Contents

Chapter I. Analytic aspects of <i>p</i> -adic periods.	9
(Analysis)	
1. Analytic continuation; topological point of view.	10
2. Analytic continuation; algebraic approach.	21
3. The tale of $F(\frac{1}{2}, \frac{1}{2}, 1; z)$.	35
4. Abelian periods as algebraic integrals.	42
5. Periods as solutions of the Gauss-Manin connection.	51
Chapter II. Introduction to the theory of <i>p</i> -adic period mappings.	63
(Geometry)	
1. A survey of moduli and period mappings over \mathbb{C} .	64
2. Preliminaries on <i>p</i> -divisible groups.	70
3. A stroll in the crystalline world.	74
4. Moduli problems for <i>p</i> -divisible groups.	82
5. p -adic period domains.	86
6. The p -adic period mapping and the Gauss-Manin connection.	89
7. <i>p</i> -adic uniformization of Shimura varieties.	95
Chapter III. <i>p</i> -adic orbifolds and monodromy.	109
(Group theory)	
1. Étale coverings and fundamental groups in <i>p</i> -adic geometry.	110
2. Tempered fundamental groups.	124
3. Local and global monodromy of <i>p</i> -adic differential equations.	139
4. Non-archimedean orbifolds, uniformizing differential equations	5
and period mappings.	156
5. <i>p</i> -adic triangle groups.	173
6. The tale of $F(\frac{1}{24}, \frac{7}{24}, \frac{5}{6}; z)$ (Escher's triangle group and its diad	ic
and triadic twins).	188
Appendix A. Rapid Course in <i>p</i> -adic Analysis.	205
	200
by F. Kato	

1.	Introduction.	205
1. 2.	Rigid analytic spaces.	205
2. 3.	Relation with Formal Geometry.	207
4.	Topology of Rigid Analytic Space.	210
-1. 5.		214
0.	Berkovich' approach to non-archimedean analysis	216
Appe	ndix B. An overview of the theory of p -adic uniformization.	219
	by F. Kato	
1.	Bruhat-Tits building.	219
2.	Drinfeld symmetric space.	220
3.	Uniformization.	224
4.	Examples.	225
5.	Mumford's fake projective plane.	226
Appe	ndix C. p -adic symmetric domains and Totaro's theorem	229
	by N. Tsuzuki	
1.	Weakly admissible filtered isocrystals.	229
2.	Filtered isocrystals with G-structure.	230
3.	Totaro's theorem.	231
4	p-adic symmetric domains.	234
4.		
4. Index		237