Index of main notations

Chap. 1

 $\Omega = \mathcal{C}(\mathbb{R}_+ \to \mathbb{R})$: the space of continuous functions from \mathbb{R}_+ to \mathbb{R} $(X_t, t \ge 0)$: the set of coordinates on this space $(\mathcal{F}_t, t \ge 0)$: the natural filtration of $(X_t, t \ge 0)$ $\mathcal{F}_{\infty} = \mathop{\vee}_{t \ge 0} \mathcal{F}_t$ $b(\mathcal{F}_t)$: the space of bounded real valued \mathcal{F}_t measurable functions $(W_x, x \in \mathbb{R})$: the set of Wiener measures on $(\Omega, \mathcal{F}_{\infty})$ $W = W_0$ $W_x(Y)$: the expectation of the r.v. Y with respect to W_x $(L_t^y, y \in \mathbb{R}, t \ge 0)$: the bicontinuous process of local times $(L_t := L_t^0, t \ge 0)$ the local time at level 0 $(\tau_l := \inf\{t \ge 0; L_t > l\}, l \ge 0)$: the right continuous inverse of $(L_t, t \ge 0)$ q: a positive Radon measure on \mathbb{R} \mathcal{I} : the set of positive Radon measures on \mathbb{R} s.t. $0 < \int_{-\infty}^{\infty} (1 + |x|)q(dx) < \infty$ δ_a : the Dirac measure at a $\left(A_t^{(q)} := \int_0^t q(X_s) ds = \int_{\mathbb{R}} L_t^y q(dy), \ t \ge 0\right)$: the additive functional associated with q $(W_{x,\infty}^{(q)}, x \in \mathbb{R})$: the family of probabilities on $(\Omega, \mathcal{F}_{\infty})$ obtained by Feynman-Kac penalisation $(M_{x,s}^{(q)}, s \ge 0)$: the martingale density of $W_{x,\infty}^{(q)}$ with respect to W_x γ_q : a scale function $\varphi_q, \varphi_q^{\pm}$: solutions of the Sturm-Liouville equation $\varphi'' = q\varphi$ $(\mathbf{W}_x, x \in \mathbb{R})$: a family of positive σ -finite measures on $(\Omega, \mathcal{F}_{\infty})$ $L^1(\Omega, \mathcal{F}_{\infty}, \mathbf{W})$ (resp. $L^1_+(\Omega, \mathcal{F}_{\infty}, \mathbf{W})$) : the Banach space of W-integrable r.v.'s (resp. the cone of positive and W-integrable r.v.'s) $(M_t(F), t \ge 0)$: a martingale associated with $F \in L^1(\Omega, \mathcal{F}_\infty, \mathbf{W})$ $g_a := \sup\{s \ge 0 ; X_s = a\}$; $g_0 = g$ $\begin{array}{l} g_a^{(t)} := \sup\{s \leq t, \ X_s = a\} \quad ; \quad g_0^{(t)} = g^{(t)} \\ \sigma_a := \sup\{s \geq 0 \ ; \ X_s \in [-a, a]\} \ ; \quad \sigma_{a,b} := \sup\{s \geq 0 \ ; \ X_s \in [a, b]\} \end{array}$ $f_Z^{(P)}$: density of the r.v. Z under P T: a $(\mathcal{F}_t, t \ge 0)$ stopping time $P_0^{(3)}$ (resp. $\widetilde{P}_0^{(3)}$) : the law of a 3-dimensional Bessel process (resp. of the opposite of a 3-dimensional Bessel process) started at 0 $P_0^{(3,\text{sym})} = \frac{1}{2}(P_0^{(3)} + \tilde{P}_0^{(3)})$ $W_0^{\tau_l}$: the law of a 1-dimensional Brownian motion stopped at τ_l $\Pi_{0,0}^{(t)}$: the law of the Brownian bridge $(b_u, 0 \le u \le t)$ of length t and s.t. $b_0 = b_t = 0$ $\omega \circ \widetilde{\omega}$: the concatenation of ω and $\widetilde{\omega}$ ($\omega, \widetilde{\omega} \in \Omega$) $\omega = (\omega_t, \omega^t)$: decomposition of ω before and after t $\Gamma^{+} = \big\{ \omega \in \Omega \; ; \; X_{t} \xrightarrow[t \to \infty]{} \infty \big\}, \; \Gamma^{-} = \big\{ \omega \in \Omega \; ; \; X_{t}(\omega) \xrightarrow[t \to \infty]{} -\infty \big\}$ $\mathbf{W}^{+} = \mathbf{1}_{\Gamma^{+}} \cdot \mathbf{W}, \quad \mathbf{W}^{-} = \mathbf{1}_{\Gamma^{-}} \cdot \mathbf{W}$ $W^F(F \in L^1_+(\Omega, \mathcal{F}_\infty, \mathbf{W}))$: the finite measure defined on $(\Omega, \mathcal{F}_\infty)$ by : $W^F(G) = \mathbf{W}(F \cdot G)$ $\mathcal C$: the class of "good" weight processes for which Brownian penalisation holds $(\nu_x^{(q)}, x \in \mathbb{R})$: a family of σ -finite measures associated with the additive functional $(A_t^{(q)}, t \ge 0)$ $(Z_t, t \ge 0)$: a positive Brownian supermartingale $Z_{\infty} := \lim_{t \to \infty} Z_t \quad W \text{ a.s. } ; z_{\infty} := \lim_{t \to \infty} \frac{Z_t}{1 + |X_t|} \quad \mathbf{W} \text{ a.s.}$ $(\Delta_t(F), t \ge 0), (\Sigma_t(F), t \ge 0)$: two quasimartingales associated with $F \in L^1(\Omega, \mathcal{F}_\infty, \mathbf{W})$ $(\Phi_s, s \ge 0)$: a predictable positive process $(k_s(F), s \ge 0)$ a predictable process such that $\mathbf{W}(F|\mathcal{F}_q) = k_q(F)$ $(F \in L^1_+(\Omega, \mathcal{F}_\infty, \mathbf{W}))$ $(\chi_t, t \ge 0)$: a $\mathcal{C}(\mathbb{R}_+ \to \mathbb{R})$ valued Markov process $(\mathbb{P}_t, t \ge 0)$: the semigroup associated to $(\chi_t, t \ge 0)$ $\mathbf{W}_x^{a,b} = a\mathbf{W}_x^+ + b\mathbf{W}_x^ \widetilde{\mathbf{W}}^{a,b} = \int dx \mathbf{W}_x^{a,b}$: is an invariant measure for $(\chi_t, t \ge 0)$ $\widetilde{\Omega} = \mathcal{C}(\mathbb{R} \to \mathbb{R}_+)$: the space of continuous functions from \mathbb{R} to \mathbb{R}_+ $< q, l > := \int_{\mathbb{T}} l(x)q(dx), \ q \in \mathcal{I}, \ l \in \widetilde{\Omega}$ $\mathcal{L}: \Omega \to \widetilde{\Omega}$ defined by $\mathcal{L}(X_t, t \ge 0) = (L^y_{\infty}, y \in \mathbb{R})$ $(Q_t, t \ge 0)$: the semigroup associated with the Markov process $((X_t, L_t^{\bullet}), t \ge 0)$ which is $\mathbb{R} \times \widetilde{\Omega}$ valued \mathcal{G} : the infinitesimal generator of $(Q_t, t \ge 0)$ $(\widetilde{\mathbf{\Lambda}}^{a,b}, a, b \ge 0)$: a family of invariant measures for $((X_t, L_t^{\bullet}), t \ge 0)$ $(\Lambda_x, x \in \mathbb{R})$: a family of positive and σ -finite measures on $\widetilde{\Omega}$ $\theta : \mathbb{R} \times \widetilde{\Omega} \to \widetilde{\Omega}$ defined by $\theta(x, l)(y) = l(x - y)$ $(x, y \in \mathbb{R}, l \in \widetilde{\Omega})$ $(\underline{L}_t^{X_t-\bullet}, t\geq 0)$: a $\widetilde{\Omega}$ valued Markov process $(\overline{Q}_t, t\geq 0)$: the semigroup associated with $(L_t^{X_t-\bullet}, t\geq 0)$ $\overline{\mathcal{G}}$: the infinitesimal generator of $(\overline{Q}_t, t \ge 0)$ $\Lambda^{a,b} = a \ \Lambda^+ + b \ \Lambda^-$

