
Introduction

Among the possible approaches to pattern recognition, statistical learning theory
has received a lot of attention in the last few years. Although a realistic pattern
recognition scheme involves data pre-processing and post-processing that need a
theory of their own, a central role is often played by some kind of supervised learning
algorithm. This central building block is the subject we are going to analyse in these
notes.

Accordingly, we assume that we have prepared in some way or another a sample
of N labelled patterns (Xi, Yi)N

i=1, where Xi ranges in some pattern space X and Yi

ranges in some finite label set Y. We also assume that we have devised our experi-
ment in such a way that the couples of random variables (Xi, Yi) are independent
(but not necessarily equidistributed). Here, randomness should be understood to
come from the way the statistician has planned his experiment. He may for in-
stance have drawn the Xis at random from some larger population of patterns the
algorithm is meant to be applied to in a second stage. The labels Yi may have
been set with the help of some external expertise (which may itself be faulty or
contain some amount of randomness, so we do not assume that Yi is a function of
Xi, and allow the couple of random variables (Xi, Yi) to follow any kind of joint
distribution). In practice, patterns will be extracted from some high dimensional
and highly structured data, such as digital images, speech signals, DNA sequences,
etc. We will not discuss this pre-processing stage here, although it poses crucial
problems dealing with segmentation and the choice of a representation. The aim
of supervised classification is to choose some classification rule f : X → Y which
predicts Y from X making as few mistakes as possible on average.

The choice of f will be driven by a suitable use of the information provided by the
sample (Xi, Yi)N

i=1 on the joint distribution of X and Y . Moreover, considering all
the possible measurable functions f from X to Y would not be feasible in practice
and maybe more importantly not well founded from a statistical point of view,
at least as soon as the pattern space X is large and little is known in advance
about the joint distribution of patterns X and labels Y . Therefore, we will consider
parametrized subsets of classification rules {fθ : X → Y ; θ ∈ Θm}, m ∈ M , which
may be grouped to form a big parameter set Θ =

⋃
m∈M Θm.

The subject of this monograph is to introduce to statistical learning theory, and
more precisely to the theory of supervised classification, a number of technical tools
akin to statistical mechanics and information theory, dealing with the concepts of
entropy and temperature. A central task will in particular be to control the mutual
information between an estimated parameter and the observed sample. The focus
will not be directly on the description of the data to be classified, but on the de-
scription of the classification rules. As we want to deal with high dimensional data,
we will be bound to consider high dimensional sets of candidate classification rules,
and will analyse them with tools very similar to those used in statistical mechanics
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to describe particle systems with many degrees of freedom. More specifically, the
sets of classification rules will be described by Gibbs measures defined on parameter
sets and depending on the observed sample value. A Gibbs measure is the special
kind of probability measure used in statistical mechanics to describe the state of a
particle system driven by a given energy function at some given temperature. Here,
Gibbs measures will emerge as minimizers of the average loss value under entropy
(or mutual information) constraints. Entropy itself, more precisely the Kullback
divergence function between probability measures, will emerge in conjunction with
the use of exponential deviation inequalities: indeed, the log-Laplace transform may
be seen as the Legendre transform of the Kullback divergence function, as will be
stated in Lemma 1.1.3 (page 4).

To fix notation, let (Xi, Yi)N
i=1 be the canonical process on Ω = (X×Y)N (which

means the coordinate process). Let the pattern space be provided with a sigma-
algebra B turning it into a measurable space (X,B). On the finite label space Y, we
will consider the trivial algebra B′ made of all its subsets. Let M1

+

[
(K× Y)N , (B⊗

B′)⊗N
]

be our notation for the set of probability measures (i.e. of positive measures
of total mass equal to 1) on the measurable space

[
(X×Y)N , (B×B′)⊗N

]
. Once some

probability distribution P ∈ M1
+

[
(X×Y)N , (B⊗B′)⊗N

]
is chosen, it turns (Xi, Yi)N

i=1

into the canonical realization of a stochastic process modelling the observed sample
(also called the training set). We will assume that P =

