
Preface

Gauss hypergeometric functions and the functions in their family, such as Bessel
functions, Whittaker functions, Hermite functions, Legendre polynomials and Ja-
cobi polynomials etc. are the most fundamental and important special functions
(cf. [E–, Wa, WW]). Many formulas related to the family have been studied and
clarified together with the theory of ordinary differential equations, the theory of
holomorphic functions and relations with other fields. They have been extensively
used in various fields of mathematics, mathematical physics and engineering.

Euler studied the hypergeometric equation

(0.1) x(1− x)y�� +
�
c− (a+ b+ 1)x

�
y� − aby = 0

with constant complex numbers a, b and c and he got the solution

(0.2) F (a, b, c;x) :=

∞�
k=0

a(a+ 1) · · · (a+ k − 1) · b(b+ 1) · · · (b+ k − 1)

c(c+ 1) · · · (c+ k − 1) · k!
xk.

The series F (a, b, c;x) is now called Gauss hypergeometric series or function and
Gauss proved the Gauss summation formula

(0.3) F (a, b, c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

when the real part of c is sufficiently large. Then in the study of this function an
important concept was introduced by Riemann. That is the Riemann scheme

(0.4)




x = 0 1 ∞
0 0 a ; x

1− c c− a− b b





which describes the property of singularities of the function and Riemann proved
that this property characterizes the Gauss hypergeometric function.

The equation (0.1) is a second order Fuchsian differential equation on the Rie-
mann sphere with the three singular points {0, 1,∞}. One of the main purpose of
this paper is to generalize these results to the general Fuchsian differential equation
on the Riemann sphere. In fact, our study will be applied to the following three
kinds of generalizations.

One of the generalizations of the Gauss hypergeometric family is the hyperge-
ometric family containing the generalized hypergeometric function nFn−1(α, β;x)
or the solutions of Jordan-Pochhammer equations. Some of their global structures
are concretely described as in the case of the Gauss hypergeometric family.

The second generalization is a class of Fuchsian differential equations such as
the Heun equation which is of order 2 and has 4 singular points in the Riemann
sphere. In this case, there appear accessory parameters. The global structure of the
generic solution is quite transcendental and the Painlevé equation which describes
the deformations preserving the monodromies of solutions of the equations with an
apparent singular point is interesting and has been quite deeply studied and now
it becomes an important field of mathematics.
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The third generalization is a class of hypergeometric functions of several vari-
ables, such as Appell’s hypergeometric functions (cf. [AK]), Gelfand’s generalized
hypergeometric functions (cf. [Ge]) and Heckman-Opdam’s hypergeometric func-
tions (cf. [HeO]). The author and Shimeno [OS] studied the ordinary differential
equations satisfied by the restrictions of Heckman-Opdam’s hypergeometric func-
tion on singular lines through the origin and we found that some of the equations
belong to the even family classified by Simpson [Si], which is now called a class of
rigid differential equations and belongs to the first generalization in the above.

The author’s original motivation related to the study in this paper is a general-
ization of Gauss summation formula, namely, to calculate a connection coefficient
for a solution of this even family, which is solved in Chapter 12 as a direct conse-
quence of the general formula (0.24) of certain connection coefficients described in
Theorem 12.6. This paper is the author’s first step to a unifying approach for these
generalizations and the recent development in general Fuchsian differential equa-
tions described below with the aim of getting concrete and computable results. In
this paper, we will avoid intrinsic arguments and results if possible and hence the
most results can be implemented in computer programs. Moreover the arguments
in this paper will be understood without referring to other papers.

Rigid differential equations are the differential equations which are uniquely
determined by the data describing the local structure of their solutions at the
singular points. From the point of view of the monodromy of the solutions, the rigid
systems are the local systems which are uniquely determined by local monodromies
around the singular points and Katz [Kz] studied rigid local systems by defining
and using the operations called middle convolutions and additions, which enables
us to construct and analyze all the rigid local systems. In fact, he proved that
any irreducible rigid local system is transformed into a trivial equation du

dz = 0
by successive application of the operations. In another word, any irreducible rigid
local system is obtained by successive applications of the operations to the trivial
equation because the operations are invertible.

The arguments there are rather intrinsic by using perverse sheaves. Dettweiler-
Reiter [DR, DR2] interprets Katz’s operations on monodromy generators and
those on the systems of Fuchsian differential equations of Schlesinger canonical
form

(0.5)
du

dx
=

p�
j=1

Aj

x− cj
u

with constant square matrices A1, . . . , Ap. These operations are useful also for
non-rigid Fuchsian systems.

Here Aj are called the residue matrices of the system at the singular points
x = cj , which describe the local structure of the solutions. For example, the

eigenvalues of the monodromy generator at x = cj are e2π
√
−1λ1 , . . . , e2π

√
−1λn ,

where λ1, . . . , λn are eigenvalues of Aj . The residue matrix of the system at x = ∞
equals A0 := −(A1 + · · ·+Ap).

