
GENTZEN-TYPE SYSTEMS AND RESOLUTION RULE
PART II. PREDICATE LOGIC

G. MINTS

§0. Introduction. This paper is a sequel to Mints [17] where complete
resolution-type calculi were constructed for several propositional modal logics
including S5, S4, T, and K. Here we extend this to the predicate logic using
the same method, which provides a general scheme for transforming a cutfree
Gentzen-type system into a resolution-type system preserving the structure of
derivations. This is a direct extension of the method introduced by Maslov
[10] for the classical predicate logic. To make this paper self-contained, we
recapitulate some material from Mints [17], i.e., Part I.

The main idea of Maslov's method can be summarized as follows. Resolution
derivation of the goal clause g from a list X of input clauses can be obtained as
the result of deleting X from the Gentzen-type cutfree derivation of the sequent
X^g.

We show here how to treat predicate logics for which cutfree formulations
with the subformula property are known. These include intuitionistic logic and
quantified modal systems S4, T, K4, K, and only predicate logic S4 is presented
in detail. Our resolution formulation of the predicate logic S5 illustrates here
the treatment of systems possessing cutfree formulations in terms of semantic
tableaux. We do not consider here the resolution formulation of the intuitionistic
predicate logic since such formulation containing a device to avoid Skolemization
was presented in Mints [13], [14].

Resolution method for a formal system C is determined by specifying
(i) a class of formulas called clauses,
(ii) a method of reduction of any formula F of the system C to a finite list Xp
of clauses,
(iii) an inference rule (or rules) R called the resolution rule for deriving clauses,
and
(iv) a derivation process by forward chaining so that all derivable objects are
consequences of initial clauses and garbage removal from the search space is
possible.

The resolution method is said to be sound and complete iff for any formula
F the derivability of F in C is equivalent to derivability of the goal clause g from
XF using the rule R.

For systems based on classical logic the goal can be taken to be the empty
clause 0 (constant false). Indeed derivability of an atom g is equivalent to deriv-
ability of 0 from the negation ~g. There are several important features of the
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standard resolution method for classical logic which are highly desirable for any
extension to the non-classical case deserving the name of resolution.

(i) Clauses should be much simpler than formulas in general with respect to
complexity measure suitable for given systems C. In the classical case standard
clauses are quantifier-free (with implicit universal quantification) disjunctions of
literals. So there is neither nesting of Boolean connectives (in the propositional
case) nor alternating quantifiers. For the intuitionistic propositional calculus
clauses were defined in [13], [14] as implications with nesting at most 2. In the
modal case one cannot deal only with clauses of modal depth 1 (except in S5),
unless PSPACE = co-NP. Indeed, for most non-classical propositional logics
below S5 the derivability problem is PSPACE-complete, but for formulas of
depth 1 it is in co-NP. Nevertheless non-initial derivable clauses are disjunctions
of modal literals, i.e., of the form /, D/, φ/, where / is a variable or its negation.

(ii) Reduction of an arbitrary formula F to the form Xp —> g, where Xp is
a finite list of clauses and g is a goal (propositional variable or 0) should be much
easier than the decision problem for the systems C in question. Some authors
advise using distributivity for transforming classical formula to a set of clauses.
Such a procedure is efficient for relatively small formulas and sometimes allows
one to restrict the search space, especially for the classical predicate logic. On
the other hand, this procedure is exponential in the worst case, that is, it has the
same order of complexity as the existing decision procedures for classical propo-
sitional logic. Moreover, it destroys the structure of the original formula and is
not applicable to non-classical systems, since they do not allow Skolemization.

We use instead a familiar depth-reducing transformation by introducing new
propositional variables. It is linear in time, universally applicable, and preserves
the structure of the original formula. The list of relations defining new variables
can be considered as a new encoding of the original formula or as a presentation
of the data structure of its subformulas.

(iii) It is natural to require that the resolution rule R for a given system
be as close as possible to the standard resolution rule for the classical proposi-
tional calculus. For propositional systems based on classical logic we were able
to preserve this rule completely. Differences between various modal systems
were expressed by special rules for handling modalities, which can be used only
together with the resolution rule, and so can be considered to be analogues of
factorization or unification for the classical resolution.

For predicate logic we use ideas from Mints [13], [14] and Zamov [20], where
resolution-type systems for predicate logics were formulated for non-Skolemized
formulas. Here reduction of the formula-depth also plays an essential part.