⊗N
i=1 Pi, where for each

i = 1, . . . , N , Pi ∈ M1
+(X × Y,B ⊗ B′), to reflect the assumption that we observe

independent pairs of patterns and labels. We will also assume that we are provided
with some indexed set of possible classification rules

RΘ =
{
fθ : X → Y; θ ∈ Θ

}
,

where (Θ,T) is some measurable index set. Assuming some indexation of the classi-
fication rules is just a matter of presentation. Although it leads to heavier notation,
it allows us to integrate over the space of classification rules as well as over Ω, us-
ing the usual formalism of multiple integrals. For this matter, we will assume that
(θ, x) �→ fθ(x) : (Θ × X,B ⊗ T) → (Y,B′) is a measurable function.

In many cases, as already mentioned, Θ =
⋃

m∈M Θm will be a finite (or more
generally countable) union of subspaces, dividing the classification model RΘ =⋃

m∈M RΘm into a union of sub-models. The importance of introducing such a
structure has been put forward by V. Vapnik, as a way to avoid making strong
hypotheses on the distribution P of the sample. If neither the distribution of the
sample nor the set of classification rules were constrained, it is well known that no
kind of statistical inference would be possible. Considering a family of sub-models is
a way to provide for adaptive classification where the choice of the model depends on
the observed sample. Restricting the set of classification rules is more realistic than
restricting the distribution of patterns, since the classification rules are a processing
tool left to the choice of the statistician, whereas the distribution of the patterns
is not fully under his control, except for some planning of the learning experiment
which may enforce some weak properties like independence, but not the precise
shapes of the marginal distributions Pi which are as a rule unknown distributions
on some high dimensional space.

In these notes, we will concentrate on general issues concerned with a natural
measure of risk, namely the expected error rate of each classification rule fθ, ex-
pressed as

(0.1) R(θ) =
1
N

N∑
i=1

P
[
fθ(Xi) �= Yi

]
.
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As this quantity is unobserved, we will be led to work with the corresponding
empirical error rate

(0.2) r(θ, ω) =
1
N

N∑
i=1

1
[
fθ(Xi) �= Yi

]
.

This does not mean that practical learning algorithms will always try to minimize
this criterion. They often on the contrary try to minimize some other criterion which
is linked with the structure of the problem and has some nice additional properties
(like smoothness and convexity, for example). Nevertheless, and independently of
the precise form of the estimator θ̂ : Ω → Θ under study, the analysis of R(θ̂) is a
natural question, and often corresponds to what is required in practice.

Answering this question is not straightforward because, although R(θ) is the
expectation of r(θ), a sum of independent Bernoulli random variables, R(θ̂) is not
the expectation of r(θ̂), because of the dependence of θ̂ on the sample, and neither
is r(θ̂) a sum of independent random variables. To circumvent this unfortunate
situation, some uniform control over the deviations of r from R is needed.

We will follow the PAC-Bayesian approach to this problem, originated in the
machine learning community and pioneered by McAllester (1998, 1999). It can be
seen as some variant of the more classical approach of M -estimators relying on
empirical process theory — as described for instance in Van de Geer (2000).

It is built on some general principles:

• One idea is to embed the set of estimators of the type θ̂ : Ω → Θ into the
larger set of regular conditional probability measures ρ :

(
Ω, (B ⊗ B′)⊗N

)
→

M1
+(Θ,T). We will call these conditional probability measures posterior dis-

tributions, to follow standard terminology.
• A second idea is to measure the fluctuations of ρ with respect to the sample,

using some prior distribution π ∈ M1
+(Θ,T), and the Kullback divergence

function K(ρ, π). The expectation P
{
K(ρ, π)

}
measures the randomness of

ρ. The optimal choice of π would be P(ρ), resulting in a measure of the
randomness of ρ equal to the mutual information between the sample and the
estimated parameter drawn from ρ. Anyhow, since P(ρ) is usually not better
known than P, we will have to be content with some less concentrated prior
distribution π, resulting in some looser measure of randomness, as shown by
the identity P

[
K(ρ, π)

]
= P

{
K
[
ρ, P(ρ)

]}
+ K

[
P(ρ), π

]
.

