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17. Large RE Sets

Post's idea for solving his problem was to show that a sufficiently large

RE set could not have degree 0', and then producing a non—recursive RE set

which was this large. Although this idea did not solve Post's problem, it led to

many interesting results, which we shall explore briefly.

We introduce our first type of large RE set. A simple set is an RE set

whose complement is infinite but includes no infinite RE set. Note that a simple

set is not recursive, since its complement is not RE. We shall see later that

every RE degree other than 0 is the degree of a simple set; so we cannot show

that a simple set cannot have degree 0'. However, we shall prove the weaker

result that a simple set cannot be RE complete. In order to do this, we first find

a characterization of the RE complete sets.

A creating function for a set A is a recursive real F such that F(e) E A <—*

F(e) E W for all e. A creative set is an RE set which has a creating function.

For example, if A is defined by e E A <—> e E W , the A is creative with creating
c

function /,. A creative set is in some sense effectively non—recursive; for the

creating function F shows that Ac is not equal to any W and hence is not RE.

17.1. PROPOSITION. A set is RE complete iff it is creative.

Proof. Let A be RE complete. Then there is a recursive real F

such that W (e) <—* F(e) E A. Using the RE Parameter Theorem, pick a

recursive total 5 so that W^^x) <-> We(F[x)). Then

F(5(f)) E A «-> Ws(e)(S(e)) ~ F(5(e)) E Wf.

Hence G(e) = F\S(e)) defines a creating function for A.

Suppose that A is creative with creating function F, and let B be any RE

set. Pick a total recursive 5 so that WQ, Jy) <-* x E B. Then
O\X)

xeB~ F\S(x)) E Ws(χ} ~ F(S(x)) € A;

so B is reducible to A. π

17.2. PROPOSITION. A simple set is not RE complete.
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Proof. By 17.1, it is enough to show that a creative set A is not

simple. Let F be a creating function for A and let g be an index of the empty

set. Choose a recursive total 5 so that WQ(Λ \(x) «-» W(x) V x = fϊe); then
*ΛCJ c

W<v x = W U {fte)} If W C Λ°, then f\e) € W «-» F(e) 6 Λ shows that F(e)
»y^ i J € c C

0 W and Wc, x C Λc. Now define a recursive real G inductively by (7(0) = g,
" Λ ̂  /

G(n+l) = S(G(n)). By induction on n, Wg/ * C Λc and F(G(n)) e I*

WW n y Thus if we set x € £ «-» 3n(ar € W^/ f n\)? then ^ is an infinite RE subset

of Ac. Thus >1 is not simple, α

Now we turn to another type of large RE set. A hvpersimple set is a

coinfinite RE set A such that there is no recursive real Ffor which

V£y(y t A k x < y < F(x)).

17.3. PROPOSITION. Every hypersimple set is simple.

Proof. Let A be RE and suppose that there is an infinite RE subset

B of Ac. Define an RE R by R(x,y) *-* y € B & x < y. By the Selector

Theorem, there is a recursive selector G for R. Since B is infinite, G is total;

and for all x, G(x) t A & x < G(x). Hence A is not hypersimple. α

17.4. PROPOSITION. There is a simple set which is not hypersimple.

Proof. Define R(x,y) *-> y € W_ky>1x. Then β is RE; so byx

the Selector Theorem, there is a recursive selector F for R. Let Λ be the range

of F. Since y 6 A <-> Ijβfay) and £f is RE by the Graph Theorem, A is RE.

If F(x) is defined, then F[ x) > 2x. Hence for each z, there are at most z numbers

in A which are < 2^ so there \s &y£ A such that z < y < 2z. It follows that A is

coinfinite and not hypersimple. Finally, suppose that W is an infinite RE

subset of Ac. Then 3yR(e,y)-, so F(e) is defined and in W Π A, a contradiction.
C

Q

To prove an analogue of 17.2 for hypersimple sets, we need some

definitions. First observe that if we have an algorithm for computing A from an

oracle for β, then we may use values given by the oracle to compute a number z
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and then ask the oracle if z £ B. Imagine a simple algorithm which never does

this. Then our algorithm computes a finite number of numbers; asks the oracle

which of them are in β; and then decides if the input is in A. We might as well

ask the oracle about all numbers less then some number r, i. e., we might as well

ask the oracle for \n(z).

We now put all of this into a definition. We say that A is truth-table

reducible (abbreviated tt-reducible) to B if there is a recursive real F and a

recursive set C such that

for all x. B is truth-table complete (abbreviated tt-complete) if B is RE and

every RE set is tt-reducible to B. It is easy to see that

A is reducible to B -» A is tt-reducible to B

-> A is recursive in B.

