
REPLY TO THE DISCUSSION

We are very grateful to the discussants for their stimulating com-

ments. Besides describing interestingly different perspectives, the comments

serve to highlight a number of important issues we inadequately discussed in

the text.

REPLY_ TO PROFESSORS BAYARRI AND DEGROOT

It is indeed a pleasure to thank Professors Bayarri and Degroot for

their careful reading of our manuscript and the deep insight reflected in their

discussion. In the manuscript we tried to explore the implications of the LP

and the issues it raises without endorsing any particular mode of inference

(until the final chapter); in particular we tried hard not to let our Bayesian

point of view color the basic arguments enough to make them unpersuasive to

followers of the frequentist tradition. Thus our emphasis was not on "what is

the likelihood function?
11
 Rather, we took the likelihood function as given,

and argued that the LP would follow no matter what reasonable definition of the

likelihood function is used. The definitions in (3.5.1) and (3.5.2) are both

reasonable, and serve different purposes.

But we are Bayesians, and are in essentially complete agreement

with the basic issues raised by Bayarri and DeGroot. We agree that there is no

clear distinction between "parameters" and "variables", and that definition of

the likelihood function is ambiguous. As Bayarri and DeGroot observe, any

partition of the parameters and variables into two disjoint sets s, and Sp,

with Sj containing the observed quantity x, leads to an acceptable likelihood

function £
χ
(s

2
) = f(sj|s

2
) (providing this function is accepted as "known").

As long as one also keeps track of all known marginal and conditional informa-

tion about the variables and parameters, any such partition leads to a likeli-

hood function which contains all evidence from the experiment (at least to a

186
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Bayesian). But the need to keep track of this marginal and conditional infor-

mation, and to treat unknowns in s, differently from unknowns in s?, should be

sources of concern to non-Bayesians.

Bayarri and DeGroot suggest that the choice s1 = "observed" and

s2 = "unobserved" (which they and Professor Kadane call LF . in BDK) has logi-

cal preeminence as a definition of likelihood; then i (s9) represents precisely

what was learned from the observation of x, unconfounded by any given informa-

tion about S£. We again agree; it was only the sociological concerns mentioned

in our first paragraph above that kept us from so defining the likelihood

function in general.

Further repetition of the insights of Bayarri and DeGroot would be

unnecessarily duplicative. Suffice it to say that we agree that non-Bayesians

can have a very difficult time defining and interpreting the likelihood

function; and once they pass this hurdle, they still must contend with the LP.

REPLY TO PROFESSOR HILL

It would seem rather foolish of us to question Professor Hill's

interesting discussion at all, because he seems to feel that we do not go far

enough in our support of the LP. First we would like to clear up that

misimpression (we are fully as enthusiastic as he is concerning the applica-

bility of the LP), and then proceed to the deep issue he raises concerning use

of improper, or proper but finitely additive, priors.

From Professor Hill's comments (and also those of Professor Le Cam)

it is clear that we did not express ourselves clearly in the Monette-Fraser,

Stone, and Stein examples, with regard to the role of frequentist measures

and our own conditional perspective of statistical analysis. (This lack of

clear expression was primarily due to our concentration on using the examples

to indicate the necessity for some type of Bayesian processing of likelihood

functions.) Our discussion of frequentist measures was motivated partly by the

fact that the examples were historically developed in that fashion, and partly
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to indicate that conditional (proper) Bayesians will naturally overcome the

difficulties involved, even from the frequentist perspective. We also do

believe that there can be value in frequentist measures as possible warning

signals that care must be taken in the Bayesian analysis. However, we by no

means meant to imply that (because of a Bayesian-frequentist conflict) one

must necessarily change the Bayesian analysis.

