bullet)$: the density of X_{t} under P_{x} with respect to m
($L_{t}^{y}, t \geq 0, y \geq 0$) : the jointly continuous family of local times of X
$\left(L_{t}, t \geq 0\right)$: the local time process at level 0
$\left(\tau_{l}, l \geq 0\right)$: the right continuous inverse of ($L_{t}, t \geq 0$)
$P_{x}^{\tau_{l}}:$ the law of the process $\left(X_{t}, t \geq 0\right)$ started at x and stopped at τ_{l}
$g_{y}:=\sup \left\{t \geq 0 ; X_{t}=y\right\} \quad ; \quad g:=g_{0}$
$g_{y}^{(t)}:=\sup \left\{s \leq t ; X_{s}=y\right\} \quad ; \quad g^{(t)}:=g_{0}^{(t)}$
$T_{0}:=\inf \left\{t \geq 0 ; X_{t}=0\right\}$
$\left(\widehat{X}_{t}, t \geq 0\right)$: the process $\left(X_{t}, t \geq 0\right)$ killed at T_{0}
$\widehat{p}(t, x, \bullet)$: the density of \widehat{X}_{t} under P_{x} with respect to m
$\left(P_{x}^{\uparrow}, x \in \mathbb{R}_{+}\right)$: the laws of X conditionned not to vanish ; $P^{\uparrow}:=P_{0}^{\uparrow}$
$f_{y, 0}(t)$ defined by : $f_{y, 0}(t) d t=P_{y}\left(T_{0} \in d t\right)=P_{0}^{\uparrow}\left(g_{y} \in d t\right)$
\mathbf{W}^{*} a σ-finite measure on $\left(\Omega, \mathcal{F}_{\infty}\right)$
$\Pi_{0}^{(t)}$: the law of the bridge of length t
\mathbf{W}_{g}^{*} : the restriction of \mathbf{W}^{*} to \mathcal{F}_{g}
$\left(M_{t}^{(\lambda, x)}=\frac{1+\frac{\lambda}{2} S\left(X_{t}\right)}{1+\frac{\lambda}{2} S(x)} \cdot e^{-\frac{\lambda}{2} L_{t}}, t \geq 0\right):$ the martingale density of $P_{x, \infty}^{(\lambda)}$ with respect to P_{x}
$\left(M_{t}^{*}(F), t \geq 0\right)$: the positive $\left(\left(\mathcal{F}_{t}, t \geq 0\right), P_{0}\right)$ martingale associated with $F \in L^{1}\left(\Omega, \mathcal{F}_{\infty}, \mathbf{W}^{*}\right)$
$\left(P_{x}^{(-\alpha)}, x \geq 0\right)$: the family of laws of a Bessel process with dimension $d=2(1-\alpha)(0<d<2$,
or equivalently $0<\alpha<1$) started at x
$\mathbf{W}^{(-\alpha)}$: the measure \mathbf{W}^{*} in the particular case of a Bessel process with index $(-\alpha)$
$(0<\alpha<1)$
$\Pi_{0}^{(-\alpha, t)}$: the law of the Bessel bridge with index $(-\alpha)$ and length t
$P_{x}^{\left(-\alpha, \tau_{l}\right)}$: the law of a Bessel process with index $(-\alpha)$ started at x and stopped at τ_{l}
φ_{q} : a particular solution of the Sturm-Liouville equation :

$$
\frac{1}{2} \varphi^{\prime \prime}(r)+\frac{1-2 \alpha}{2 r} \varphi^{\prime}(r)=\frac{1}{2} \varphi(r) q(r), \quad r \geq 0
$$

with q a positive Radon measure with compact support ($m_{u}, 0 \leq u \leq 1$) : the Bessel meander with dimension d $P_{0}^{\left(\frac{\delta}{2}-1, m, \nearrow\right)}$: the law of the process obtained by putting two Bessel processes with index $\left(\frac{\delta}{2}-1\right)$ back to back; these processes start from 0 and are stopped when they first reach level m