(iv) Our requirement that the inference process should proceed by forward
chaining corresponds to Maslov's [11] distinction between local methods (such
as resolution or Maslov's inverse method) and global methods (such as semantic
tableau methods with introduction of dummy variables and finding their values
by searching through closure conditions for all branches of the semantic table).
Both resolution and Maslov's inverse method work by deriving consequences
from the negation of the original formula. This allows one to use subsumption:
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if C is derived, then in most cases one can throw away C" when C — » C" is valid,
and so save space and time.

Reducing formulas to resolution (clause) form by introducing new predicates
can lead to considerable growth of the search space due to resolution over literals
containing these variables. One can restrict this disadvantage using the connec-
tion between resolution and Gentzen-type derivation discovered by Maslov's [10]
and Maslov's [8] idea of decomposition (razbivka) of a formula. The latter sim-
ulates to a certain degree introduction of new variables. We propose a strategy
which for the prepositional case can be roughly formulated as follows: if a vari-
able P was introduced to replace an occurrence of a given sign, then no clause
containing occurrences of P with opposite sign can be derived by the resolution
rule. Related ideas were employed by Voronkov. References to other work were
given in Part I.

We begin with the resolution formulation due to N. Zamov of the first-order
predicate logic which does not require Skolemization. The main new feature of
Zamov's formulation is the presence of initial clauses (3y)(L\ V V Ln) and
corresponding resolution rule

where σ does not contain substitution for y and the result (M V N)σ does not
contain y. It is this formulation which will be generalized to the modal case.
The proofs will follow the pattern of Part I (i.e., Mints [17]) which used ideas by
Maslov.

§1. Classical predicate calculus. Material presented in this section is
partly familiar from the literature. The aim of this exposition is to collect it,
streamline the proofs, and prepare for further treatment of more complicated
systems. New material here is a Maslov- type completeness proof and treatment
of introduced predicates in Section 1.5.

We begin in Section 1.1 with the extended language of clauses [Zamov 20]
and show that it is sufficiently general in the sense of the introduction, i.e., that
any formula can be reduced to a system of clauses in linear time and space.
A cutfree Gentzen-type system GK for classical logic together with a normal
form theorem for derivations is described in the Section 1.2. Section 1.3 gives
a detailed description of the resolution strategy corresponding to Gentzen-type
derivability and a structure-preserving translation GR from GK into the resolu-
tion system. Section 1.4 is devoted to inverse translation. Section 1.5 contains
an example of treatment of strategies under this approach.

1.1. Non-Skolemized clauses. Recall that in the usual formulation of the
resolution method derivable objects are clauses which are disjunctions LI V
• V Lk (k > 0) of literals i.e., of atoms (prepositional letters) p, <?,r,pι, . . .
and their negations ~ p, ~ <?, ____ Here tι , . . . , t* are terms constructed from
variables by function symbols. Clauses are treated modulo order and number of
occurrences of literals. 0 means the empty clause (interpreted as the constant
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false). Complement ~L of a literal L is defined in a standard way so that

~(~p) = p.
We will preserve the same class of derivable objects, i.e., of possible results

of derivations, but extend the total set of clauses.

Initial clauses are disjunctions of literals as well as the formulas of the form

(3y)(L\ V V Lfc) where k > 2 and LI , . . . , Lk are literals. We shall be interested
in derivability relations X h C, where X is a set of initial clauses and C is a
clause. Recall that free individual variables in initial clauses are understood to
be universally quantified.

Recall the following well-known fact.

THEOREM 1.1. For any propositions^ formula F a set Xp of initial clauses

of length < 3 can be constructed linearly in F by introduction of new variables
such that F is valid iff Xp is inconsistent, i.e., the sequent VXp =Φ 0 is derivable.

Proof. The main idea is to introduce new predicate variables for subfor-

mulas of F by equivalences; for example replace subformula P(x) V Q(x) by
X(x), and express equivalence Vx(-X"(x) <-> P(x) V Q(x)) by the set of clauses
Vs(~X(aO V P(z) V Q(x)), Vx(~P(s) V X(x))9 Vx(~Q(x) V X(x}}. Then take
as XF the union of introduced sets of clauses completed by the negation of the
predicate letter introduced for the formula F itself.