These points are, perhaps, best illustrated by the Stein example,

in that it is well recognized that (for data from univariate normal models) the

uniform improper prior is typically quite satisfactory. It is typically satis-

factory, however, only because σ is usually small enough that true prior beliefs

can be approximated by the uniform prior. The bad frequentist performance of

the uniform prior in the model (5.3.3) should be a warning that the adequacy of

the uniform approximation to prior beliefs should be investigated, and indeed

such an investigation would usually indicate that the approximation was bad;

this would be the conclusion unless y was \/ery small. The frequentist measure,

here, is actually superfluous, however. The conditional Bayesian would

naturally use a uniform prior (as a good approximation) when y/d was very small,

and would recognize (if he had any prior information whatsoever) its inadequacy

for typically large y/d, simply because the likelihood function would then be

much more diffuse than even yery vague prior information. No knowledge of

frequentist properties, or of differing properties of scale and location

parameters, is necessary to behave sensibly. Also, we in no sense recommend

changing the prior as the model changes. If one's prior opinions truly are

diffuse over the range of the likelihood function, by all means use the uniform

prior, no matter what the model. We simply do not feel that this will be the

case for the model in (5.3.3), however, unless y happens to be exceptionally

small. (Likewise, we judge that the uniform prior will usually be inappropri-

ate for normal models which have monstrously large variances.) There is no

incompatibility with the likelihood principle here, since the "adequacy of the

approximation" can be judged simply by looking at the likelihood function.
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The major issue raised by Professor Hi l l concerns the need for

conglomerability, or alternatively the concern that need be f e l t when the

frequentist answer completely contradicts the posterior Bayesian answer.

Specifically, in the Monette-Fraser example Professor Hi l l argues that the

uniformly bad frequentist performance of analysis based on the f i n i t e l y addi-

tive uniform prior is not operationally meaningful, because the sample space i s ,

in real i ty, always bounded. The issue here is not directly related to the

likelihood principle, but is another aspect of the possible problems caused by

the use of inf in i te models to approximate real ity. I f the sample space in the

Monette-Fraser example is bounded by N, then certainly the uniform prior be-

comes permissible, since one can actually simply choose the proper discrete

uniform prior on 0 to 2N. We do f e e l , however, that the subjective assessment

of uniformity on 0 to 2N would rarely be reasonable in practice, precisely

because the use of the i n f i n i t e model as an approximation would typically be

due to the belief that no X, so large as to be unmeasurable, would actually

occur; this implies a prior belief that θ could not be extremely large. In

general, we would view a uniform conflict between frequentist and Bayesian

measures as an indication that either the approximation of an inf in i te model

was inappropriate, or the use of the f i n i t e l y additive prior was inappropriate.

We do, of course, feel that al l sample spaces are actually f i n i t e ,

and that (for virtually any problem) one could actually provide a (perhaps

overly large) f i n i t e sample space. Do examples of the type we are discussing

exist for f i n i t e sample spaces? I f so, such would seem to provide a counter-

example to Professor H i l l ' s argument. I f not, one could indeed not object,

philosophically, to the use of f i n i t e l y additive measures. There would, how-

ever, remain pragmatic questions concerning the practicality of using f i n i t e l y

additive priors (as opposed to countably additive priors) to approximate prior

beliefs, but that is an issue for another time and place.

We have long been admirers of Professor H i l Γ s careful treatment

of the random effects analysis of variance model, and do not really disagree

with his comments here. I f we observed a likelihood function, over the range
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of which our prior was very diffuse, we would have no qualms about using the

uniform improper prior. If, however, the uniform prior leads to a procedure

with bad frequentist properties, we would infer that the uniform prior was a

poor approximation to our prior beliefs for most of the likelihood functions

that could be encountered, and would be loathe to implement it in, say, a

"routine" computer package.

Our view on this matter is partly tied to the discussions surround-

ing Examples 16 and 37. Good frequentist performance will often give some

assurance that a type of conditional Bayesian analysis is moderately robust,

while bad frequentist performance of such an analysis is often an indication of

nonrobustness. Such implications are by no means certain, and use of frequent-

ist verification may often be an inefficient way of investigating robustness,

but we should not dismiss any available aids. In this we also perceive at

least partial agreement with Professor Hill, as witnessed by his numerous

papers on the matter (referenced and discussed in Berger (1984e))

REPLY TO PROFESSOR LANE

Before considering the two deep issues raised by Professor Lane,

we would raise one minor quibble. His second paragraph consists of a l ist ing

of "bail-out options" for statisticians who choose not to follow the LP. A

major purpose of the monograph was to argue the inadequacy of such bail-outs.