Thus complete RE sets are tt-complete and tt-complete sets have degree O1.

(Both converses are false.)

17.5. PROPOSITION. A hypersimple set is not tt-complete.

Proof. Suppose that A is tt-complete. Choose a recursive real F

and a recursive set Csuch that

for all e. Let JH = {(n)j. i < 1h(n)}. Then every finite set is J for some n.

Moreover, the relation χjc(F(x)) £ C is recursive and hence RE; so there is a

recursive real 5 such that WQ, Λx) «-* χjc(F(x)) i C. Then

) e C~ W,(S(n))~7(F(S(n))) i C.

It follows that (3y < F\S(n)))(y eA^yξ JJ.

To show that A is not hypersimple, it will suffice to show how to compute

from x a z such that (3y £ A)(x < y < z). First compute an m such that every

subset of {0,1,.. .,j} is JH for some n < m. Let z be the largest of the F(S(n)) for
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n < w. There is an n < m such that J = {y. y< x& y £ A}. Hence there is a y

< F(S(n)) < z such that y e A *— > (# < a: & y ί A). But this clearly implies that y

i A and x < y. α

For the results of this section to have any interest, we must know that

there are sets which are hypersimple (and hence simple).

17.6. PROPOSITION (DEKKER). If a is RE and a Φ 0, then there is a hyper-

simple set of degree a.

Proof. Let A be an RE set of degree a. Since a ί 0, A is

non— recursive and hence infinite. By 14.7, there is a one-one recursive real F

with range A. Define an RE set B by

We will show that B is hypersimple and dg B = a.

To show that B is coinfmite, let z be given. Choose x > z so that F(x) is

as small as possible. Then clearly x f. B. Now suppose that there is a recursive

real G such that for every z there is a y e £° such that z < y < G(z). We obtain

a contradiction by showing that A is recursive. Given α, F(y) > a for large

enough y (since F is one-one); so there is an z such that o < F(y) for

z < y < G(z). We can find such a z by examining z = 0, z = 1, etc. We claim

that α € A iff α = F(x) for some a: < G(z). If not, α = F(x) for some x > G(z).

Choose y £ B such that z < y < G(z) < x. Since y £ B , F ( y ) < F ( x ) = a, contra-

dicting the choice of z.

It remains to show that B =& A. Clearly

x € B ~ (3α < F( x))(a € A & (V» < x)(c # F(y)));

so β <p Λ. Suppose that we want to use an oracle for B to compute whether or

not a € A. Since B is coinfmite, we can find an x i B such that F(x) > a by

trial. Since x£ B, α e 4 i f f α = ί\y) for some y < x. α

17.7. COROLLARY. There is an RE set of degree Of which is not

tt-complete.
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Proof. By 17.5. α

A maximal set is a coinfmite RE set A such that for every coinfmite RE

set B including A, B— A is finite. Thus a maximal set is a coinfmite RE set

with as few RE sets as possible including it.

It is fairly easy to show that a maximal set is hypersimple. However, it is

not a simple matter to show that maximal sets exist; this was done by Friedberg.

The final result of a series of investigations of this question is the following

theorem of Martin: an RE degree a contains a maximal set iff a1 = 0". Thus this

notion of largeness does tell us more about the degree than our previous notions,

but does not tell us that the degree cannot be O1.

18. Function of Reals

We now extend our notion of a function to allow reals as arguments. (We

could allow all total functions as arguments; but this would complicate matters

without really adding anything, since a function can be replaced by its

contraction.) We use lower case Greek letters, usually α, /?, and 7, for reals.

When the value of m is not important, we write α for a,,...,a . We use R for

the class of reals and Rm' for the class of all (ro+ fc)-tuples (αj,...,α ,j|,...,jj).

An fm,fcWarv function is a mapping of a subset of Rm' into ω. (Thus a

(0,fc)-ary function is just a fc-ary function.) From now on, a function is always

an (ra,*)-ary function for some m and k. Such a function is total if its domain is

all of Rm'*. An (m.fc)-ary relation is a subset of RmΛ We define the repre-

senting function of such a relation as before.

Note that the real arguments to a function or relation must precede the

number arguments. It may sometimes be convenient to write them in a different

order. It is then understood that we are to move all real arguments to the left of

all number arguments without otherwise changing the order of the arguments.

Now we consider how to extend the idea of computability. The new