Related to the Riemann-Hilbert problem, there is a natural problem to deter-
mine the condition on matrices B0, B1, . . . , Bp of Jordan canonical form such that
there exists an irreducible system of Schlesinger canonical form with the residue
matrices Aj conjugate to Bj for j = 0, . . . , p, respectively. An obvious necessary
condition is the equality

�p
j=0 TraceBj = 0. A similar problem for monodromy

generators, namely its multiplicative version, is equally formulated. The latter is
called a mutiplicative version and the former is called an additive version. Kostov
[Ko, Ko2, Ko3, Ko4] called them Deligne-Simpson problems and gave an answer
under a certain genericity condition. We note that the addition is a kind of a gauge
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transformation

u(x) �→ (x− c)λu(x)

and the middle convolution is essentially an Euler transformation or a transforma-
tion by an Riemann-Liouville integral

u(x) �→ 1

Γ(µ)

� x

c

u(t)(x− t)µ−1dt

or a fractional derivation.
Crawley-Boevey [CB] found a relation between the Deligne-Simpson problem

and representations of certain quivers and gave an explicit answer for the additive
Deligne-Simpson problem in terms of a Kac-Moody root system.

Yokoyama [Yo2] defined operations called extensions and restrictions on the
systems of Fuchsian ordinary differential equations of Okubo normal form

(0.6)
�
x− T

�du
dx

= Au.

Here A and T are constant square matrices such that T are diagonalizable. He
proved that the irreducible rigid system of Okubo normal form is transformed
into a trivial equation du

dz = 0 by successive applications of his operations if the
characteristic exponents are generic.

The relation between Katz’s operations and Yokoyama’s operations is clarified
by [O7] and it is proved there that their algorithms of reductions of Fuchsian
systems are equivalent and so are those of the constructions of the systems.

These operations are quite powerful and in fact if we fix the number of accessory
parameters of the systems, they are connected into a finite number of fundamental
systems (cf. [O6, Proposition 8.1 and Theorem 10.2] and Proposition 7.13), which
is a generalization of the fact that the irreducible rigid Fuchsian system is connected
to the trivial equation.

Hence it is quite useful to understand how does the property of the solutions
transform under these operations. In this point of view, the system of the equations,
the integral representation and the monodromy of the solutions are studied by
[DR, DR2, HY] in the case of the Schlesinger canonical form. Moreover the
equation describing the deformation preserving the monodromy of the solutions
doesn’t change, which is proved by [HF]. In the case of the Okubo normal form the
corresponding transformation of the systems, that of the integral representations
of the solutions and that of their connection coefficients are studied by [Yo2], [Ha]
and [Yo3], respectively. These operation are explicit and hence it will be expected
to have explicit results in general Fuchsian systems.

To avoid the specific forms of the differential equations, such as Schlesinger
canonical form or Okubo normal form and moreover to make explicit calculations
easier under the transformations, we introduce certain operations on differential
operators with polynomial coefficients in Chapter 1. The operations in Chapter 1
enables us to equally handle equations with irregular singularities or systems of
equations with several variables.

The ring of differential operators with polynomial coefficients is called a Weyl
algebra and denoted by W [x] in this paper. The endomorphisms of W [x] do not
give a wide class of operations and Dixmier [Dix] conjectured that they are the
automorphisms of W [x]. But when we localize coordinate x, namely in the ring
W (x) of differential operators with coefficients in rational functions, we have a
wider class of operations.

For example, the transformation of the pair (x, d
dx ) into (x, d

dx −h(x)) with any
rational function h(x) induces an automorphism of W (x). This operation is called

x
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a gauge transformation. The addition in [DR, DR2] corresponds to this operation
with h(x) = λ

x−c and λ, c ∈ C, which is denoted by Ad
�
(x− c)λ

�
.

The transformation of the pair (x, d
dx ) into (− d

dx , x) defines an important au-
tomorphism L of W [x], which is called a Laplace transformation. In some cases
the Fourier transformation is introduced and it is a similar transformation. Hence
we may also localize d

dx and introduce the operators such as λ( d
dx − c)−1 and

then the transformation of the pair (x, d
dx ) into (x − λ( d

dx )
−1, d

dx ) defines an en-
domorphism in this localized ring, which corresponds to the middle convolution
or an Euler transformation or a fractional derivation and is denoted by Ad(∂−λ)
or mcλ. But the simultaneous localizations of x and d

dx produce the operator

( d
dx )

−1 ◦ x−1 =
�∞

k=0 k!x
−k−1( d

dx )
−k−1 which is not algebraic in our sense and

hence we will not introduce such a microdifferential operator in this paper and we
will not allow the simultaneous localizations of the operators.

Since our equation Pu = 0 studied in this paper is defined on the Riemann
sphere, we may replace the operator P in W (x) by a suitable representative P̃ ∈
C(x)P ∩W [x] with the minimal degree with respect to x and we put RP = P̃ .
Combining these operations including this replacement gives a wider class of op-
erations on the Weyl algebra W [x]. In particular, the operator corresponding to
the addition is RAd

�
(x − c)λ

�
and that corresponding to the middle convolution

is RAd(∂−µ) in our notation. The operations introduced in Chapter 1 correspond
to certain transformations of solutions of the differential equations defined by ele-
ments of Weyl algebra and we call the calculation using these operations fractional
calculus of Weyl algebra.