Chap. 2

 $\Omega = \mathcal{C}(\mathbb{R}_+ \to \mathbb{C})$: the space of continuous functions from \mathbb{R}_+ to \mathbb{C} $(X_t, t \ge 0)$: the coordinate process on Ω $(W_x^{(2)}, x \in \mathbb{C})$ the set of Wiener measures ; $W_0^{(2)} = W^{(2)}$ \mathcal{J} : the set of positive Radon measures on \mathbb{C} with compact support $(A_t^{(q)} := \int_0^t q(X_s) ds, \ t \ge 0)$: the additive functional associated with $q \in \mathcal{J}$) $(W_{z,\infty}^{(2,q)}, z \in \mathbb{C})$: the set of probabilities obtained by Feynman-Kac penalisations associated with $q \in \mathcal{I}$; $W_{0,\infty}^{(2,q)} = W_{\infty}^{(2,q)}$ $(M_s^{(2,q)}, s \ge 0)$: the martingale density of $W_{z,\infty}^{(2,q)}$ with respect to $W_z^{(2)}$ φ_q : a solution of Sturm-Liouville equation $\Delta \varphi = q \varphi$ Δ : the Laplace operator $(\mathbf{W}_{z}^{(2)}, z \in \mathbb{C})$: a family of positive and σ -finite measures on $(\Omega, \mathcal{F}_{\infty})$ $\mathbf{W}_{0}^{(2)} = \mathbf{W}^{(2)}$ C : the unit circle in $\mathbb C$ $(L^{(C)}_t,\ t\geq 0)$: the continuous local time process on C $(\tau_l^{(C)},\ l\geq 0)$: the right continuous inverse of $(L_t^{(C)},\ t\geq 0)$ $(\dot{R}_t, t \ge 0)$: the process solution of (2.2.6) $P_1^{(2,\log)}$: the law of process $(R_t, t \ge 0)$