More precisely, assign to every non- atomic subformula A of F a new pred-
icate variable PA with the number of arguments equal to the number of free
individual variables in A. Define A* to be A for atomic A, and to be the result
of replacing the immediate non-atomic subformulas B of A by P#(y), where y
is the list of free individual variables in B. Put

EA=(PA(V)»A*) (1)

where y is the list of all individual variables free in A.

We express EA as set of (universal closures) of clauses CA = CA ^ ^Λ'

where C\ corresponds to the implication A* — » P/^y), and C~^ corresponds to

inverse implication P>ι(y) — * A*. Assuming to simplify .notation that immedi-
ate subformulas of A are non-atomic and free individual variables of immediate
subformulas are the same, we make the following definitions:

If A Ξ J3&£>then

C+ = {~P*(y)V ~PD(y) V PA(y)}

C-A = {~PA(y) V PB(y), ~PA(y) V PD(y)}. (2fc)

If A = B V D then

C = {-Pfly V P ^ y , ~ P D y V

C-A = (~PA(y) V PB(y) V PD(y)}. (2V)

If A = ~B then

C\ = {PA(y} V PB(y)}
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If A = VxB then

C+ = {(3x)(~PB(x,y)VPA(y)}

C^ = {^PA(y)V PB(x,y)}. (2V)

If A = (3x)B then

C+ = {PA(y)V~PB(x,y)}

C~A = {(3*)(~PΛ(y) V PB(x, y))}. (23)

If one of the subformulas, say B, is atomic we write B instead of Pβ(y),
etc. Note that unusual clauses containing existential quantifiers arise in positive
clauses for V-quantifiers and in negative clauses for 3- quantifiers, i.e., exactly in
the situations where Skolemization is used in the standard approach to resolution.

Now put:

Yp = {CA - ^ is non- atomic subformula of F} (3)

XF = YF U {~PF(C)} (4)

where c is a list of new constants and Pp is the predicate assigned to F. Incon-
sistency of XF is equivalent to the derivability of

vrF h PF(C) (5)
1. Derivability of (5) implies derivability of F. Indeed, substitution of A

for PA in (5) gives

YF' - F(c) (6)

where all formulas in Y' are easily derivable, since they result (by decomposition
into clauses) from the formulas of the form B — > B. So (6) implies F(c) and
substituting back free variables x of F for c we have F(x), i.e., F.

2. Derivability of F implies derivability of (5). Assuming for simplicity that
F is closed, we derive

F -» (WF -> PF) (7)

from
» (PF „ F) (8)

which is obtained by repeated use of the replacement of equivalents

Vx(A «-» B) -» (G[A] ++ G[B}) (9)

where x contains all free variables of A, B, and G is any formula. This concludes
the proof of the theorem.

Example 1. Let F = (3x)(Vy)(P(ι) V ~P(y)). Then denoting P(x)V
~P(y) by 1 and Vy(P(x) V ~P(y)) by 2 we have

EF = PF «-> (3χ)P2(x)
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and so

XF = { ~Pι(z,y) V P(z)V ~P(y),~P(*) V Pι(*,y),P(y) V Pι(z,y),
~P2(z) V Pι(*,y),(3y)(~Pι(*,y) V P2(z)),(3*)(~PF V P2(z)),
~P2(z) VPF,~PF}.

.f .£. Gentzen-type predicate calculus GK. Consider a Gentzen-type formula-
tion of the classical predicate calculus suitable for pruning superfluous formulas
(cf. below). Its derivable objects are sequents X =Φ F, where X, Y are finite
(possibly empty) lists of formulas of the language considered. The order of for-
mulas in X, Y will always be disregarded.

Gentzen-type system GK. Axioms: A =Φ A.
Inference rules:

A\,X\ => yί; . . .; An, Xn =» Yn

Al V •• V An,X

where Xl U - - - U Xn = X, YI U U Yn =

(

A =Φ* Y, AI , . . , Am , ^ \ / v %, \ A =Φ j / , v \

... (m ^ n)(=* v } (thmmng)

'x =» r, -A ~A,X =» y

A(x:=t},(VxA)»,X^Y X^Y,A(x:=b]

^ } ^ }

, , ,
^ } (3x)A,X=>Y X^Y, (3x)A l ;

where superscript 0 means possible absence of the formula. So in fact we have
two versions of the rule (V =>):

A[x:=t],X=ϊY A[x:=t],VxA,X =ϊY

and similarly for (=> 3).
Let us fix terminology concerning Gentzen-type systems. In the sequent

X => Y the left-hand side X and right-hand side Y are sometimes called an-
tecedent and succedent. In each inference rule the sequent written under the
line is the conclusion, and the sequents over the line are premises. The formula
shown explicitly in the conclusion, for example AI V V An in ( V =>) or X1 , Y'
in (thinning), is the main formula, the formulas shown explicitly in the premises,
for example AI, . . . , An in the rule ( V =>), are side formulas, and the remaining
formulas, for example X\,Y\, . . . , Xn,Yn,X,Y in (V =>) or X, Y in (thinning),
are parametric formulas.