To understand our operations, we show that, in Example 1.8, our operations
enables us to construct Gauss hypergeometric equations, the equations satisfied by
Airy functions and Jordan-Pochhammer equations and to give integral representa-
tions of their solutions.

In this paper we mainly study ordinary differential equations and since any
linear ordinary differential equation is cyclic, namely, it is isomorphic to a single
differential operator Pu = 0 (cf. §1.4), we study a single ordinary differential equa-
tion Pu = 0 with P ∈W [x]. In many cases, we are interested in a specific function
u(x) which is characterized by differential equations and if u(x) is a function with
the single variable x, the differential operators P ∈W (x) satisfying Pu(x) = 0 are
generated by a single operator and hence it is natural to consider a single differential
equation. A relation between our fractional calculus and Katz’s middle convolution
is briefly explained in §1.5.

In §2.1 we review fundamental results on Fuchsian ordinary differential equa-
tions. Our Weyl algebra W [x] is allowed to have some parameters ξ1, . . . and in
this case the algebra is denoted by W [x; ξ]. The position of singular points of the
equations and the characteristic exponents there are usually the parameters and the
analytic continuation of the parameters naturally leads the confluence of additions
(cf. §2.3).

Combining this with our construction of equations leads the confluence of the
equations. In the case of Jordan-Pochhammer equations, we have versal Jordan-
Pochhammer equations. In the case of Gauss hypergeometric equation, we have
a unified expression of Gauss hypergeometric equation, Kummer equation and
Hermite-Weber equation and get a unified integral representation of their solu-
tions (cf. Example 2.5). After this chapter in this paper, we mainly study single
Fuchsian differential equations on the Riemann sphere. Equations with irregular
singularities will be discussed elsewhere (cf. [HiO], [O10]).
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In Chapter 3 we examine the transformation of series expansions and contiguity
relations of the solutions of Fuchsian differential equations under our operations.
The results in this chapter will be used in later chapters.

The Fuchsian equation satisfied by the generalized hypergeometric series

(0.7)
nFn−1(α1, . . . , αn, β1, . . . , βn−1;x) =

∞�
k=0

(α1)k . . . (αn)k
(β1)k . . . (βn−1)kk!

xk

with (γ)k := γ(γ + 1) · · · (γ + k − 1)

is characterized by the fact that it has (n− 1)-dimensional local holomorphic solu-
tions at x = 1, which is more precisely as follows. The set of characteristic exponents
of the equation at x = 1 equals {0, 1, . . . , n−1,−βn} with α1+· · ·+αn = β1+· · ·+βn
and those at 0 and ∞ are {1− β1, . . . , 1− βn−1, 0} and {α1, . . . , αn}, respectively.
Then if αi and βj are generic, the Fuchsian differential equation Pu = 0 is uniquely
characterized by the fact that it has the above set of characteristic exponents at
each singular point 0 or 1 or ∞ and the monodromy generator around the point is
semisimple, namely, the local solution around the singular point has no logarithmic
term. We express this condition by the (generalized) Riemann scheme




x = 0 1 ∞
1− β1 [0](n−1) α1

...
... ; x

1− βn−1 αn−1
0 −βn αn



, [λ](k) :=




λ
λ+ 1

...
λ+ k − 1


 ,

α1 + · · ·+ αn = β1 + · · ·+ βn.

(0.8)

In particular, when n = 3, the (generalized) Riemann scheme is




x = 0 1 ∞
1− β1
1− β2

�
0
1

�
α1
α2 ; x

0 −β3 α3




.

The corresponding usual Riemann scheme is obtained from the generalized Rie-

mann scheme by eliminating the parentheses
�
and

�
. Here [0](n−1) in the above

Riemann scheme means the characteristic exponents 0, 1, . . . , n− 2 but it also indi-
cates that the corresponding monodromy generator is semisimple in spite of integer
differences of the characteristic exponents. Thus the set of (generalized) charac-
teristic exponents {[0](n−1),−βn} at x = 1 is defined. Here we remark that the
coefficients of the Fuchsian differential operator P which is uniquely determined by
the generalized Riemann scheme for generic αi and βj are polynomial functions of
αi and βj and hence P is naturally defined for any αi and βj as is given by (13.21).
Similarly the Riemann scheme of Jordan-Pochhammer equation of order p is

(0.9)



x = c0 c1 · · · cp−1 ∞
[0](p−1) [0](p−1) · · · [0](p−1) [λ�p](p−1) ; x
λ0 λ1 · · · λp−1 λp


 ,

λ0 + · · ·+ λp−1 + λp + (p− 1)λ�p = p− 1.