• A third idea is to analyse the fluctuations of the random process θ �→ r(θ)
from its mean process θ �→ R(θ) through the log-Laplace transform

− 1
λ

log
{∫∫

exp
[
−λr(θ, ω)

]
π(dθ)P(dω)

}
,

as would be done in statistical mechanics, where this is called the free energy.
This transform is well suited to relate minθ∈Θ r(θ) to infθ∈Θ R(θ), since for
large enough values of the parameter λ, corresponding to low enough values
of the temperature, the system has small fluctuations around its ground state.

• A fourth idea deals with localization. It consists of considering a prior dis-
tribution π depending on the unknown expected error rate function R. Thus
some central result of the theory will consist in an empirical upper bound for
K
[
ρ, πexp(−βR)

]
, where πexp(−βR), defined by its density

d

dπ

[
πexp(−βR)

]
=

exp(−βR)
π
[
exp(−βR)

] ,
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is a Gibbs distribution built from a known prior distribution π ∈ M1
+(Θ,T),

some inverse temperature parameter β ∈ R+ and the expected error rate R.
This bound will in particular be used when ρ is a posterior Gibbs distribution,
of the form πexp(−βr). The general idea will be to show that in the case when
ρ is not too random, in the sense that it is possible to find a prior (that
is non-random) distribution π such that K(ρ, π) is small, then ρ(r) can be
reliably taken for a good approximation of ρ(R).

This monograph is divided into four chapters. The first deals with the inductive
setting presented in these lines. The second is devoted to relative bounds. It shows
that it is possible to obtain a tighter estimate of the mutual information between
the sample and the estimated parameter by comparing prior and posterior Gibbs
distributions. It shows how to use this idea to obtain adaptive model selection
schemes under very weak hypotheses.

The third chapter introduces the transductive setting of V. Vapnik (Vapnik,
1998), which consists in comparing the performance of classification rules on the
learning sample with their performance on a test sample instead of their average
performance. The fourth one is a fast introduction to Support Vector Machines.
It is the occasion to show the implications of the general results discussed in the
three first chapters when some particular choice is made about the structure of the
classification rules.

In the first chapter, two types of bounds are shown. Empirical bounds are useful
to build, compare and select estimators. Non random bounds are useful to assess the
speed of convergence of estimators, relating this speed to the behaviour of the Gibbs
prior expected error rate β �→ πexp(−βR)(R) and to covariance factors related to the
margin assumption of Mammen and Tsybakov when a finer analysis is performed.
We will proceed from the most straightforward bounds towards more elaborate
ones, built to achieve a better asymptotic behaviour. In this course towards more
sophisticated inequalities, we will introduce local bounds and relative bounds.

The study of relative bounds is expanded in the third chapter, where tighter
comparisons between prior and posterior Gibbs distributions are proved. Theorems
2.1.3 (page 54) and 2.2.4 (page 72) present two ways of selecting some nearly opti-
mal classification rule. They are both proved to be adaptive in all the parameters
under Mammen and Tsybakov margin assumptions and parametric complexity as-
sumptions. This is done in Corollary 2.1.17 (page 66) of Theorem 2.1.15 (page
65) and in Theorem 2.2.11 (page 88). In the first approach, the performance of a
randomized estimator modelled by a posterior distribution is compared with the
performance of a prior Gibbs distribution. In the second approach posterior distri-
butions are directly compared between themselves (and leads to slightly stronger
results, to the price of using a more complex algorithm). When there are more than
one parametric model, it is appropriate to use also some doubly localized scheme:
two step localization is presented for both approaches, in Theorems 2.3.2 (page 93)
and 2.3.9 (page 107) and provides bounds with a decreased influence of the number
of empirically inefficient models included in the selection scheme.

We would not like to induce the reader into thinking that the most sophisticated
results presented in these first two chapters are necessarily the most useful ones,
they are as a rule only more efficient asymptotically, whereas, being more involved,
they use looser constants leading to less precision for small sample sizes. In practice
whether a sample is to be considered small is a question of the ratio between the
number of examples and the complexity (roughly speaking the number of parame-
ters) of the model used for classification. Since our aim here is to describe methods
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appropriate for complex data (images, speech, DNA, . . . ), we suspect that practi-
tioners wanting to make use of our proposals will often be confronted with small
sample sizes; thus we would advise them to try the simplest bounds first and only
afterwards see whether the asymptotically better ones can bring some improvement.