Professor Lane does not make his views on such bail-outs clear, although

presumably, as a Bayesian, he does not accept their validity (for perhaps

reasons other than those given in the text ) .

The two main issues raised by Professor Lane are ( i ) the adequacy

of the model paradigm and usefulness of the LP within i t , and ( i i ) the fact

that the LP ignores the Basic Tenet of Bayesianity, namely that inference

should consist of the quantification of uncertainty. In our analyses of these

issues i t is particularly important to realize that we perceive l i t t l e , i f

any, disagreement between us and. Professor Lane concerning the correctness of

the Bayesian pardigm for stat ist ics. We do di f fer , however, in our opinions
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concerning the most convincing and practically useful way in which this

paradigm should be presented. We emphasize the basic agreement because, all

too often, non-Bayesians use these rather mild disputes between Bayesians to

reject the entire Bayesian paradigm.

Professor Lane only briefly mentions the second issue, that

quantification of uncertainty should be the goal of inference. This tenet

seems almost self-evident (even though it is not accepted by the bulk of the

advanced statistical community), and indeed the LP does not directly incorpor-

ate it. An alternate phrasing of the tenet, however, is that statisticians

should treat known quantities as fixed and treat unknown quantities probabilis-

tically. The LP does deal with the first half of this phrasing, treating the

known data, x, as fixed for inference, while at least treating θ as variable

(if not as a random quantity). Hence the LP embodies a major part of the Basic

Tenet of Bayesianity.

We have several reasons for approaching the Bayesian paradigm

through the LP, rather than through acknowledgment of the Basic Tenet. The

first is sociological, and is partly due to the current state of statistics.

Two prevelant notions in this "current state" are that the frequentist paradigm

provides a satisfactory underpinning for statistics, and that Bayesian analysis

is unacceptable because of its prior inputs. It is because of these notions

that the majority of statisticians would reject the Basic Tenet, and that

direct arguments for Bayesianity often make little headway. Note, however,

that the LP directly impunes the first notion, while avoiding the biases of

the second notion.

Of course one can argue that transient sociological concerns should

not be the basis for judgement, but even from a strictly scientific perspective

there is some doubt as to the correct route to take to the Bayesian paradigm.

Direct arguments for the Basic Tenet involve some variety of coherency argu-

ments, based on axioms of rational behavior. Such axioms are by no means

above criticism. For instance, the arguments listed in Section 3.7, that have

been raised against the common "betting scenario," are not easy to dismiss (see
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also Le Cam (1977)). Also, even if all such axioms are accepted, the fact

that the only "rational" analyses are those compatible with some Bayesian

analysis does not logically imply that the only acceptable way to do statistics

is to write down a prior distribution (which can never be more than an

approximation to prior beliefs) and perform a Bayesian analysis.

Although the LP is also subject to axiomatic and operational

criticism, it has several advantages in these regards. The first is that its

axiomatic basis is compelling to most people. The WCP is compelling to almost

everyone, and the SP is an integral part of most existing statistical paradigms.

We do acknowledge that the SP is not really "obvious," and indeed went to

considerable effort in Sections 3.6 and 3.7 to justify the principle (and not

just for the "betting scenario"). The simple fact remains, however, that yery

few statisticians will reject either of these axioms, while most seem unmoved

by the coherency axioms.

As to the operational criticism, the LP would again seem to have

an edge, precisely because it does not provide a final answer and can hence be

more specific in its partial answer. The coherency approach provides only the

vague general requirement that substantial inconsistency with some Bayesian

analysis should be avoided. The LP is, on the other hand, specific in its

recommendation to utilize only the observed likelihood function, even though it

does not address the question of how this is to be done. And from a purely

pragmatic viewpoint, this first step may well be the most important step of

all. The reason is that, in practice, one often spends the greatest effort in

model selection and verification; the knowledge that one need only consider

the observed likelihood function can simplify this task enormously. Indeed,

it is not unusual for the choice of a prior on model parameters to be of such

secondary importance that one never gets beyond "playing with likelihoods."