The last equality in the above is called a Fuchs relation.
In Chapter 4 we define the set of generalized characteristic exponents at a

regular singular point of a differential equation Pu = 0. In fact, when the order of
P is n, it is the set {[λ1](m1), . . . , [λk](mk)} with a partition n = m1+ · · ·+mk and
complex numbers λ1, . . . , λk. It means that the set of characteristic exponents at

xii
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�
and

�
. Here [0](n−1) in the above

Riemann scheme means the characteristic exponents 0, 1, . . . , n− 2 but it also indi-
cates that the corresponding monodromy generator is semisimple in spite of integer
differences of the characteristic exponents. Thus the set of (generalized) charac-
teristic exponents {[0](n−1),−βn} at x = 1 is defined. Here we remark that the
coefficients of the Fuchsian differential operator P which is uniquely determined by
the generalized Riemann scheme for generic αi and βj are polynomial functions of
αi and βj and hence P is naturally defined for any αi and βj as is given by (13.21).
Similarly the Riemann scheme of Jordan-Pochhammer equation of order p is

(0.9)



x = c0 c1 · · · cp−1 ∞
[0](p−1) [0](p−1) · · · [0](p−1) [λ�p](p−1) ; x
λ0 λ1 · · · λp−1 λp


 ,

λ0 + · · ·+ λp−1 + λp + (p− 1)λ�p = p− 1.

The last equality in the above is called a Fuchs relation.
In Chapter 4 we define the set of generalized characteristic exponents at a

regular singular point of a differential equation Pu = 0. In fact, when the order of
P is n, it is the set {[λ1](m1), . . . , [λk](mk)} with a partition n = m1+ · · ·+mk and
complex numbers λ1, . . . , λk. It means that the set of characteristic exponents at

xiii



xiv PREFACE

the point equals

(0.10) {λj + ν ; ν = 0, . . . ,mj − 1 and j = 1, . . . , k}

and the corresponding monodromy generator is semisimple if λi − λj �∈ Z for 1 ≤
i < j ≤ k. In §4.1 we define the set of generalized characteristic exponents without
the assumption λi − λj �∈ Z for 1 ≤ i < j ≤ k. Here we only remark that when
λi = λ1 for i = 1, . . . , k, it is characterized by the fact that the Jordan normal form
of the monodromy generator is defined by the dual partition of n = m1 + · · ·+mk

together with the usual characteristic exponents (0.10).
Thus for a single Fuchsian differential equation Pu = 0 on the Riemann sphere

which has p+1 regular singular points c0, . . . , cp, we define a (generalized) Riemann
scheme

(0.11)





x = c0 c1 · · · cp
[λ0,1](m0,1) [λ1,1](m1,1) · · · [λp,1](mp,1)

...
...

...
... ; x

[λ0,n0 ](m0,n0 )
[λ1,n1 ](m1,n1 )

· · · [λp,np ](mp,np )




.

Here n = mj,1 + · · · + mj,nj for j = 0, . . . , p, n is the order of P , λj,ν ∈ C and
{[λj,1](mj,1), . . . , [λj,nj ](mj,nj

)} is the set of generalized characteristic exponents of

the equation at x = cj . The (p + 1)-tuple of partitions of n, which is denoted
by m =

�
mj,ν

�
j=0,...,p
ν=1,...,nj

, is called the spectral type of P and the Riemann scheme

(0.11).
We note that the Riemann scheme (0.11) should always satisfy the Fuchs rela-

tion

|{λm}| :=
p�

j=0

nj�
ν=1

mj,νλj,ν − ordm+ 1
2 idxm

= 0.

(0.12)

Here

idxm :=

p�
j=0

nj�
ν=1

m2j,ν − (p− 1) ordm(0.13)

and idxm coincides with the index of rigidity introduced by [Kz].
In Chapter 4, after introducing certain representatives of conjugacy classes of

matrices and some notation and concepts related to tuples of partitions, we define
that the tuple m is realizable if there exists a Fuchsian differential operator P with
the Riemann scheme (0.11) for generic complex numbers λj,ν under the condition
(0.12). Furthermore, if there exists such an operator P so that Pu = 0 is irreducible,
we define that m is irreducibly realizable.

Lastly in Chapter 4, we examine the generalized Riemann schemes of the prod-
uct of Fuchsian differential operators and the dual operators.

In Chapter 5 we examine the transformations of the Riemann scheme under
our operations corresponding to the additions and the middle convolutions, which
define transformations within Fuchsian differential operators. The operations in-
duce transformations of spectral types of Fuchsian differential operators, which keep
the indices of rigidity invariant but change the orders in general. Looking at the
spectral types, we see that the combinatorial aspect of the reduction of Fuchsian
differential operators is parallel to that of systems of Schlesinger canonical form.
In this chapter, we also examine the combination of these transformation and the
fractional linear transformations.