Recall the following facts from predicate logic.
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THEOREM 1.2. (a) Predicate formula F is valid iff the sequent =ϊ F is
derivable in GK.

(b) The derivation of a sequent S uses only rules for connectives occurring
in S) or more precisely, the succedent and antecedent rules corresponding to
positive or negative occurrences of connectives.

(c) A list X of formulas is inconsistent iff the sequent X => (with empty
right-hand side) is derivable in GK.

(d) All thinning inferences can be moved downward (with possible deletion
of some formulas and sequents) so that the thinning rule occurs only immediately
preceding the last sequent of the derivation.

(e) Propositional inferences can be moved downward so that such inference
L occurs only in a series of propositional inferences immediately preceding the
last sequent of the derivation or immediately above the inference L1 having the
main formula of L as its side formula.

Proof. Cf. Kleene [4], [5].

A derivation satisfying the conditions in (d) (respectively in (e)) of Theorem
1.2 is called pruned (or p- inverted, respectively), and the operation of moving
inferences downward mentioned there is called pruning (or p-inversion, respec-
tively).

1.3. Resolution calculus corresponding to GK. Operation GR. Let us return
to the clausal formulation (cf. Theorem 1.1). We consider a deduction relation
X h C where X is a set of initial clauses and C is a clause. A positive (neg-
ative) occurrence of a predicate P in X h C is an occurrence in P(tι, . . . ,tn)
(in ~P(tι,. . . ,tfn), respectively) as a member of C and in ~P(*ι, . . . ,tn) (in
P(tι, . . . , tn), respectively) as a member of one of the clauses in X.

Substitution is an expression of the form [x\ := ti, . . . ,xn := tn] where /,
are terms, Xi are distinct variables which do not occur in t{. If this substitution
is denoted by σ, then the result Eσ of its execution is obtained by replacing all
occurrences of z, in E by £,, i = 1, . . . , n.

The unifier of the expressions E, F is a substitution σ unifying E and ί1,
i.e., such that Eσ = Fσ. The most general unifier MGU(E, F) is the simplest
unifier, that is Eσ1 = Fσ1 implies σ1 = σ"MGU(jE7, F) for some substitution
σ". The substitution in the right-hand side of the last equation is the result of
the successive execution of MGU(£7, F) and σ". MGU(£ι, . . . ,£„) is the most
general unifier of all expressions E\, . . . , En.

The general formulation of the resolution rule is

where σ is the most general unifier of the literals L, L1 . Alphabetic renaming
of free variables is assumed throughout. More precisely, inference according to
the rule (R) and all resolution-like rules below, like (-Kg), (ΛP), (-R-Pa) — but not
in propositional-type rules (#3), (RP^) — includes implicitly such a renaming to
make all variables in L V E distinct from all variables in ~L' V D.
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This form of the resolution is complete together with the factorization rule

(cf. below).
To deal with (initial) clauses beginning with (Ξ) we add the following rule

introduced by Zamov [20]:

where subscript 3 in MGU means that an additional proviso is imposed: σ is the
most general substitution unifying L, L' which does not contain element y := t
and such that the resolvent (E V D)σ does not contain y. It is understood as
always that σ does not introduce collision of variables (here with the quantifier
(3y)), i.e., y does not occur in elements x := t with x free in L V E.

In other words σ does not change variable y and can introduce y only into
V ' . This restriction corresponds to the proviso in 3-elimination rule for natural
deduction

E -> (3y)£; L -> D

E^D

where y should not occur in E, D. This remark is made precise in the following
statement, where V means universal closure.

LEMMA 1.3. Under proviso of the rule (Ri) the formula

V(3y)(L V £)&V(~I/ V D) -> (E V D)σ

is derivable, so the rule is sound.

Proof. We have by V-elimination: V(~Z/ V D) -> Vy((~Z/ V D)σ). Since σ
restricted to L V E does not contain y we have ((3y)(L V E))σ = (3y)((JD V E)σ).
By general properties of substitution

(L V E)σ = LσVEσ and (~L' V D)σ = ~Z/σ V Dσ.