Professor Lane does point out that the "standard" decomposition in-

to model and prior is often artificial, and so should not be a part of statis-

tical foundations. While sympathetic, we view such decompositions as
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essential practical simplifying devices, necessary to achieve progress. One

usually progresses on a hard problem by identifying simple components that can

first be analyzed separately, and then combined together. Although we agree

that such decompositions are not always appropriate, their pragmatically

central role to statistics is hard to deny. And the fact that the LP provides

so much insight into what is probably the most crucial component of the decom-

position, gives it considerable appeal.

In summary on this issue, the coherency approach to the Bayesian

paradigm has many admirers (ourselves among them) and can perhaps claim a

logical ascendancy over the LP approach, but (for the reasons mentioned above)

we feel that the LP approach has had, or at least can have, a larger impact.

The quotation on p. 2 from L. J. Savage is revealing in this regard, coming

from an ardent admirer of coherency. (More complete discussions of this

issue can be found in Berger (1984b) and Berger (1984e).)

It was perhaps unfair to spend so much time on this issue, given

that Professor Lane only briefly mentions coherency. However, we feel that it

is important to view Professor Lane's objections to the LP in the larger per-

spective of alternative approaches to the Bayesian paradigm.

Let us now turn to Professor Lane's second issue, specifically

the criticisms about the "model" paradigm and the applicability of the LP

within it. The first issue Professor Lane raises is that of the interpretation

of θ, and the question of applicability of the LP unless θ is a "real"

physical parameter. We wanted to avoid the philosophical problems inherent in

any discussion of the meaning of parameters, but in retrospect should have

spent more time on the issue. The reason is that, while of course the LP will

apply if Θ is a real physical parameter (in some sense), it also applies in

the much more common situation where θ is only defined by some aspect of the

experiment. For instance, a very large part of statistics deals with situa-

tions involving a series of (approximately) i.i.d. observations X ^ The

parameter θ is often implicitely defined by the assumed density (say), f
0
(x^)>

for the observations, and is not, as Professor Lane implies, necessarily
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identified with the overall {P
θ
>, which could also involve other aspects of the

experiment such as the stopping rule, possible censoring, and so forth. We

could consider any number of experiments with the same implicitely defined θ,

but with different {P
Ω
}, and apply the WCP and SP to deduce the LP. Indeed a

major purpose of the LP is to show that features of {P.} which are irrelevant
Ό

to the implicit definition of θ are ignorable in the analysis. Professor

Lane's three interpretations of θ do not cover this case, which we would call

the case of major practical interest.

Of course, we did not mean the LP to apply in Professor Lane's

case b ) , where Θ is just an index set, and specifically warned against this on

several occasions. (The entire mixing setup makes no sense i f the parameters

in the two experiments can d i f f e r . ) Our failure to carefully define θ in

examples was admittedly sloppy, but was based on the desire to avoid complex

philosophical issues that are of uncertain practical import. (Convincing a

practicing stat ist ician, who routinely uses models, to base his analysis on

the observed likelihood function is a significant practical step. Informing

him that his model parameters really have no meaning is unlikely to cause much

improvement in his statistical practice.)

Professor Lane next questions the value of inference about model

parameters, arguing that predictive inference about future observables is of

most concern. We do not dispute this point, but, as Professor Lane acknow-

ledges, we do handle predictive inference by incorporating the future observ-

able in θ. The complaint that the LP does not then say how to eliminate θ is

one of the arguments we use for Bayesian implementation of the LP, but the

complaint in no way limits or casts doubt on the LP. Professor Lane may prefer

the de Finetti approach, which allows direct dealing with predictive inference,

but, as discussed earl ier, we feel the model-based "half-way house" is general-

ly a pragmatic necessity. I t is enormously d i f f i c u l t to attempt directly to

ascertain such complicated things as predictive distributions. Even inventing

crude models and a r t i f i c i a l l y creating model-prior separations w i l l , we f e e l ,
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serve predictive statisticians best in the long run. Professor Lane does

raise the valid point that our emphasis throughout the text on model parameter

inference, itself, may be misleading. Our only defense is the essential

impossibility of sensibly discussing predictive inference outside a Bayesian

framework, combined with our desire to minimize Bayesian involvement (for

already mentioned sociological reasons).