PREFACE xv

As our interpretation of Deligne-Simpson problem introduced by Kostov, we
examine the condition for the existence of a Fuchsian differential operator with a
given Riemann scheme in Chapter 6. We determine the conditions on m such that
m is realizable and irreducibly realizable, respectively, in Theorem 6.14. Moreover
if m is realizable, Theorem 6.14 gives an explicit construction of the universal
Fuchsian differential operator

(0.14)
Pm =

� p�
j=1

(x− cj)
n
� dn
dxn

+
n−1�
k=0

ak(x, λ, g)
dk

dxk
,

λ =
�
λj,ν
�
j=0,...,p
ν=1,...,nj

, g = (g1, . . . , gN ) ∈ CN

with the Riemann scheme (0.11), which has the following properties.
For fixed complex numbers λj,ν satisfying (0.12) the operator with the Riemann

scheme (0.11) satisfying c0 = ∞ equals Pm for a suitable g ∈ CN up to a left
multiplication by an element of C(x) if λj,ν are “generic”, namely,

(Λ(λ)|α) /∈
�
−1,−2, . . . , 1− (α|αm)

�

for any α ∈ ∆(m) satisfying (α|αm) > 1
(0.15)

under the notation used in (0.22). Here g1, . . . , gN are called accessory parameters
and if m is irreducibly realizable, N = 1 − 1

2 idxm. Example 5.6 shows the ne-
cessity of the above condition (0.15) but the condition is always satisfied if m is
fundamental or simply reducible (cf. Definition 6.15 and Proposition 6.17), etc. In
particular, if there is an irreducible and locally non-degenerate (cf. Definition 9.8)
operator P with the Riemann scheme (0.11), then λj,ν are “generic”. The simply
reducible spectral type is studied in Chapter 6 §6.5, which happens to correspond
to the indecomposable object studied by [MWZ] when the spectral type is rigid.

The coefficients ak(x, λ, g) of the differential operator Pm are polynomials of the

variables x, λ and g. The coefficients satisfy ∂2ak
∂gν∂gν�

= 0 and furthermore gν can be

equal to suitable aiν ,jν under the expression Pm =
�
ai,j(λ, g)x

i dj

dxj and the pairs
(iν , jν) for ν = 1, . . . , N are explicitly given in the theorem. Hence the universal
operator Pm is uniquely determined from their values at generic λj,ν without the
assumption of the irreducibility of the equation Pmu = 0, which is not true in the
case of the systems of Schlesinger canonical form (cf. Example 9.2).

The universal operator Pm is a classically well-known operator in the case of
Gauss hypergeometric equation, Jordan-Pochhammer equation or Heun’s equation
etc. and the theorem assures the existence of such a good operator for any realizable
tuple m. We define the tuple m is rigid if m is irreducibly realizable and moreover
N = 0, namely, Pm is free from accessory parameters.

In particular, the theorem gives the affirmative answer for the following ques-
tion. Katz asked a question in the introduction in the book [Kz] whether a rigid
local system is realized by a single Fuchsian differential equation Pu = 0 without
apparent singularities (cf. Corollary 10.12 iii)).

It is a natural problem to examine the Fuchsian differential equation Pmu =
0 with an irreducibly realizable spectral type m which cannot be reduced to an
equation with a lower order by additions and middle convolutions. The tuple m
with this condition is called fundamental.

The equation Pmu = 0 with an irreducibly realizable spectral type m can
be transformed by the operation ∂max (cf. Definition 5.7) into a Fuchsian equation
Pm�v = 0 with a fundamental spectral typem�. Namely, there exists a non-negative
integer K such that Pm� = ∂KmaxPm and we define fm := m�. Then it turns out
that a realizable tuple m is rigid if and only if the order of fm, which is the order
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operator Pm is uniquely determined from their values at generic λj,ν without the
assumption of the irreducibility of the equation Pmu = 0, which is not true in the
case of the systems of Schlesinger canonical form (cf. Example 9.2).

The universal operator Pm is a classically well-known operator in the case of
Gauss hypergeometric equation, Jordan-Pochhammer equation or Heun’s equation
etc. and the theorem assures the existence of such a good operator for any realizable
tuple m. We define the tuple m is rigid if m is irreducibly realizable and moreover
N = 0, namely, Pm is free from accessory parameters.

In particular, the theorem gives the affirmative answer for the following ques-
tion. Katz asked a question in the introduction in the book [Kz] whether a rigid
local system is realized by a single Fuchsian differential equation Pu = 0 without
apparent singularities (cf. Corollary 10.12 iii)).

It is a natural problem to examine the Fuchsian differential equation Pmu =
0 with an irreducibly realizable spectral type m which cannot be reduced to an
equation with a lower order by additions and middle convolutions. The tuple m
with this condition is called fundamental.

The equation Pmu = 0 with an irreducibly realizable spectral type m can
be transformed by the operation ∂max (cf. Definition 5.7) into a Fuchsian equation
Pm�v = 0 with a fundamental spectral typem�. Namely, there exists a non-negative
integer K such that Pm� = ∂KmaxPm and we define fm := m�. Then it turns out
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of Pfm by definition, equals 1. Note that the operator ∂max is essentially a product
of suitable operators RAd

�
(x− cj)

λj
�
and RAd

�
∂−µ
�
.

