We shall now say that P is <u>reducible</u> to Q if

$$P(\vec{\alpha}, \vec{x}) \longmapsto Q(\lambda y G_1(y, \vec{\alpha}, \vec{x}), \dots, \lambda y G_m(y, \vec{\alpha}, \vec{x}), F_1(\vec{\alpha}, \vec{x}), \dots, F_k(\vec{\alpha}, \vec{x}))$$

where $G_1, ..., G_m, F_1, ..., F_k$ are total and recursive.

19.3. PROPOSITION. If P is Π_n^1 and Q is reducible to P, then P is Π_n^1 ; and similarly with Σ_n^1 or Δ_n^1 in place of Π_n^1 . \Box

The analogue of the table in §12 is the following table.

P,Q	$\neg P$	$P \lor Q$	P & Q	$\forall \alpha P$	$\exists \alpha P$	QxP
Π^1_n	Σ_n^1	Π_n^1	Π^1_n	Π_n^1	Σ_{n+1}^1	Π_n^1
Σ_n^1	Π_n^1		Σ_n^1		Σ_n^1	
Δ_n^1	Δ_{n}^{1}	Δ_n^1	Δ_n^1	Π^1_n		Δ_n^1

It is proved and used in the same way as the earlier table.

The classification of analytical relations into the Π_n^1 and Σ_n^1 relations is called the <u>analytical hierarchy</u>.

19.4. ANALYTICAL ENUMERATION THEOREM. For every n, m, and k, there is a $\Pi_n^1(m,k+1)$ —ary function which enumerates the class of $\Pi_n^1(m,k)$ —ary relations; and similarly with Σ_n^1 for Π_n^1 .

Proof. Suppose, for example, we want to enumerate the Π_2^1 (1,1)-ary relations. Every such relation R is of the form $\forall \alpha \exists \beta P$ where P is Π_1^0 by the remarks after 19.1. Thus if Q is Π_1^0 and enumerates the Π_1^0 (3,1)-ary relations, then $\forall \alpha \exists \beta Q(\alpha, \beta, \gamma, x, e)$ is the desired enumerating function. \Box

19.5. ANALYTICAL HIERARCHY THEOREM. For each *n*, there is a Π_n^1 set which is not Σ_n^1 , hence not Π_k^1 or Σ_k^1 for any k < n. The same holds with Π_n^1 and Σ_n^1 interchanged.

Proof. As in the arithmetical case. \Box

20. The Projective Hierarchy

The results of the last section can be relativized to a class Φ of total functions of number variables. A particularly interesting case is that in which Φ

is the class of all such functions. Replacing the functions by their contractions, we see we are relativizing to the class \mathbb{R} of reals. Note that by 18.1, a function is recursive in \mathbb{R} iff it is obtained from a recursive function by replacing some of the unary function variables by names of particular reals. The same then holds with *recursive* replaced by Π_k^1 or Σ_k^1 .

A relation is <u>projective</u> if it is analytical in \mathbb{R} . The analytical hierarchy relativized to \mathbb{R} is called the <u>projective hierarchy</u>. (It is customary to write a boldface Π_n^1 for Π_n^1 in \mathbb{R} and similarly for Σ and Δ . We avoid this notation, since boldface is sometimes hard to distinguish from lightface.) The theory of the projective hierarchy antedates that of the analylytical hierearchy; it was begun by Lusin, Suslin, and Sierpinski.

The Enumeration Theorem does not hold in its usual form for Π_n^1 in **R**; but we shall prove a modified form. We say that a (m+1,k)-ary relation Q<u>**R**-enumerates</u> a class Φ of (m,k)-ary relations if for every R in Φ , there is a β . such that $R(\vec{\alpha}, \vec{x}) \leftrightarrow Q(\vec{\alpha}, \vec{x}, \beta)$ for all $\vec{\alpha}$ and \vec{x} .

20.1. PROJECTIVE ENUMERATION THEOREM. For every n, m, and k, there is a (m+1,k)-ary Π_n^1 relation which **R**-enumerates the class of (m,k)-ary Π_n^1 in **R** relations; and similarly with Σ_n^1 for Π_n^1 .