We have tried to describe accurately the reasons for our prefer-

ence for the LP approach to Bayesianity. Admittedly this preference may be

due to our traditional probabilistic and statistical background (with its

model orientation), but, on the other hand, the alternative developments

have not managed to produce any broadly useful new practical methodology.

There is real danger in letting philosophical games obscure the practical

realities of the situation. (For instance, the coherency game of "betting"

serves to give various sound meanings to probabilities, but it seems completely

backwards in its application: people decide how to bet by first determining

probabilities, usually through some comparative likelihood method.) A

philosophical game that can be played to support the LP, foundationally, is

the "finite sample space" game (see Section 3.6.1). Reality always has a

finite sample space, and the LP always applies to the implied "model." This

formulation has little operational significance, however, and so we do not

view it as a serious argument for the LP approach.

In conclusion, although we certainly support, and indeed find

philosophically enlightening, approaches to Bayesianity based on coherency,

our own preference is for the LP approach.

REPLY TO PROFESSOR LE CAM

The major and probably most important point made in Professor

LeCam's interesting discussion is that we should be "a bit unprincipled." He

sees value in both classical methods and the LP. As "tools" in the statisti-

cian's toolkit, we agree that there is possible value in classical methods,

although we would tend to prefer Bayesian tools, if available. The choice of
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a tool i s , however, not really the question addressed in the monograph. The

purpose of the monograph was to attempt to clarify the more fundamental

question: What should the statistician be using his tools for? We believe

the vast majority of stat ist ical users want to know "the evidence about θ from

E and x," and indeed w i l l l ikely be unable to assign any other meaning to a

stat ist ical conclusion. Because of the demonstrated conflict between this

goal and the frequentist goal of procedure performance (except, of course, for

the various discussed exceptions, such as experimental design), we feel that

this question of purpose can not be ignored. And while a variety of tools

may be useful in reaching our stated goal of the determination of conditional

evidence (even frequentist tools may be useful - see Section 5.4 and also

Berger (1984b) and Berger (1984e)), we would argue that the value of the tool

must be related to this ultimate goal. The big stumbling block in the long-

running controversy in statistics has been the lack of separation of purpose

and method.

A recurring theme in Professor LeCam's discussion is the issue of

communication of stat ist ical evidence. Indeed, because we briefly indicate

in Chapter 5 that we feel i t necessary to be Bayesians (and hence produce

priors and posteriors), Professor LeCam intimates that we have "argued...into

a corner." Our interpretation, however, is that, even i f communication of

evidence through Bayesian measures is deemed unappealing, i t is a scientific

necessity, unless one is wil l ing to sacrifice the goal of communicating the

actual evidence obtained about θ. Of course, the Bayesian situation (as

regards scientif ic communication) is not nearly as bad as many non-Bayesians

think; the spectre of being forced to accept someone's unreasonable prior

distribution is not really an issue. Good Bayesian reporting can be done

with a variety of strategems involving the presentation of the conclusion for

a wide variety of priors (c.f. Dickey (1973)). And simply presenting l i k e l i -

hood functions or, perhaps somewhat better, posterior distributions for

noninformative priors can be viewed as a reasonable conditional communication

device. Of course, such are not traditional in scientif ic journals, but
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we all know of a number of "traditions" concerning statistical reporting in

scientific journals that we would all gladly retire.

As to Professor LeCam's feeling that one should report all possibly

relevant data about an experiment, no subjectivist would think of disagreeing.

After all, a subjectivist is (theoretically) responsible for producing his

likelihoods (as well as priors), and all data about the experiment could be

relevant to this enterprise. Of course, the LP does say that in processing

all this information the conditional viewpoint should have primacy.