We would also like to point out that the results of the first two chapters are not
of a purely theoretical nature: posterior parameter distributions can indeed be com-
puted effectively, using Monte Carlo techniques, and there is well-established know-
how about these computations in Bayesian statistics. Moreover, non-randomized
estimators of the classical form θ̂ : Ω → Θ can be efficiently approximated by pos-
terior distributions ρ : Ω → M1

+(Θ) supported by a fairly narrow neighbourhood
of θ̂, more precisely a neighbourhood of the size of the typical fluctuations of θ̂, so
that this randomized approximation of θ̂ will most of the time provide the same
classification as θ̂ itself, except for a small amount of dubious examples for which
the classification provided by θ̂ would anyway be unreliable. This is explained on
page 7.

As already mentioned, the third chapter is about the transductive setting, that
is about comparing the performance of estimators on a training set and on a test
set. We show first that this comparison can be based on a set of exponential devi-
ation inequalities which parallels the one used in the inductive case. This gives the
opportunity to transport all the results obtained in the inductive case in a system-
atic way. In the transductive setting, the use of prior distributions can be extended
to the use of partially exchangeable posterior distributions depending on the union
of training and test patterns, bringing increased possibilities to adapt to the data
and giving rise to such crucial notions of complexity as the Vapnik–Cervonenkis
dimension.

Having done so, we more specifically focus on the small sample case, where local
and relative bounds are not expected to be of great help. Introducing a fictitious
(that is unobserved) shadow sample, we study Vapnik-type generalization bounds,
showing how to tighten and extend them with some original ideas, like making no
Gaussian approximation to the log-Laplace transform of Bernoulli random vari-
ables, using a shadow sample of arbitrary size. shrinking from the use of any sym-
metrization trick, and using a suitable subset of the group of permutations to cover
the case of independent non-identically distributed data. The culminating result of
the third chapter is Theorem 3.3.3 (page 125), subsequent bounds showing the sep-
arate influence of the above ideas and providing an easier comparison with Vapnik’s
original results. Vapnik-type generalization bounds have a broad applicability, not
only through the concept of Vapnik–Cervonenkis dimension, but also through the
use of compression schemes (Little et al., 1986), which are briefly described on page
117.

The beginning of the fourth chapter introduces Support Vector Machines, both
in the separable and in the non-separable case (using the box constraint). We then
describe different types of bounds. We start with compression scheme bounds, to
proceed with margin bounds. We begin with transductive margin bounds, recalling
on this occasion in Theorem 4.2.2 (page 144) the growth bound for a family of
classification rules with given Vapnik–Cervonenkis dimension. In Theorem 4.2.4
(page 145) we give the usual estimate of the Vapnik–Cervonenkis dimension of a
family of separating hyperplanes with a given transductive margin (we mean by
this that the margin is computed on the union of the training and test sets). We
present an original probabilistic proof inspired by a similar one from Cristianini et
al. (2000), whereas other proofs available usually rely on the informal claim that
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the simplex is the worst case. We end this short review of Support Vector Machines
with a discussion of inductive margin bounds. Here the margin is computed on the
training set only, and a more involved combinatorial lemma, due to Alon et al.
(1997) and recalled in Lemma 4.2.6 (page 149) is used. We use this lemma and the
results of the third chapter to establish a bound depending on the margin of the
training set alone.

In appendix, we finally discuss the textbook example of classification by thresh-
olding: in this setting, each classification rule is built by thresholding a series of
measurements and taking a decision based on these thresholded values. This rel-
atively simple example (which can be considered as an introduction to the more
technical case of classification trees) can be used to give more flesh to the results
of the first three chapters.

It is a pleasure to end this introduction with my greatest thanks to Anthony
Davison, for his careful reading of the manuscript and his numerous suggestions.