Proof. As in the proof of the analytical case, it is enough to do this for Σ_1^0 , i.e., RE. If R is RE in **R**, it is RE in a finite sequence $\vec{\alpha}$ of reals. If e is a $\vec{\alpha}$ -index of R, then by (3) of §18,

$$\begin{aligned} R(\vec{\beta}, \vec{x}) & \longleftrightarrow \{e\}^{\vec{\alpha}}(\vec{\beta}, \vec{x}) \text{ is defined} \\ & \longleftrightarrow \{e\}(\vec{\beta}, \vec{\alpha}, \vec{x}) \text{ is defined} \\ & \longleftrightarrow W_e(\vec{\beta}, \vec{\alpha}, \vec{x}). \end{aligned}$$

Choose γ so that $(\gamma)_0(0) = e$ and $(\gamma)_i = \alpha_i$ for $1 \le i \le n$. Then the right side becomes $W_{(\gamma)_0(0)}(\vec{\beta}, (\gamma)_1, ..., (\gamma)_m, \vec{x})$. This is an RE relation P of $\vec{\beta}, \vec{x}, \gamma$; and P is the desired enumerating relation. \Box

We leave it to the reader to derive a Projective Hierarchy Theorem from this; the examples will now be (1,0)-ary. (Every (0,k)-ary relation is recursive in \mathbb{R} .)

20.2. PROPOSITION. Let P be defined by $P(\vec{\alpha}, \vec{x}, y) \leftrightarrow P_y(\vec{\alpha}, \vec{x})$. Then P is Π_n^1 in R iff each P_y is Π_n^1 in R; and similarly with Σ_n^1 or Δ_n^1 in place of Π_n^1 .

Proof. If P is Π_n^1 in R, each P_y is clearly Π_n^1 in R. Now suppose that each P_y is Π_n^1 in R. By the Projective Enumeration Theorem, there is a Π_n^1 relation Q and a β_y for each y such that $P_y(\vec{\alpha}, \vec{x}) \leftrightarrow Q(\vec{\alpha}, \vec{x}, \beta_y)$. Choose β so that $(\beta)_y = \beta_y$ for all y. Then $P(\vec{\alpha}, \vec{x}, y) \leftrightarrow Q(\vec{\alpha}, \vec{x}, (\beta)_y)$. Thus P is Π_n^1 in β and hence in R. \Box

The further study of the analytical and projective hierarchies is known as Descriptive Set Theory, and is a hybrid of Recursion Theory and Set Theory. We shall prove only one result. We shall prove it for the projective hierarchy; the analogue for the analytical hierarchy is more difficult both to state and to prove.

We recall a definition from measure theory. Let X be a space and let Λ be a class of subsets of X. We say that Λ is a σ -ring if: (a) the complement of every set in Λ is in Λ ; (b) every countable union of sets in Λ is in Λ ; (c) $X \in \Lambda$. From (a) and (b) it follows that: (d) every countable intersection of sets in Λ is in Λ . If Γ is any collection of subsets of X, there is a smallest σ -ring including Γ ; it is the intersection of all of the Σ -rings which include Γ .

20.3 PROPOSITION. The class of Δ_n^1 in \mathbb{R} (m,k)-ary relations is a σ -ring in $\mathbb{R}^{m,k}$.

Proof. In view of the table, it is enough to show that the union Q of a sequence $\{P_j\}$ of such relations is Δ_n^1 in \mathbb{R} . Defining $P(\vec{\alpha}, \vec{x}, j) \leftrightarrow P_j(\vec{\alpha}, \vec{x})$, P is Δ_n^1 by 20.2. Since $Q(\vec{\alpha}, \vec{x}) \leftrightarrow \exists j P(\vec{\alpha}, \vec{x}, j)$, Q is Δ_n^1 in \mathbb{R} by the table. \Box

An (m,k)-ary relation is <u>Borel</u> if it belongs to the smallest σ -ring in $\mathbb{R}^{m,k}$ which contains all the recursive (m,k)-ary relations. By 20.3, every Borel relation is Δ_1^1 in **R**. We shall prove that the converse also holds.