Chap. 4

E : a countable set
$\left(X_{n}, n \geq 0\right)$: the canonical process on $E^{\mathbb{N}}$
$\left(\mathcal{F}_{n}, n \geq 0\right)$: the natural filtration, $\mathcal{F}_{\infty}=\underset{n \geq 0}{\vee} \mathcal{F}_{n}$
$\left(\mathbb{P}_{x}, x \in E\right)$: the family of probabilities associated to Markov process $\left(X_{n}, n \geq 0\right)$ s.t. $\mathbb{P}\left(X_{n+1}=z \mid X_{n}=y\right)=p_{y, z}$ and $\mathbb{P}_{x}\left(X_{0}=x\right)=1$
$\left(L_{k}^{y}=\sum_{m=0}^{k} 1_{X_{m}=y}, k \geq 0\right):$ the local time of $\left(X_{n}, n \geq 0\right)$ at level y (with $L_{-1}^{y}=0$)
ϕ : a positive function from E to \mathbb{R}_{+}, harmonic with respect to \mathbb{P}, except at the point x_{0} and such that $\phi\left(x_{0}\right)=0$
$\psi_{r}(x):=\frac{r}{1-r} \mathbb{E}_{x_{0}}\left(\phi\left(X_{1}\right)\right)+\phi(x) \quad(r \in] 0,1[, x \in E)$
$\left(\mu_{x}^{(r)}, x \in E, r \in\right] 0,1[):$ a family of finite measures on $\left(E^{\mathbb{N}}, \mathcal{F}_{\infty}\right)$
$\mathbb{Q}_{x}=\left(\frac{1}{r}\right)^{L_{\infty}^{x_{0}}} \mu_{x}^{(r)}$, independent of $\left.r \in\right] 0,1[$
$\mathbb{Q}_{x}^{\left(\psi, y_{0}\right)}$: the σ-finite measure \mathbb{Q}_{x} constructed from the point y_{0} and the function ψ
q : a function from E to $[0,1]$ such that $\{q<1\}$ is a finite set
$\left(M\left(F, X_{0}, X_{1}, \cdots, X_{n}\right), n \geq 0\right)$: the $\left(\left(\mathcal{F}_{n}, n \geq 0\right), \mathbb{P}_{x}\right)$ martingale associated with $F \in$ $L^{1}\left(\Omega, \mathcal{F}_{\infty}, \mathbb{Q}_{x}\right)$
$\tau_{k}^{(y)}$: the k-th hitting time of y
$\left(\tau_{k}^{(y)}, k \geq 0\right)$: the inverse of $\left(L_{k}^{y}, k \geq 0\right)$
$\mathbb{Q}_{y}^{\left[y_{0}\right]}$: the restriction of \mathbb{Q}_{y} to trajectories which do not hit y_{0}
$\widetilde{\mathbb{Q}}_{y}$: the restriction of \mathbb{Q}_{y} to trajectories which do not return to y
$\mathbb{P}_{\tilde{x}}^{\tau_{x}^{\left(y_{0}\right)}}$: the law of the Markov chain $\left(X_{n}, n \geq 0\right)$ starting from x and stopped at $\tau_{k}^{\left(y_{0}\right)}$
$2 \widetilde{\mathbb{Q}}_{a}^{+}$: the law of a Bessel random walk strictly above a
$2 \mathbb{Q}_{a}^{-}$: the law of a Bessel random walk strictly below a
$\widetilde{\mathbb{Q}}_{a}^{a}:=\widetilde{\mathbb{Q}}_{a}^{+}+\widetilde{\mathbb{Q}}_{a}^{-}$
$g_{a}:=\sup \left\{n \geq 0 ; X_{n}=a\right\}$
$\phi^{\left[y_{0}\right]}$ defined by $\phi^{\left[y_{0}\right]}(y)=\mathbb{Q}_{y}^{\left[y_{0}\right]}(1)$
\simeq : the equivalence relation defined in Subsection 4.2.4
$\mathbb{Q}_{x}^{[\psi]}$: the measure $Q_{x}^{\left(\psi, y_{0}\right)}$ where $[\psi]$ denotes the equivalence class of ψ

