
28

questions. Here there seems to be no way to proceed without Church's Thesis.

Second, we sometimes use Church's Thesis to prove a function is recursive by

observing that it is computable and using Church's Thesis to conclude that it is

recursive. This type of use is non-essential; we could always use the methods

we have developed to prove that the function is recursive. One of the best ways

to convince oneself of Church's Thesis is to examine many such examples and see

that in every case the function turns out to be recursive.

10. Word Problems

The initial aim of recursion theory was to show that certain problems of

the form "Find an algorithm by which ..." were unsolvable. We shall give a few

examples of such problems.

Let us first see how to obtain a non—recursive real F. By 8.1, it is enough

to make F different from each {e}. We shall do this by making it different from

{e} at the argument e. (This idea, known as the diagonal argument, was used

first by Cantor to prove that the set of real numbers is uncountable.) In more

detail, we define

F(e) ~ (e}(e) + 1 if (e}(e) is defined,

~ 0 otherwise.

It follows from this construction that the set P defined by

P(e) <—> (e}(c) is defined

is not recursive; for otherwise, the definition of F would be a definition by cases

using only recursive symbols, and hence F would be recursive. Thus, using

Church's Thesis, we have our first unsolvable problem: find an algorithm for

deciding if (e}(e) is defined.

Consider the following problem, called the halting problem: Find an

algorithm by which, given a program P and an a:, we can decide if the

computation of P from x halts. Let P be a program which computes the re-

29

cursive function F defined by F(e) ~ {e}(ή- Then the machine halts with

program P and input e iff {e}(e) is defined. It follows that the halting program

is unsolvable, even for this one program P.

To introduce our next problem, we need a few definitions. An alphabet is

a finite sequence of symbols. If Ω is an alphabet, an Ω-word is a finite sequence

of Ω-symbols. An Ω—production is an expression X -> K, where X and Y are

Ω— words. An Ω— process is a finite set of Ω— productions. We usually suppose Ω

is fixed and omit the prefixes Ω.

If X and Y are words and P is a production Z-> V, then X -*p Y means

that Y results from X by replacing an occurrence of Z in X by V. If W is a

process, X -» ̂ Y means that X -» „ Y for some production P in W\ and X^^Y

means that there 'are words Z,, ..., Z, such that Zj is -Y, Z .̂ is K, and Z^ ->jy

Z^j for 1 < i < Jfc.

The word problem for an alphabet Ω is the following: Find an algorithm

by which, given an Ω-process W and Ω-words X and K, we can decide if X => yy

Y. We shall show that this problem is unsolvable, even for a particular choice of

Wand Y.

Let P be a program for which the halting problem is unsolvable. We

shall construct a process W. We use a, b, c, d, and e, possibly with subscripts,

for symbols of our alphabet. We use ar for the expression consisting of r

occurrences of a. Let N be the number of instruction in P and let M > I so that

i < M for every i such that li is mentioned in P. If r. is the number in Λi and π

is the number in the counter, the word

is called the status word. Thus if we do the computation of P from x, the initial

status word is bc^Qfaja^-b^ which we write as Zχ. We construct Wso that

Zx=»j^bCyy iff the computation of P from x halts. This will imply that there is

30

no algorithm by which, given z, we can decide if .̂̂ jy bCyy.

Suppose the machine is executing P. If X is a status word beginning with

bc^, where n < N, then there is a next status word Y. We shall put productions

in W to insure that X => ̂ Y.

Suppose first that instruction n in P is INCREASE Hi. We put into W

the productions c b - -* b e for j < i and the production c a -> ac . Applying

these productions to X enables us to move the c^ until it stands just before b *

We also put c b -» d b A into W\ this enables us to increase the number in 1i by

1 while changing c to d . The productions adw -» da and b d -> d b -for j < i
71 71 71 71 J 71 71 j

enable us to move the d until it stands just after b. The production

bd -» be , i then gives Y.

Now suppose that instruction n in P is DECREASE 1i,m. Just as above,

the productions c^ -* bjcn for j < i, c^a - ac^, c^ a -* dnbf ad^ -> dna, b^d^ -*

d b for j < z, and bd -* be take care of the case in which the number in 1i is

not 0. If it is 0, the above productions again move c until it is just before b .

Then cnbibz+l " e Abi+l ^δ68 cn to *rt **n " e«a and b/n " enbj for J < l'

bring e to just after b; and be -» be , , gives Y.

If instruction n is GO TO m, then bc^ -> bcm changes X to Y.