In this paper we study the transformations of several properties of the Fuchsian
differential equation Pmu = 0 under the additions and middle convolutions. If they
are understood well, the study of the properties are reduced to those of the equation
Pfmv = 0, which are of order 1 if m is rigid. We note that there are many rigid
spectral types m and for example there are 187 different rigid spectral types m
with ordm ≤ 8 as are given in §13.2.

As in the case of the systems of Schlesinger canonical form studied by Crawley-
Boevey [CB], the combinatorial aspect of transformations of the spectral type m
of the Fuchsian differential operator P induced from our fractional operations is
described in Chapter 7 by using the terminology of a Kac-Moody root system
(Π,W∞). Here Π is the fundamental system of a Kac-Moody root system with the
following star-shaped Dynkin diagram and W∞ is the Weyl group generated by the
simple reflections sα for α ∈ Π. The elements of Π are called simple roots.

Associated to a tuple m of (p+ 1) partitions of a positive integer n, we define
an element αm in the positive root lattice (cf. §7.1, (7.5)):

Π := {α0, αj,ν ; j = 0, 1, . . . , ν = 1, 2, . . .},
W∞ := �sα ; α ∈ Π�,

αm := nα0 +

p�
j=0

nj−1�
ν=1

� nj�
i=ν+1

mj,i

�
αj,ν ,

(αm|αm) = idxm,

α0�������� α1,1�������� α1,2�������� · · ·
α2,1�����������

���
α2,2�������� · · ·

α0,1��������
������

α0,2�������� · · ·

α3,1����������
��

��
��

α3,2�������� · · ·��
��
��
��

��
��
��
�(0.16)

We can define a fractional operation on Pm which is compatible with the action of
w ∈W∞ on the root lattice (cf. Theorem 7.5):

(0.17)�
Pm : Fuchsian differential operators with {λm}

�
→

�
(Λ(λ), αm) ; αm ∈ ∆+

�

↓ fractional operations � ↓W∞-action, +τΛ00,j

�
Pm : Fuchsian differential operators with {λm}

�
→

�
(Λ(λ), αm) ; αm ∈ ∆+

�
.

Here λj,ν ∈ C, τ ∈ C, m =
�
mj,ν

�
j=0,...,p
ν=1,2,...

with mj,ν = 0 for ν > nj ,

Λ0 := α0 +

∞�
ν=1

(1 + ν)α0,ν +

p�
j=1

∞�
ν=1

(1− ν)αj,ν ,

Λ0i,j :=
∞�
ν=1

ν(αi,ν − αj,ν),

Λ0 :=
1

2
α0 +

1

2

p�
j=0

∞�
ν=1

(1− ν)αj,ν ,

Λ(λ) := −Λ0 −
p�

j=0

∞�
ν=1

� ν�
i=1

λj,i

�
αj,ν

(0.18)

and these linear combinations of infinite simple roots are identified with each other
if their differences are in CΛ0. We note that

(0.19) |{λm}| = (Λ(λ) + 1
2αm|αm).

PREFACE xvii

The realizable tuples exactly correspond to the elements of the set ∆+ of pos-
itive integer multiples of the positive roots of the Kac-Moody root system whose
support contains α0 and the rigid tuples exactly correspond to the positive real
roots whose support contain α0. For an element w ∈ W∞ and an element α ∈ ∆+
we do not consider wα in the commutative diagram (0.17) when wα /∈ ∆+.

Hence the fact that any irreducible rigid Fuchsian equation Pmu = 0 is trans-
formed into the trivial equation dv

dx = 0 by our invertible fractional operations
corresponds to the fact that there exists w ∈W∞ such that wαm = α0 because αm

is a positive real root. The monotone fundamental tuples of partitions correspond
to α0 or the positive imaginary roots α in the closed negative Weyl chamber which
are indivisible or satisfies (α|α) < 0. A tuple of partitions m =

�
mj,ν

�
j=0,...,p
ν=1,...,nj

is

said to be monotone if mj,1 ≥ mj,2 ≥ · · · ≥ mj,nj for j = 0, . . . , p. For example, we
prove the exact estimate

(0.20) ordm ≤ 3| idxm|+ 6

for any fundamental tuple m in §7.2. Since we may assume

(0.21) p ≤ 1
2 | idxm|+ 3

for a fundamental tuplem, there exist only finite number of monotone fundamental
tuples with a fixed index of rigidity. We list the fundamental tuples of the index of
rigidity 0 or −2 in Remark 6.9 or Proposition 6.10, respectively.

Our results in Chapter 3, Chapter 5 and Chapter 6 give an integral expression
and a power series expression of a local solution of the universal equation Pmu = 0
corresponding to the characteristic exponent whose multiplicity is free in the local
monodromy. These expressions are in Chapter 8.

In §9.1 we review the monodromy of solutions of a Fuchsian differential equation
from the view point of our operations. The theorems in this chapter are given
by [DR, DR2, Kz, Ko2]. In §9.2 we review Scott’s lemma [Sc] and related
results with their proofs, which are elementary but important for the study of the
irreducibility of the monodromy.

