
Appendix: Classification by
thresholding

In this appendix, we show how the bounds given in the first section of this mono-
graph can be computed in practice on a simple example: the case when the clas-
sification is performed by comparing a series of measurements to threshold values.
Let us mention that our description covers the case when the same measurement is
compared to several thresholds, since it is enough to repeat a measurement in the
list of measurements describing a pattern to cover this case.

5.1. Description of the model

Let us assume that the patterns we want to classify are described through h
real valued measurements normalized in the range (0, 1). In this setting the pattern
space can thus be defined as X = (0, 1)h.

Consider the threshold set T = (0, 1)h and the response set R = Y{0,1}h

. For any
t ∈ (0, 1)h and any a : {0, 1}h → Y, let

f(t,a)(x) = a
{[

1(xj ≥ tj)
]h
j=1

}
, x ∈ X,

where xj is the jth coordinate of x ∈ X. Thus our parameter set here is Θ =
T × R. Let us consider the Lebesgue measure L on T and the uniform probability
distribution U on R. Let our prior distribution be π = L⊗U . Let us define for any
threshold sequence t ∈ T

Δt =
{

t′ ∈ T : (t′j , tj) ∩ {Xj
i ; i = 1, . . . , N} = ∅, j = 1, . . . , h

}
,

where Xj
i is the jth coordinate of the sample pattern Xi, and where the interval

(t′j , tj) of the real line is defined as the convex hull of the two point set {t′j , tj},
whether t′j ≤ tj or not. We see that Δt is the set of thresholds giving the same
response as t on the training patterns. Let us consider for any t ∈ T the middle

m(Δt) =

∫
Δt

t′L(dt′)

L(Δt)

of Δt. The set Δt being a product of intervals, its middle is the point whose coordi-
nates are the middle of these intervals. Let us introduce the finite set T composed
of the middles of the cells Δt, which can be defined as

T = {t ∈ T : t = m(Δt)}.

It is easy to see that |T | ≤ (N + 1)h and that |R| = |Y|2h

.
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5.2. Computation of inductive bounds

For any parameter (t, a) ∈ T × R = Θ, let us consider the posterior distribution
defined by its density

dρ(t,a)

dπ
(t′, a′) =

1
(
t′ ∈ Δt

)
1
(
a′ = a

)
π
(
Δt × {a}

) .

In fact we are considering a finite number of posterior distributions, since ρ(t,a) =
ρ(m(Δt),a), where m(Δt) ∈ T . Moreover, for any exchangeable sample distribution
P ∈ M1

+

[
(X × Y)N+1

]
and any thresholds t ∈ T,

P

[
(Xj

N+1, tj) ∩ {Xj
i , i = 1, . . . , N} = ∅

]
≤ 2

N + 1
.

Thus, for any (t, a) ∈ Θ,

P

{
ρ(t,a)

[
f.(XN+1)

]
�= f(t,a)(XN+1)

}
≤ 2h

N + 1
,

showing that the classification produced by ρ(t,a) on new examples is typically non-
random; this result is only indicative, since it is concerned with a non-random choice
of (t, a).

Let us compute the various quantities needed to apply the results of the first
section, focussing our attention on Theorem 2.1.3 (page 54).

First note that ρ(t,a)(r) = r[(t, a)]. The entropy term is such that

K(ρt,a, π) = − log
[
π
(
Δt × {r}

)]
= − log

[
L(Δt)

]
+ 2h log

(
|Y|
)
.

Let us notice accordingly that

min
(t,a)∈Θ

K(ρ(t,a), π) ≤ h log(N + 1) + 2h log
(
|Y|
)
.

Let us introduce the counters

bt
y(c) =

1
N

N∑
i=1

1
{

Yi = y and
[
1(Xj

i ≥ tj)
]h
j=1

= c
}

,

t ∈ T, c ∈ {0, 1}h, y ∈ Y,

bt(c) =
∑
y∈Y

bt
y(c) =

1
N

N∑
i=1

1
{[

1(Xj
i ≥ tj)

]h
j=1

= c
}

, t ∈ T, c ∈ {0, 1}h.

