LIST OF SYMBOLS

In parentheses page number of first appearance of symbol.
abs $=$ absolute value (41)
a.e. $=$ almost everywhere (101)
$A S(n)=$ all real $n \times n$ skew symmetric matrices (145)
$A(X)=$ coefficient matrix of vector field X (70)
$\mathcal{B}, \mathcal{B}_{0}=\sigma$-ring of Borel, Baire sets (102)
$c_{n}=$ constant defined in (7.7.9) (147)
$c(r)=$ constant defined in (9.2.14) (167)
$C=$ nonsingular matrix (16) or: class of Cartan G-spaces (210)
$C P=$ both Cartan and proper action (210)
$C^{k}, C^{\infty}=$ differentiability classes (39)
$\chi, \chi^{2}=$ chi, chi-square distribution $(2,1)$
$\chi_{\ell}, \chi_{r}=$ left, right multipliers (127)
$\operatorname{det}=$ determinant (41)
diag $=$ diagonal or block diagonal matrix $(15,20)$
$\operatorname{dim}=$ dimension (44)
$d f=$ differential of mapping $f(44)$
$(d C)=$ wedge product of elements of $d C(145)$
$d(\cdot, \cdot)=$ distance function in metric space (14)
$\frac{\partial(y)}{\partial(x)}=$ Jacobian (with abs: 41, without abs: 60)
$\delta_{i j}=$ Kronecker delta (46)
$\delta f=$ adjoint of $d f(63)$
$\delta(a)=$ modulus of automorphism $a(126)$
$\Delta_{r}, \Delta_{r}^{G}, \Delta_{\ell}, \Delta_{\ell}^{G}=$ right- and left-hand moduli of group G (122)
$E_{i j}=$ matrix with 1 in position $(i, j)(70)$
$e, e_{G}=$ identity element of group $G(14,15)$
$\exp (x)=e^{x}$ if x is a real number (2)
$\exp (X)=\operatorname{exponential~map~when~} X$ is a vector field (83)
$f^{+}, f^{-}=$positive, negative part of a real valued function $f(100)$
$\int f \omega=\mu(f)$ with μ defined by the differential form ω (117)
$f^{b}=$ function on X / H derived from f on X (132)
$\mathcal{F}=$ vector lattice (99)
$\mathcal{F}^{o}, \mathcal{F}_{u}=$ over-, under-functions of $\mathcal{F}(99)$
$\mathcal{F}(Z ; E)=$ all functions from Z to $E(110)$
$g f=g$-translate of the function $f(21)$
$[g]=g H=$ coset of g in G / H (19)
$G L(n)=$ general linear group of all real $n \times n$ nonsingular matrices(14)
$G / H=$ space of left cosets of $G \bmod H(19)$
$G_{k}=$ group of permutations of $1, \ldots, k(54)$
$G_{x}=$ isotropy subgroup of G at $x(20)$
$\mathfrak{g}, \mathfrak{h}=$ Lie algebra of G, H, etc. (69)
$\mathfrak{g l}(n)=$ Lie algebra of $G L(n)$ consisting of all $n \times n$ real matrices (70) $\gamma_{X}=$ integral curve of X starting at e (83)
$\Gamma=$ orthogonal matrix (3) or: gamma function (147)
iid $=$ independent and identically distributed (2)
$I_{n}=n \times n$ identity matrix (15)
$I(f)=$ elementary integral (99)
$\bar{I}(f), \underline{I}(f)=$ upper, lower integral (100)
$i_{X}=$ identity map $X \rightarrow X$ (13)
$i=$ inclusion map (48)
$\inf =$ infimum (100)
$\mathcal{K}(X)=$ all real valued continuous functions on X with compact support (25)
$\mathcal{K}_{+}(X)=$ nonnegative members of $\mathcal{K}(X)$ (103)
$\mathcal{K}(X, K)=$ members f of $\mathcal{K}(X)$ with $\operatorname{supp} f \subset K$ (103)
$\mathcal{K}(Z, K ; E)=$ all continuous $f: Z \rightarrow E$ with supp $f \subset K$ (110)
$L T(n)=$ all $n \times n$ real lower triangular matrices with positive diagonal elements (15)
$L_{g}=$ left translation by $g(52)$
1.c. = locally compact (25)
$\mathcal{L}=$ family of integrable functions (100)