Since JE?σ, Pσ do not contain y, equivalences

(3y)(Lσ V Eσ) <-> (3y)Lσ V Eσ; Vy(-I'σ V J9σ) <^ Vy ~I/σ V Dσ

are derivable. Finally, since σ is a unifier of L and I/, we have Vy ~L'σ
and so

V(3y)(L V E)&V(-L' V D) -> ((3y)Lσ V Eσ)b(~(3y)Lσ V Dσ) -> Eσ V Dσ

which is to be proved.

We introduce now a calculus for deriving X h C which has two kinds of
axioms and three inference rules.

Resolution calculus RK. Axioms: Clauses belonging to the list X (input
clauses) and L\i ~L where the predicate symbol of the literal L occurs both
positively and negatively in X h C (purity restriction).

Inference rules:

Li V V Ln (input); ~L{ V PI . . . ~L'n V Dn
-
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where σ = MGU(Zα , L( . . . Ln, L'n) i.e., σ is the most general substitution uni-
fying each of the pairs (Lt , £(•), ί = 1, . . . , n.

(3y)(£ι V - - V Ln) (input); -̂  V £>ι; . . . ~L'n V Dn

σ = MGUgί-tijLί; . . . ;Ln,L'n), n > 2, where MGUa means the proviso similar
to the one in R^ above: σ does not change the variable y and can introduce it
only into LΊ,...,L'n.

£ι V V l n . V J

where n > l,σ = MGU(Lι,... ,Ln) and £ = L\σ = - •• = Lnσ.

Comments. The rule RP can be thought of as a series of n inferences
according to the standard resolution rule (R) presented at the beginning of this
section. It is closely connected with the clash rule [Chang and Lee, 1]. Our
axioms of the form L V ~L are introduced to ensure a complete clash form of
-RP. It is easy to see that deletion of all such tautologies from a derivation in
RK results in a derivation of the same clause as before by a series of inferences
which can be thought of as multiple applications of the standard resolution rule
to an initial clause. Assuming to simplify notation that the axiom premises of
the form LV~L are the last ones, we can write such a series of the standard
resolution rules in the form:

(n , LιV < VLn (input); ~L{ V Jι;...;~£'fc V Dk
(Hai) (Dl V . . - V Dk V

We can call this rule semi-input resolution. Recall that the input strategy
of the standard resolution rule (R) is the requirement that at least one of the
premises should be an input clause. This strategy is known to be incomplete
[Chang and Lee, 1]. We shall see that the semi-input strategy is complete and
corresponds to Gentzen-type derivability up to the structure of derivations for
Skolemized formulas. For the case when the existential quantifier is present in
clauses (3y)D one should add a semi-input version of the rule (ΛPa)

Allowing axioms L V ~ L without purity restriction would result in the
admission of the substitution rule, since for every substitution σ we would have
the following (ΛP)-inference:

LI V - . - V £n; Liσ V ~Igσ; . . . Lnσ V ~Lnσ

(Li V V Ln}σ

Purity restriction means that the substitution is allowed in all non-pure
literals, i.e., ones which have a chance to be main literals in an axiom. An even
more reasonable restriction is one used in Maslov's inverse method [Maslov, 8]:
an axiom is a tautology of the form Lσ V ~ L'σ where L, ~ L1 are literals
occurring positively in X h C and σ is their most general unifier with the
natural 3-ρroviso. Our completeness proof will in fact establish completeness of
this restriction, but later we shall prove that all axioms of this kind are redundant

(cf. Theorem 1.5.2).
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One can get rid of the factorization rule by means of a familiar trick: re-
place resolution by its combination with factoring into the resolved literal. The
completeness of this rule is proved by moving factorization downward in the
derivation by resolution and factorization.

Proviso n > 2 in the rule (RP^) is made to simplify formulations, since it
is satisfied for our initial clauses. We shall see that the completeness theorem is
valid without this restriction and its proof requires only minor modification.

The calculus RK is used to derive clauses from some set X of input clauses.
The leftmost premise of each of the rules (-RP), (-Rft), (-Fg) should be one of
these input clauses and is called the nucleus, while remaining premises ~LJ V D{
are electrons.

Notation X h C means that clause C is derivable in RK from the set X of
clauses.