In §10.1 we examine the condition for the decomposition Pm = Pm�Pm�� of
universal operators with or without fixing the exponents {λj,ν}, which implies the
reducibility of the equation Pmu = 0. In §10.2 we study the value of spectral
parameters which makes the equation reducible and obtain Theorem 10.10. In
particular we have a necessary and sufficient condition on characteristic exponents
so that the monodromy of the solutions of the equation Pmu = 0 with a rigid
spectral type m is irreducible, which is given in Corollary 10.12 or Theorem 10.13.
When mj,1 ≥ mj,2 ≥ · · · for any j ≥ 0, the condition equals

(0.22) (Λ(λ)|α) /∈ Z (∀α ∈ ∆(m)).

Here ∆(m) denotes the totality of positive real roots α such that wmα are
negative and wm is the element of W∞ with the minimal length so that α0 =
wmαm (cf. Definition 7.8 and Proposition 7.9 v)). The number of elements of
∆(m) equals the length of wm, which is the minimal length of the expressions of
wm as products of simple reflections sα with α ∈ Π. Proposition 7.9 examines this
set ∆(m). The set

�
(α|αm) | α ∈ ∆(m)

�
gives a partition of a positive integer,

which is denoted by [∆(m)] and called the type of ∆(m) (cf. Remark 7.11 ii)).
If m is monotone and rigid, [∆(m)] is a partition of the positive integer ordm +�p

j=0

�nj−1
ν=1 (

�nj
i=ν+1mj,i) − 1. Moreover m is simply reducible if and only if

[∆(m)] = 1 + · · ·+ 1 = 1#∆(m).
In Chapter 11 we construct shift operators between rigid Fuchsian differential

equations with the same spectral type such that the differences of the corresponding
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tuples with a fixed index of rigidity. We list the fundamental tuples of the index of
rigidity 0 or −2 in Remark 6.9 or Proposition 6.10, respectively.

Our results in Chapter 3, Chapter 5 and Chapter 6 give an integral expression
and a power series expression of a local solution of the universal equation Pmu = 0
corresponding to the characteristic exponent whose multiplicity is free in the local
monodromy. These expressions are in Chapter 8.

In §9.1 we review the monodromy of solutions of a Fuchsian differential equation
from the view point of our operations. The theorems in this chapter are given
by [DR, DR2, Kz, Ko2]. In §9.2 we review Scott’s lemma [Sc] and related
results with their proofs, which are elementary but important for the study of the
irreducibility of the monodromy.

In §10.1 we examine the condition for the decomposition Pm = Pm�Pm�� of
universal operators with or without fixing the exponents {λj,ν}, which implies the
reducibility of the equation Pmu = 0. In §10.2 we study the value of spectral
parameters which makes the equation reducible and obtain Theorem 10.10. In
particular we have a necessary and sufficient condition on characteristic exponents
so that the monodromy of the solutions of the equation Pmu = 0 with a rigid
spectral type m is irreducible, which is given in Corollary 10.12 or Theorem 10.13.
When mj,1 ≥ mj,2 ≥ · · · for any j ≥ 0, the condition equals

(0.22) (Λ(λ)|α) /∈ Z (∀α ∈ ∆(m)).

Here ∆(m) denotes the totality of positive real roots α such that wmα are
negative and wm is the element of W∞ with the minimal length so that α0 =
wmαm (cf. Definition 7.8 and Proposition 7.9 v)). The number of elements of
∆(m) equals the length of wm, which is the minimal length of the expressions of
wm as products of simple reflections sα with α ∈ Π. Proposition 7.9 examines this
set ∆(m). The set

�
(α|αm) | α ∈ ∆(m)

�
gives a partition of a positive integer,

which is denoted by [∆(m)] and called the type of ∆(m) (cf. Remark 7.11 ii)).
If m is monotone and rigid, [∆(m)] is a partition of the positive integer ordm +�p

j=0

�nj−1
ν=1 (

�nj
i=ν+1mj,i) − 1. Moreover m is simply reducible if and only if

[∆(m)] = 1 + · · ·+ 1 = 1#∆(m).
In Chapter 11 we construct shift operators between rigid Fuchsian differential

equations with the same spectral type such that the differences of the corresponding
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characteristic exponents are integers. Theorem 11.3 gives a contiguity relation of
certain solutions of the rigid Fuchsian equations, which is a generalization of the
formula

(0.23) c
�
F (a, b+ 1, c;x)− F (a, b, c;x)

�
= axF (a+ 1, b+ 1, c+ 1;x)

and moreover gives relations between the universal operators and the shift operators
in Theorem 11.3 and Theorem 11.7. In particular, Theorem 11.7 gives a condition
which assures that a universal operator is this shift operator.

The shift operators are useful for the study of Fuchsian differential equations
when they are reducible because of special values of the characteristic exponents.
Theorem 11.9 give a necessary condition and a sufficient condition so that the shift
operator is bijective. In many cases we get a necessary and sufficient condition by
this theorem. As an application of a shift operator we examine polynomial solutions
of a rigid Fuchsian differential equation of Okubo type in §11.3.