We also add the productions c Jb . -> c^ for all i and the production c^ -*

c »r; these enable us to convert any status word beginning with be *τ to be ̂ .

Hence if the computation of P from x halts, then Zχ^^ bc^.

A word is special if it contains exactly one occurrence of the c , d ., and e -

symbols. Every status word is special. Moreover, if X is special and X-*yyY,

then YΊs special. It is easily checked that if X is special, there is at most one Y

such that X -» w Y.

Now suppose that the computation of P from x never halts. Then there is

an infinite sequence X*, Xγ ... beginning with Z^such that X^^X^^ for all i.

The remarks of the previous paragraph then show that the X^ are the only words

31

X such that Zχ*wX. Hence we cannot have Zχ * w bc^; for there is no word V

such that bCyy-^K This completes our proof that the word problem is

unsolvable.

A process Wis symmetric if whenever it contains X-> Yϊt also contains Y

-» X. We will show that the word problem is unsolvable even for symmetric

processes.

Let W be the process constructed above. Let W' be the symmetric

process obtained from Wby adding the production Y-* Xίoτ every production X

-* y in W. We shall show that Zχ*w, bc^iff Zχ*w\Kjφ it will then follow

that the word problem for W' is unsolvable.

It is enough to show that Z *ψ, bc*j implies Zχ^ψbc^, Let Λp ...,

X, be a sequence of the minimum length such that Λ, is Z , X, is bc^ and X.

~*W' %i+ι f°Γ 1 S ί < fc Since AΓj is special, it follows by induction on i that X^

is special. If Xi~*y/Xi±.\ holds for all i< fc, we are done. If not, pick the

largest t such that this is false. Then X. , j ~*w*f ^ *°^ows *at - ί̂+i ιs not

bc^y; so i f l < k. By choice of ί, X- , , ^w^+o* ^*nce ί̂+1 's sPec*a'' ^

follows that AT- = AΓ^ , g ^ut tWs means that we could omit AT- and X - , j from

our sequence, contradicting the choice of that sequence.

Symmetric processes are interesting because of their relation to

semigroups. A semigroup is a class 5 with a binary operation such that the

associative law holds (i.e., (£ y) z= x (y z) for all J,y,2£ 5) and there is a unit

element (i.e., an e € 5 such that e x = x e = x for all x € 5).

Let Ω be an alphabet. An Ω-semigroup consists of a semigroup 5 and an

element x^ of 5 for every symbol a in Ω. We think of the symbol a as

designating the element x^. More generally, the word &j— a^ designates the

element x0 •...- x . (Note that no parentheses are needed because of the
al afc

associative law.)

32

An Ω—relation is an expression X = Y where X and Y are Ω— words.

Then if 5 is an Ω-semigroup, X = VΊs either true or false in 5. Now let R be a

finite set of Ω-relations and let A' be an Ω-relation. Then R =» K means that K

is true in every Ω— semigroup in which all of the relations in R are true. The

word problem for Ω— semigroups is to find an algorithm by which, given R and /if,

we can decide if R => K.

We shall show that the word problem for Ω-semigroups is unsolvable.

(This was proved independently by Post and Markov.) Let W be the

symmetric process constructed above. Let R consist of the relations X = Y such

that A"-* Kis in W (and hence K-» A: is in W). We shall show that X*w, Y

iff R 3 X = Y. Hence the word problem for Ω-semigroups is unsolvable even for

this particular R.

Clearly X => ̂ , Y implies R =* X = Y. To prove the implication in the

other direction, we construct an Ω-semigroup. First note that the relation X

4 yy, Y between X and K is an equivalence relation on the class of Ω-words; this
*

follows from the fact that W' is symmetric. Let X be the equivalence class of

X. Let 5 be the set of all these equivalence classes; and define a binary operation

• on S by /• / = (XY)* (where XY is X followed by Y). A little thought
* * *

shows that (XY) depends only on the equivalence classes X and Y so our

definition makes sense. It is easy to see that 5 is then a semigroup; the unit

element is the equivalence class of the empty word.
*

We make S into an Ω— semigroup by letting the symbol a represent a the

*word X then represents X . If X = Y is in Λ, then X and Y are equivalent; so

X = Y so X = Y is true in 5. It follows that if R *

true in 5 and hence X =» Y. This completes our proof.

X = Y so X = Y is true in 5. It follows that if R * X = K, then X = Y is

11. Undecidable Theories

We shall see how some problems of the following type can be shown to be

