List of preferred symbols and notations

a_{i}	'Covariate function' in the generalized (non-) linear models
	[(4.5.2), (4.12.3)]
A_{n}	Design matrix in the generalized linear models [(4.5.5)]
B	Parameter space. Subset of finite-dimensional vector space
	[Section 2.2]
$B_{n}(\delta)$	Relatively open neighbourhood of $\beta_{0} \quad$ [(4.2.8)]
$\bar{B}_{n}(\delta)$	Relatively closed neighbourhood of β_{0} [(4.2.9)]
C	The complex numbers
$c, c(\beta)$	Constant in the mixed cumulant conditions [Theorem 2.4.2]
D	The infinite sequence of log-likelihood differentials [Section 2.8]
$D_{k}(\beta)$	The k th log-likelihood differential at β [(2.2.1)]
$D_{k}^{(n)}(\beta)$	The k th \log-likelihood differential at β for the nth model in a sequence $\begin{equation*} [(4.2 .2),(5.1 .5)] \tag{5.1.4} \end{equation*}$
$D_{k, i}(\beta)$	The k th \log-likelihood differential at β in the model for Y_{i}
E	The sample space [Section 2.2]
$E^{(}$	The sample space for the nth model in a sequence \quad [(4.2.1)]
$f(y ; \beta)$	The density function in a model [Section 2.2]
$f^{(n)}\left(y^{(n)} ; \beta\right)$	The density function in the nth model in a sequence
	$[(4.2 .1),(5.1 .3)]$
$f_{1}(y ; \beta)$	The density function in the model for Y_{i} in Chapter 5 [(5.1.1)]
$I(\beta)$	The Fisher information at β [(2.3.16)]
$I^{(n)}(\beta)$	The Fisher information at β for the nth model in a sequence $[(4.2 .4),(5.1 .6)]$
$\operatorname{Lin}(V ; W)$	The class of linear mappings from V to W [Definition 1.1.1]
$\operatorname{Lin}_{k}(V ; W)$	The class of k-linear mappings from V^{k} to W [Definition 1.1.2]
N	The natural numbers
$N(\mu, \Gamma)$	The normal distribution with mean μ and variance Γ
	[Definition 4.2.2]
R	The real numbers
$S_{m}(k)$	The set of sequences $\left(a_{1}, \ldots, a_{m}\right) \in \mathbf{N}^{m}$ with $\sum a_{j}=k$
	[(1.2.24)]
$\operatorname{Sym}_{k}(V ; W)$	The class of k-linear symmetric mappings from V^{k} to W
	[Definition 1.1.2]
T	The infinite sequence of centered log-likelihood differentials
	[Section 2.8]
$T(k)$	The set of sequences $\left(a_{1}, \ldots, a_{k}\right) \in \mathbf{N}_{0}^{k}$ with $\sum j a_{j}=k \quad[(1.2 .23)]$
$U_{a}\left(\beta_{0}\right)$	The a-distance neighbourhood of the parameter point β_{0}

$U_{0}\left(\beta_{0}\right) \quad$ The neighbourhood of the parameter point β_{0} from the definition of an analytic model [Definition 2.2.1]
$V, W, V_{1}, \ldots \quad$ Finite-dimensional real vector spaces
[Section 1.1]
$Y, y \quad$ The random variable on the sample space E
[Section 2.2]
$Y^{(n)}, y^{(n)} \quad$ The random variable on the sample space $E^{(n)}$ for the nth model in a sequence
[Section 4.2, Section 5.1]

β

$\hat{\beta}_{n}(\delta)$
$\hat{\beta}_{n}(K)$
$\theta \quad$ Parameter in the generalized (non-) linear models
[Section 4.5, Section 4.12]
$\Theta \quad$ Parameter space for the parameter $\theta \quad$ [Section 4.5, Section 4.12]
$\boldsymbol{\theta} \quad$ Parameter in the generated exponential family [Section 2.8]
$\Theta \quad$ The parameter space for the generated full exponential family
[Section 2.8]
$\kappa \quad$ Cumulant generating function [Definition 1.4.7]
$\kappa_{k} \quad$ The k th cumulant of a random variable
[Definition 1.4.3]
$\lambda, \lambda(\beta)$
Factor in the mixed cumulant conditions. The index of the model [Theorem 2.4.2, Definition 2.5.1]
$\lambda^{(n)}(\beta) \quad$ The index of the nth model in a sequence \quad [Section 4.2, (5.1.8)]
$\mu \quad$ Moment generating function
$\mu_{k} \quad$ The k th moment of a random variable
$\mu_{k_{1} \cdots k_{m}}$
ν
$\nu^{(n)}$
$\xi \quad$ Characteristic function
[Definition 1.4.6]
Moments of the log-likelihood differentials
[Definition 1.4.1]
[(2.3.13)]
Underlying measure on the sample space
[Section 2.2]
Underlying measure on the sample space for the nth model in a sequence
[(4.2.1)]
$\rho, \rho(\beta)$
Factor in the bound for the log-likelihood derivatives
[Definition 2.2.1]
$\phi \quad$ Parameter in the generalized (non-) linear models
[Section 4.5, (4.12.1)]
$\Phi \quad$ Parameter space for the parameter $\phi \quad$ [Section 4.5, (4.12.1)]
$\Phi_{0, \Gamma}$
$\chi_{k_{1} \cdots k_{m}}$
$\chi_{k_{1} \cdots k_{m}}^{(n)}$
$\psi \quad$ Parameter in the generalized (non-) linear models
[Section 4.5, (4.12.1)]
$\Psi \quad$ Parameter space for the parameter $\psi \quad$ [Section 4.5, (4.12.1)]
$\|\cdot\|_{I(\beta)}$
$\|\cdot\|_{n}$
$[\cdot]_{i}$, etc.
The measure for the normal distribution $N(0, \Gamma)$
Cumulants of the log-likelihood derivatives
[(2.3.15)]
Cumulants of the log-likelihood derivatives for the nth model in
a sequence
[(4.2.3), (5.1.7)]

The Fisher information semi-norm
The Fisher information semi-norm from the nth model in a sequence
$[(4.2 .5),(5.1 .9)]$