Since
r[(t, a)] =

∑
c∈{0,1}h

[
bt(c) − bt

a(c)(c)
]
,

the partition function of the Gibbs estimator can be computed as

π
[
exp(−λr)

]
=
∑
t∈T

L(Δt)
∑
a∈R

1
|Y|2h exp

[
−λ

N∑
i=1

1
[
Yi �= f(t,a)(Xi)

]]
=
∑
t∈T

L(Δt)
∑
a∈R

1
|Y|2h exp

[
−λ

∑
c∈{0,1}h

[
bt(c) − bt

a(c)(c)
]]
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=
∑
t∈T

L(Δt)
∏

c∈{0,1}h

[
1
|Y|
∑
y∈Y

exp
(
−λ
[
bt(c) − bt

y(c)
])]

.

We see that the number of operations needed to compute π
[
exp(−λr)

]
is propor-

tional to |T | × 2h × |Y| ≤ (N + 1)h2h|Y|. An exact computation will therefore be
feasible only for small values of N and h. For higher values, a Monte Carlo approx-
imation of this sum will have to be performed instead.

If we want to compute the bound provided by Theorem 2.1.3 (page 54) or by
Theorem 2.2.2 (page 68), we need also to compute, for any fixed parameter θ ∈ Θ,
quantities of the type

πexp(−λr)

{
exp

[
ξm′(·, θ)

]}
= πexp(−λr)

{
exp

[
ξρθ(m′)

]}
, λ, ξ ∈ R+.

We need to introduce

b
t

y(θ, c) =
1
N

N∑
i=1

∣∣∣1[fθ(Xi) �= Yi

]
− 1(y �= Yi)

∣∣∣1{[1(Xj
i ≥ tj)

]h
j=1

= c
}
.

Similarly to what has been done previously, we obtain

π
{
exp

[
−λr + ξm′(·, θ)

]}
=
∑
t∈T

L(Δt)
∏

c∈{0,1}h

[
1
|Y|
∑
y∈Y

exp
(
−λ
[
bt(c) − bt

y(c)
]
+ ξb

t

y(θ, c)
)]

.

We can then compute

πexp(−λr)(r) = − ∂

∂λ
log
{
π
[
exp(−λr)

]}
,

πexp(−λr)

{
exp

[
ξρθ(m′)

]}
=

π
{
exp

[
−λr + ξm′(·, θ)

]}
π
[
exp(−λr)

] ,

πexp(−λr)

[
m′(·, θ)

]
=

∂

∂ξ |ξ=0

log
[
π
{
exp

[
−λr + ξm′(·, θ)

]}]
.

This is all we need to compute B(ρθ, β, γ) (and also B(πexp(−λr), β, γ)) in Theorem
2.1.3 (page 54), using the approximation

log
{

πexp(−λ1r)

[
exp

{
ξπexp(−λ2r)(m′)

}]}
≤ log

{
πexp(−λ1r)

[
exp

{
ξm′(·, θ)

}]}
+ ξπexp(−λ2r)

[
m′(·, θ)

]
, ξ ≥ 0.

Let us also explain how to apply the posterior distribution ρ(t,a), in other words
our randomized estimated classification rule, to a new pattern XN+1:

ρ(t,a)

[
f·(XN+1) = y

]
= L(Δt)−1

∫
Δt

1
[
a
{[

1(Xj
N+1 ≥ t′j)

]h
j=1

}
= y

]
L(dt′)

= L(Δt)−1
∑

c∈{0,1}h

L
({

t′ ∈ Δt :
[
1(Xj

N+1 ≥ t′j)
]h
j=1

= c
})

1
[
a(c) = y

]
.

Let us define for short

Δt(c) =
{

t′ ∈ Δt :
[
1(Xj

N+1 ≥ t′j)
]h
j=1

= c
}

, c ∈ {0, 1}h.
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With this notation

ρ(t,a)

[
f.(XN+1) = y

]
= L

(
Δt

)−1 ∑
c∈{0,1}h

L
[
Δt(c)

]
1
[
a(c) = y

]
.

We can compute in the same way the probabilities for the label of the new pattern
under the Gibbs posterior distribution:

πexp(−λr)

[
f·(XN+1) = y′]

=

{∑
t∈T

∏
c∈{0,1}h

[
1
|Y|
∑
y∈Y

exp
(
−λ
[
bt(c) − bt

y(c)
])]

×
∑

c∈{0,1}h

L
[
Δt(c)

]∑y∈Y 1(y = y′) exp
{
−λ
[
bt(c) − bt

y(c)
]}∑

y∈Y exp
{
−λ
[
bt(x) − bt

y(c)
]} }

×
{∑

t∈T

L(Δt)
∏

c∈{0,1}h

[
1
|Y|
∑
y∈Y

exp
(
−λ
[
bt(c) − bt

y(c)
])]}−1

.