In Chapter 12 we study a connection problem of the Fuchsian differential equa-
tion Pmu = 0. First we give Lemma 12.2 which describes the transformation of a
connection coefficient under an addition and a middle convolution. In particular,
for the equation Pmu = 0 satisfying m0,n0 = m1,n1 = 1, Theorem 12.4 says that the
connection coefficient c(c0 : λ0,n0 � c1 : λ1,n1) from the local solution correspond-
ing to the exponent λ0,n0 to that corresponding to λ1,n1 in the Riemann scheme
(0.11) equals the connection coefficient of the reduced equation Pfmv = 0 up to
the gamma factors which are explicitly calculated.

In particular, if the equation is rigid, Theorem 12.6 gives the connection coeffi-
cient as a quotient of products of gamma functions and an easier non-zero term. For
example, when p = 2, the easier term doesn’t appear and the connection coefficient
has the universal formula

(0.24) c(c0 :λ0,n0 �c1 :λ1,n1) =

n0−1�
ν=1

Γ
�
λ0,n0

− λ0,ν + 1
�
·
n1−1�
ν=1

Γ
�
λ1,ν − λ1,n1

�

�
m�⊕m��=m

m�
0,n0

=m��
1,n1

=1

Γ
�
|{λm�}|

� .

Here the notation (0.12) is used and m =m� ⊕m�� means that m =m� +m�� with
rigid tuples m� and m��. Moreover in the right hand side of (0.24), the number
of gamma factors appearing in the denominator equals to that in the numerator,
the sum of the numbers ∗ in gamma factors Γ(∗) in the denominator also equals
to that in the numerator and the decomposition m = m� ⊕m� is characterized by
the condition that αm� ∈ ∆(m) or αm�� ∈ ∆(m) (cf. Corollary 12.7). The author
conjectured this formula (0.24) in 2007 and proved it in 2008 (cf. [O6]). The proof
in §12.1 based on the identity (12.8) is different from the original proof, which is
explained in §12.3.

Suppose p = 2, ordm = 2, mj,ν = 1 for 0 ≤ j ≤ 2 and 1 ≤ ν ≤ 2, Then (0.24)
equals

(0.25)
Γ(λ0,2 − λ0,1 + 1) · Γ(λ1,2 − λ1,1)

Γ(λ0,1 + λ1,2 + λ2,1) · Γ(λ0,1 + λ1,2 + λ2,2)
,

which implies (0.3) under (0.4).
The hypergeometric series F (a, b, c;x) satisfies limk→+∞ F (a, b, c + k;x) = 1

if |x| ≤ 1, which obviously implies limk→+∞ F (a, b, c + k; 1) = 1. Gauss proves
the summation formula (0.3) by this limit formula and the recurrence relation

F (a, b, c; 1) = (c−a)(c−b)
c(c−a−b) F (a, b, c + 1; 1). We have limk→+∞ c(c0 : λ0,n0 + k� c1 :

λ1,n1 −k) = 1 in the connection formula (0.24) (cf. Corollary 12.7). This suggests a
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similar limit formula for a local solution of a general Fuchsian differential equation,
which is given in §12.2.

In §12.3 we propose a procedure to calculate the connection coefficient (cf. Re-
mark 12.19), which is based on the calculation of its zeros and poles. This procedure
is different from the proof of Theorem 12.6 in §12.1 and useful to calculate a cer-
tain connection coefficient between local solutions with multiplicities larger than 1
in eigenvalues of local monodromies. The coefficient is defined in Definition 12.17
by using Wronskians.

In Chapter 13 we show many examples which explain our fractional calculus
in this paper and also give concrete results of the calculus. In §13.1 we list all
the fundamental tuples whose indices of rigidity are not smaller than −6 and in
§13.2 we list all the rigid tuples whose orders are not larger than 8, most of which
are calculated by a computer program okubo explained in §13.11. In §13.3 and
§13.4 we apply our fractional calculus to Jordan-Pochhammer equations and the
hypergeometric family, respectively, which helps us to understand our unifying
study of rigid Fuchsian differential equations. In §13.5 we apply our fractional
calculus to the even/odd family classified by [Si] and most of the results there have
been first obtained by our calculus. In §13.6, we show some interesting identities of
trigonometric functions as a consequence of the concrete value (0.24) of connection
coefficients.

In §13.7, §13.8 and §13.9 we study the rigid Fuchsian differential equations
of order not larger than 4 and those of order 5 or 6 and the equations belonging
to 12 submaximal series classified by Roberts [Ro], respectively. Note that these
12 maximal series contain Yokoyama’s list [Yo]. In §13.9.2, we explain how we
read the condition of irreducibility, connection coefficients, shift operators etc. of
the corresponding differential equation from the data given in §§13.7–13.9. We
examine Appell’s hypergeometric equations in §13.10 by our fractional calculus,
which will be further discussed in another paper.

In Chapter 14 we give some problems to be studied related to the results in
this paper.
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