 $(\rho_u, u \ge 0)$: a 3-dimensional Bessel process starting from 0.

 $\begin{pmatrix} H_t := \int_0^t \frac{ds}{R_s^2}, t \ge 0 \end{pmatrix}$ $g_C := \sup\{s \ge 0 \; ; \; X_t \in C\}$ $W_0^{(2,\tau_l^{(C)})} : \text{ the law of a } \mathbb{C} \text{-valued Brownian motion stopped at } \tau_l^{(C)}$ $\tilde{P}_1^{(2,\log)} : \text{ the law of } (X_{g_C+s}, s \ge 0)$ $\nabla : \text{ the gradient operator}$ $K_0 : \text{ the Bessel Mc Donald function with index 0}$ $T_1^{(3)} := \inf\{u \; ; \; \rho_u = 1\}$ $(R_t^{(\delta)}, t \ge 0) : \text{ the process solution of } (2.3.19)$ $(M_t^{(2)}(F), t \ge 0) : \text{ the Brownian martingale associated with } F \in L^1(\Omega, \mathcal{F}_{\infty}, \mathbf{W}^{(2)})$

Chap. 3

 $\Omega = \mathcal{C}(\mathbb{R}_+ \to \mathbb{R}_+)$: the space of continuous functions from \mathbb{R}_+ to \mathbb{R}_+ S: the scale function m: the speed measure $(X_t, t \ge 0, P_x, x \in \mathbb{R}_+)$: the canonical process associated with S and m $(\mathcal{F}_t, t \ge 0)$: the natural filtration of $(X_t, t \ge 0); \mathcal{F}_{\infty} = \bigvee_{t>0} \mathcal{F}_t$ $L = \frac{d}{dm} \frac{d}{dS}$: the infinitesimal generator of $(X_t, t \ge 0)$ $p(t, x, \bullet)$: the density of X_t under P_x with respect to m $(L_t^y, t \ge 0, y \ge 0)$: the jointly continuous family of local times of X $(L_t, t \ge 0)$: the local time process at level 0 $(\tau_l, l \ge 0)$: the right continuous inverse of $(L_t, t \ge 0)$ $P_x^{\tau_l}$: the law of the process $(X_t, t \ge 0)$ started at x and stopped at τ_l $g_y := \sup\{t \ge 0 ; X_t = y\}$; $g := g_0$ $g_y^{(t)} := \sup\{s \le t \; ; \; X_s = y\} \; ; \; g^{(t)} := g_0^{(t)}$ $T_0 := \inf\{t \ge 0 \; ; \; X_t = 0\}$ $(X_t, \ t \geq 0)$: the process $(X_t, \ t \geq 0)$ killed at T_0 $\widehat{p}(t, x, \bullet)$: the density of \widehat{X}_t under P_x with respect to m $(P_x^{\uparrow}, x \in \mathbb{R}_+)$: the laws of X conditionned not to vanish; $P^{\uparrow} := P_0^{\uparrow}$ $f_{y,0}(t)$ defined by : $f_{y,0}(t)dt = P_y(T_0 \in dt) = P_0^{\uparrow}(g_y \in dt)$ \mathbf{W}^* a σ -finite measure on $(\Omega, \mathcal{F}_{\infty})$ $\Pi_0^{(t)}$: the law of the bridge of length t \mathbf{W}_{q}^{*} : the restriction of \mathbf{W}^{*} to \mathcal{F}_{g} $\left(M_t^{(\lambda,x)} = \frac{1 + \frac{\lambda}{2} S(X_t)}{1 + \frac{\lambda}{2} S(x)} \cdot e^{-\frac{\lambda}{2} L_t}, \ t \ge 0\right): \text{ the martingale density of } P_{x,\infty}^{(\lambda)} \text{ with respect to } P_x$ $(M_t^*(F), t \ge 0)$: the positive $((\mathcal{F}_t, t \ge 0), P_0)$ martingale associated with $F \in L^1(\Omega, \mathcal{F}_\infty, \mathbf{W}^*)$ $(P_x^{(-\alpha)}, x \ge 0)$: the family of laws of a Bessel process with dimension $d = 2(1-\alpha)$ (0 < d < 2, or equivalently $0 < \alpha < 1$) started at x $\mathbf{W}^{(-\alpha)}$: the measure \mathbf{W}^* in the particular case of a Bessel process with index $(-\alpha)$ $(0 < \alpha < 1)$