5.3. Transductive bounds

In the case when we observe the patterns of a shadow sample (Xi)
(k+1)N
i=N+1 on top

of the training sample (Xi, Yi)N
i=1, we can introduce the set of thresholds responding

as t on the extended sample (Xi)
(k+1)N
i=1

Δt =
{

t′ ∈ T : (t′j , tj) ∩
{
Xj

i ; i = 1, . . . , (k + 1)N} = ∅, j = 1, . . . , h
}
,

consider the set
T =

{
t ∈ T : t = m(Δt)

}
,

of the middle points of the cells Δt, t ∈ T, and replace the Lebesgue measure
L ∈ M1

+

[
(0, 1)h

]
of the previous section with the uniform probability measure L on

T . We can then consider π = L⊗U , where U is as previously the uniform probability
measure on R. This gives obviously an exchangeable posterior distribution and
therefore qualifies π for transductive bounds. Let us notice that |T | ≤

[
(k + 1)N +

1
]h, and therefore that π(t, a) ≥

[
(k + 1)N + 1

]−h|Y|−2h

, for any (t, a) ∈ T × R.
For any (t, a) ∈ T × R we may similarly to the inductive case consider the

posterior distribution ρ(t,a) defined by

dρ(t,a)

dπ
(t′, a′) =

1(t′ ∈ Δt)1(a′ = a)
π
(
Δt × {a})

,

but we may also consider δ(m(Δt),a), which is such that ri{[m(Δt), a]} = ri[(t, a)],
i = 1, 2, whereas only ρ(t,a)(r1) = r1[(t, a)], while

ρ(t,a)(r2) =
1

|T ∩ Δt|
∑

t′∈T∩Δt

r2[(t′, a)].

We get
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K(ρ(t,a), π) = − log
[
L(Δt)

]
+ 2h log

(
|Y|
)

≤ log
(
|T |
)

+ 2h log(|Y|) = K(δ[m(Δt),a], π)

≤ h log
[
(k + 1)N + 1

]
+ 2h log(|Y|),

whereas we had no such uniform bound in the inductive case. Similarly to the
inductive case

π
[
exp(−λr1)

]
=
∑
t∈T

L(Δt)
∏

c∈{0,1}h

[
1
|Y|
∑
y∈Y

exp
(
−λ
[
bt(c) − bt

y(c)
])]

.

Moreover, for any θ ∈ Θ,

π
{
exp

[
−λr1 + ξρθ(m′)

]}
= π

{
exp

[
−λr1 + ξm′(·, θ)

]}
=
∑
t∈T

L(Δt)
∏

c∈{0,1}h

[
1
|Y|
∑
y∈Y

exp
(
−λ
[
bt(c) − bt

y(c)
]
+ ξb(θ, c)

)]
.

The bound for the transductive counterpart to Theorems 2.1.3 (page 54) or 2.2.2
(page 68), obtained as explained page 115, can be computed as in the inductive
case, from these two partition functions and the above entropy computation.

Let us mention finally that, using the same notation as in the inductive case,

πexp(−λr1)

[
f·(XN+1) = y′]

=

{∑
t∈T

∏
c∈{0,1}h

[
1
|Y|
∑
y∈Y

exp
(
−λ
[
bt(c) − bt

y(c)
])]

×
∑

c∈{0,1}h

L
[
Δt(c)

]∑y∈Y 1(y = y′) exp
{
−λ
[
bt(c) − bt

y(c)
]}∑

y∈Y exp
{
−λ
[
bt(x) − bt

y(c)
]} }

×
{∑

t∈T

L(Δt)
∏

c∈{0,1}h

[
1
|Y|
∑
y∈Y

exp
(
−λ
[
bt(c) − bt

y(c)
])]}−1

.

To conclude this appendix on classification by thresholding, note that similar fac-
torized computations are feasible in the important case of classification trees. This
can be achieved using some variant of the context tree weighting method discovered
by Willems et al. (1995) and successfully used in lossless compression theory. The
interested reader can find a description of this algorithm applied to classification
trees in Catoni (2004, page 62).
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