Professor LeCam feels that a major flaw" in the LP axiomatics is the

assumption that Ev(E,x) exists. Since we allowed Ev(E,x) to be anything* any

collection of conclusions or reports,we are unclear as to the exact objection.

(One surely must make some report.) All the axiomatics say is that if one

processes information in violation of the LP, perhaps by reporting frequentist

error probabilities, then one is behaving in violation of either the WCP or SP

or both. It is, perhaps, conceivable that, for each experiment, one could

process information in a completely new way, so that one's Ev(E,x) would be

continually changing, and so that no violation of the WCP or SP could be

established. This, however, is not realistic: as statisticians we are bound

to standardize many of our analyses, or at least parts of many of our analyses.

The text argues that any such standardized methods of processing information

should be in accord with the LP.

Professor LeCam is certainly correct in his comment that our

passage from the LP to Bayesianity is much weaker than the argument for the

LP. We felt little need to rigorously justify this final step, mainly because

we feel that it is belief in the LP that is the major hurdle; it is hard to

avoid becoming a Bayesian after fully accepting the LP.

Professor LeCam feels that we make a direct appeal to frequentist

ideas in our attempt to resolve the Stein example. We clearly did a bad job

in the example, of explaining our position, because Professor Hill likewise

sees us as resorting to frequentist reasoning. The passage to which

Professor LeCam refers was an attempt to explain to frequentists why, as
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Bayesian conditionalists, we would not suffer from a frequentist perspective.

The conditional Bayesian analysis we discussed in no way depended on frequent-

ist evaluations, however. For a more lengthy discussion of this point, along

with a brief description of the role conditional Bayesians can ascribe to fre-

quentist measures, see our reply to Professor Hill.

The final issue raised by Professor LeCam is that of application of

the LP when only "approximate likelihoods" are available. We have seen no

evidence to indicate that the need to use approximations with the conditional

approach causes any more problems than the use of approximations with any other

approach. In the example of n independent Cauchy observations, we would of

course prefer use of the exact observed likelihood function, but if n were

enormous and we had technical problems in calculating and using the exact

likelihood, we would certainly consider using the 7((θ, -) approximation. But

we would use the observed likelihood function from this approximation as the

experimental input to evidence, not frequentist measures calculated by

averages over the normal approximation. Without knowing the specific problem

one cannot safely recommend specific priors. When n is large, however, prior

information will typically be vague compared with the likelihood function, so

use of the noninformative uniform prior would be a reasonable first approxima-

tion.

REPLY TO PROFESSOR LE CAM'S SECOND EDITION COMMENTS

We are sympathetic to Professor LeCam's position, that attempting to

summarize a complex situation by the pair (E, x) may omit much that is relevant.

Thus we have always been interested in attempts to depart from the usual statis-

tical framework of probabilistically-modelled experiments (though we have yet

to see an alternative framework that works better). Note, however, that virtu-

ally all of classical statistics is based on considering particular notions of

Ev (E, x). Thus Professor LeCam's observations would seem to apply equally

well to all standard statistical concepts. He does mention the possible need

for "introducing in the system a variety of concepts that go beyond pairs

(E, x)"; the argument to abandon (or at least extend) the usual statistical
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framework is too big for us.

Perhaps Professor LeCam is making the smaller logical point that

principles (e.g., the LP) that are deduced within a too narrow framework are

not necessarily valid in the correct framework. The constructive side of the

LP U
v
( θ ) summarizes what is needed from (E, x)) may thus be questioned; but

the destructive side of the LP, that measures based on (E, x) which are

incompatible with the LP (such as frequentist measures) are contraindicated,

seems intact. After all, a frequentist measure based on (E, x) should certain-

ly be able to pass an evaluation in its own domain. If it fails there, it is

hard to imagine that it would be good in an enlarged domain.

We have been a bit overly dogmatic to emphasize our basic views.

At the same time, our position, stated in Sections 5.4 and 5.5, bears a certain

similarity to LeCam's, in that we also do not feel that all our actions "must

abide by the LP." Our own summary position, however, is that abiding by the LP

is a generally good guideline, and that major deviations from the LP are highly

suspect.