 $\Pi_0^{(-\alpha,t)}$: the law of the Bessel bridge with index $(-\alpha)$ and length t

 $P_x^{(-\alpha,\tau_l)}$: the law of a Bessel process with index $(-\alpha)$ started at x and stopped at τ_l

 φ_q : a particular solution of the Sturm-Liouville equation :

$$\frac{1}{2}\varphi''(r) + \frac{1-2\alpha}{2r}\varphi'(r) = \frac{1}{2}\varphi(r)\,q(r), \quad r \ge 0$$

with q a positive Radon measure with compact support $(m_u, 0 \le u \le 1)$: the Bessel meander with dimension d $P_0^{\left(\frac{\delta}{2}-1, m, \nearrow\right)}$: the law of the process obtained by putting two Bessel processes with index $\left(\frac{\delta}{2}-1\right)$ back to back; these processes start from 0 and are stopped when they first reach level m

Chap. 4

E: a countable set

 $(X_n, n \ge 0)$: the canonical process on $E^{\mathbb{N}}$ $(\mathcal{F}_n, n \ge 0)$: the natural filtration, $\mathcal{F}_{\infty} = \bigvee_{n \ge 0} \mathcal{F}_n$

 $(\mathbb{P}_x, x \in E)$: the family of probabilities associated to Markov process $(X_n, n \geq 0)$ s.t. $\mathbb{P}(X_{n+1} = z | X_n = y) = p_{y,z} \text{ and } \mathbb{P}_x(X_0 = x) = 1$

$$\left(L_k^y = \sum_{m=0} 1_{X_m = y}, \ k \ge 0\right) : \text{ the local time of } (X_n, \ n \ge 0) \text{ at level } y \text{ (with } L_{-1}^y = 0)$$

 ϕ : a positive function from E to \mathbb{R}_+ , harmonic with respect to \mathbb{P} , except at the point x_0 and

such that $\phi(x_0) = 0$ $\psi_r(x) := \frac{r}{1-r} \mathbb{E}_{x_0}(\phi(X_1)) + \phi(x) \quad (r \in]0, 1[, x \in E)$ $(\mu_x^{(r)}, x \in E, r \in]0, 1[)$: a family of finite measures on $(E^{\mathbb{N}}, \mathcal{F}_{\infty})$ $\mathbb{Q}_x = \left(\frac{1}{r}\right)^{L_{\infty}^{x_0}} \mu_x^{(r)}$, independent of $r \in]0, 1[$ $\mathbb{Q}_x^{(\psi,y_0)}$: the σ -finite measure \mathbb{Q}_x constructed from the point y_0 and the function ψ q : a function from E to [0,1] such that $\{q < 1\}$ is a finite set $(M(F, X_0, X_1, \cdots, X_n), n \ge 0)$: the $((\mathcal{F}_n, n \ge 0), \mathbb{P}_x)$ martingale associated with $F \in$ $L^1(\Omega, \mathcal{F}_\infty, \mathbb{Q}_x)$ $\tau_k^{(y)}$: the k-th hitting time of y $(\tau_k^{(y)}, k \ge 0)$: the inverse of $(L_k^y, k \ge 0)$ $\mathbb{Q}_{y}^{[y_0]}$: the restriction of \mathbb{Q}_{y} to trajectories which do not hit y_0 $\widetilde{\mathbb{Q}}_y$: the restriction of \mathbb{Q}_y to trajectories which do not return to y $\mathbb{P}_x^{\tau_{(y_0)}}$: the law of the Markov chain $(X_n, n \ge 0)$ starting from x and stopped at $\tau_k^{(y_0)}$ $2\mathbb{Q}_a^+$: the law of a Bessel random walk strictly above a $2\mathbb{Q}_a^-$: the law of a Bessel random walk strictly below a $\mathbb{Q}_a := \mathbb{Q}_a^+ + \mathbb{Q}_a^$ $g_a := \sup\{n \ge 0 ; X_n = a\}$ $\phi^{[y_0]}$ defined by $\phi^{[y_0]}(y) = \mathbb{Q}_u^{[y_0]}(1)$ \simeq : the equivalence relation defined in Subsection 4.2.4

 $\mathbb{Q}_x^{[\psi]}$: the measure $Q_x^{(\psi,y_0)}$ where $[\psi]$ denotes the equivalence class of ψ