$M(m, n)=$ all $m \times n$ real matrices (145)
$M_{p}=$ tangent space at $p \in M$ (43)
$M_{p}^{*}=$ dual space to $M_{p}(53)$
$\mathcal{M}=$ real valued functions with finite semi-norm (101)
$\mu(f)=\int f d \mu(103)$
$\mu_{G}=$ left Haar measure on $G(137,146)$
$\mu_{Y}=$ invariant measure induced on a coset space Y (139)
$\mu^{b}=$ measure on X / H derived from μ on X (134)
$\mu / \beta=$ quotient measure (135)
$N(0,1)=$ standard normal distribution (2)
$N(\mu, \Sigma)=$ multivariate normal distribution with mean μ and covariance matrix Σ (166)
$\nu_{G}=$ right Haar measure on G (146)
$\nu^{\sharp}=$ measure on X derived from ν on X / H (135)
$O(n)=$ all $n \times n$ orthogonal matrices (3)
$\emptyset=$ empty set (31)
$\omega, \omega_{p}=$ differential form, at p (53)
$P=$ probability (151) or: denotes proper action (210)
$P^{T}=$ distribution of random variable T (155)
$P D(n)=$ all $n \times n$ positive definite matrices (18)
$\mathrm{pr}_{1}=$ projection of product space on first component space (13)
$\pi=$ orbit projection $X \rightarrow X / G$ or coset projection $G \rightarrow G / H$ (18, 19)
or: the number $3.14159 \ldots$ (2)
$R=$ real line (5)
$R_{+}, R_{-}=$all positive, negative real numbers $(25,28)$
$R^{n}=n$-dimensional Euclidean space (14)
$R_{+}^{*}=$ group of positive reals under multiplication (14)
$R_{g}=$ right translation by g (67)
$\operatorname{sgn} x=1,0$, or -1 according as $x>,=$, or $<0(22)$
$\operatorname{sgn}(\pi)= \pm 1$ according as the permutation π is even or odd (54)
$\sup =\operatorname{supremum}(100)$
supp $=$ support of a real valued continuous function (25)
$S=$ a positive definite matrix (3)
or: family of measurable sets (100) or: slice or local cross section (200)
$\operatorname{tr}=$ trace of a matrix (165)
$\mathcal{T}=$ range of a maximal invariant (152)
$U T(n)=$ all $n \times n$ real upper triangular matrices with positive diagonal elements (15)
$V_{k}=$ space of k-linear alternating functions (54)
$V=$ Grassmann algebra (54)
WLOG = without loss of generality (63)
$W(n, \Sigma)=$ Wishart distribution (166)
$X / G=$ orbit space of X under the action of G (18)
$X=$ statistical sample space (151)
$y=\operatorname{coset}$ space $G / G_{0}(153)$
$z=$ cross section (152)
$\bar{A}=$ closure of a set $A(23)$
$A^{c}=$ complement of a set $A(23)$
$A^{o}=$ interior of a set $A(23)$
$\partial A=$ boundary of a set $A(23)$
$A^{\prime}=$ transpose of the matrix $A(3)$
$\left(\left(a_{i j}\right)\right)=$ matrix A whose (i, j) element is $a_{i j}(41)$
$((A, B))=$ set of all g such that $g A$ meets $B(31)$
$|c|=$ absolute value of the real number $c(13)$
$|f|=$ absolute value of the real valued function $f(101)$
$|C|=$ absolute value of the determinant of the matrix C (145)
|| \| = norm (13)
$f_{1} \circ f_{2}=$ composition of the functions $f_{1}, f_{2}(13)$
$f_{1} \otimes f_{2}=$ function whose value at (x, y) is $f_{1}(x) f_{2}(y)$ (13)
$\mu_{1} \otimes \mu_{2}=$ product measure (115)
$X \times Y=$ product space (13)
$\oplus=\operatorname{direct}$ sum (54)
$[X, Y]=$ bracket of the vector fields $X, Y(51)$
$\left[\Gamma_{1}, \Gamma_{2}\right]=$ partitioning of a matrix Γ (150)
$\wedge=$ wedge product (54)