Let A and B be subsets of a space X. We say that a subset C of X <u>separates</u> A and B if $A \subseteq C$ and $B \subseteq C^{\mathbb{C}}$. This clearly implies that A and B are disjoint.

20.4. SEPARATION THEOREM. Any two disjoint Σ_1^1 in \mathbb{R} (m,k)—ary relations can be separated by a Borel relation.

Proof. To make the notation simpler, let m = 1 and k = 0. Say that A is <u>inseparable</u> from B if no Borel relation separates A and B. We shall first prove the following lemma: If $\bigcup_{i \in \omega} A_i$ is inseparable from $\bigcup_{j \in \omega} B_j$ then there are i and j such that A_i is inseparable from B_j . Suppose, on the contrary, that for every i and j, there is a Borel relation $C_{i,j}$ which separates A_i and B_j . If $C = \bigcap_{j \in \omega} \bigcup_{i \in \omega} C_{i,j}$ then C is Borel and separates $\bigcup_{i \in \omega} A_i$ and $\bigcup_{j \in \omega} B_j$

Now assume that P and Q are inseparable Σ_1^1 in \mathbb{R} relations; we shall show that P and Q are not disjoint. Using the remarks after 19.1, we can write

$$P(\alpha) \longmapsto \exists \beta \forall n R(\overline{\alpha}(n), \overline{\beta}(n)),$$
$$Q(\alpha) \longmapsto \exists \gamma \forall n R'(\overline{\alpha}(n), \overline{\gamma}(n)),$$

where R and R' are recursive in **R**. For $z, w \in Seq$, let

$$P_{z,w}(\alpha) \longmapsto z = \overline{\alpha}(lh(z)) \& \exists \beta(w = \overline{\beta}(lh(w)) \& \forall nR(\overline{\alpha}(n),\overline{\beta}(n))),$$

and define $Q_{z,w}$ similarly but with R replaced by R'. It is clear that

$$P_{z,w} = \bigcup_{m \in \omega} \bigcup_{p \in \omega} P_{z_*} < m >, w_*$$

and similarly for $Q_{z,w}$

We shall define $\alpha(n)$, $\beta(n)$, and $\gamma(n)$ by induction on n so that $P_{\overline{\alpha}(n),\overline{\beta}(n)}$ and $Q_{\overline{\alpha}(n),\overline{\gamma}(n)}$ are inseparable. Since $P = P_{<>,<>}$ and $Q = Q_{<>,<>}$, this holds for n = 0. Suppose it holds for some n. By our lemma, there are i, j, k, and l so that $P_{\overline{\alpha}(n),<i>,\overline{\beta}(n),<j>}$ is inseparable from $Q_{\overline{\alpha}(n),<k>,\overline{\gamma}(n),<l>}$. Then i = k; for otherwise, $\{\delta: \overline{\delta}(n+1) = \overline{\alpha}(n)^* < i>\}$ is a recursive (and hence Borel) set which separates $P_{\overline{\alpha}(n),<i>,\overline{\beta}(n),<j>}$ from $Q_{\overline{\alpha}(n),<k>,\overline{\gamma}(n),<l>}$. Thus we may take $\alpha(n) = i$, $\beta(n) = j$, and $\gamma(n) = l$.

For each *n*, $P_{\overline{\alpha}(n),\overline{\beta}(n)}$ is inseparable from $Q_{\overline{\alpha}(n),\overline{\gamma}(n)}$; so, they are both non-empty. This implies that $R(\overline{\alpha}(n),\overline{\beta}(n))$ and $R'(\overline{\alpha}(n),\overline{\gamma}(n))$ for all *n*. Hence $P(\alpha)$ and $Q(\alpha)$; so *P* and *Q* are not disjoint. \Box

20.5. Suslin's Theorem. A relation is Borel iff it is Δ_1^1 in R.

Proof. We have already seen that every Borel relation is Δ_1^1 in \mathbb{R} . Now let P be Δ_1^1 in \mathbb{R} . Then P and $\neg P$ are Σ_1^1 in \mathbb{R} ; so by the Separation Theorem, there is a Δ_1^1 in \mathbb{R} relation which separates P and $\neg P$. But the only relation which separates P and $\neg P$ is P. \Box