THEOREM 1.4. A set X of clauses is inconsistent iff VX h 0 where V means
universal closure.

This statement can be easily obtained from well-known results but we are
interested here in presenting ideas of Maslov's [10] proof and the construction of
Zamov [20] which we generalize in subsequent sections. Theorem 1.4 is obtained
as a consequence of Theorem 1.2 (c), (d) and the properties of transformation
GR of a Gentzen-type derivation c? of a sequent VJC, Y => Y1 (abbreviated d :
X, Y =» Y') into a resolution derivation GR(d): X \-~Y V Y1, i.e., a derivation of
~Y V Y' from the initial clauses X. Here Y, Y1 are lists of literals and ~Y V Y1

is a clause consisting of members of Y1 and complemented members of Y with
obvious modifications when F, Y1 or both are empty. More precisely, GR(d)
will derive a subclause of ~F V F', i.e., the result of deleting some (possibly no)
literals from that clause.

We describe GR in detail to make possible references below.
In fact, GR(d) will be constructed in two steps. First we construct a deriva-

tion GR'(d) from the substitution instances of initial clauses by the following
two rules:

(l! V - - - V Ln} (input); ~L\ V Z? ι ;. ..;~l'n V Dn(RP) - A V . V A . -
where L,σ = L\ for i = 1, . . . , n

V V £„) (input); ~l( V Dί . . . ~L'α V Dn-

where L, σ = L\ for i = 1, . . . ,n and the 3-proviso should be satisfied: neither
substitution σ nor the resolvent D\ V V Dn can contain the variable y.
This corresponds to the prepositional part of the familiar completeness proof
for the resolution rule via Herbrand's theorem, but now even this step contains
the quantifier rule (RP^). The final derivation GR(cf) will be produced by a
standard lifting construction, that is, by replacing arbitrary substitutions in the
rules (-RP')? (-R Pa) by the most general unifiers and adding factorizations when
necessary.
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Definition of the transformation GR1 . Let d : -X", Y =Φ- Y' be a derivation
in GK, -Y be a list of formulas of the form Vxi VXnC where n > 0, C is an
initial clause, and F, Y' are lists of atoms. Then every sequent in d is of the
form

Xι,Z=ϊZ' (10)

where X\ is a list of instances of formulas from X and Z, Z' are lists of atoms.
Replace each of these sequents by

~Z V Z1 (11)

and delete repetition of adjacent clauses, i.e., passages C / C. To transform the
obtained figure into a derivation by rules (RP'\ (RP^) note that every inference
in d belongs to one of the following types.
1. ( V =>) with the main formula originating from a formula VC in X, i.e., being
an instance Cθ of it where clause C does not contain the existential quantifier.
2. (V =r>) with the main formula Cθ[y := 6] originating from a formula Vx(By)C
in X , where θ is a substitution for variables in x. Assume to simplify notation
that in this case 6 = y.
3. (~=Φ ) with the main formula Cσ for VC in X.
4. (~=>) with the main formula in Y.
5. (=Φ ~) with the main formula in Y1.
Now for any (V =>)-inference in d add the main formula of this inference as an
additional premise (nucleus), i.e.,

LI,XI,ZI => Z[ . . . Ln, Xn, Zn =» Z'n .
Li V ••• VLn,Z=>Z' ( }

is transformed into

(3y)°C; ~lt V ~Zι V Z[; . . . ~£n V ~Zn V ̂"

where Cσ = LI V V Ln originates from V(7 or V(Ξy)C; (3y)° stands for 5y
in the second case and is empty in the first case.

For any (~=^)-inference with conclusion (10) and main formula from -XΊ,
add its main formula as an additional premise (nucleus), i.e., the inference

~A,X,Z-+Z'

is transformed to
Cσ; ~Z V Z' V A :

(14)

(15)
~ZVZ'

where ~A = Cσ.
This concludes the description of GR'(d).

Note. The conclusion of GR' uses the restriction n > 2 for initial clauses
(Ξy)(Lι V V Ln). It is easy to remove this restriction by treating the rule
(Ξ =>) with the main formula (3y)L

d:
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in a special way. After constructing GR'(d'): L,X h~K V Y' remove the initial
clause L and add ~L to all clauses that depend on the removed L. This will give
a derivation X h L V ~Y V Y1 and GR'(d) is concluded by (RP£) with nucleus
(3y)£. So most of the following results are preserved with their proofs without
the restriction n > 2 for initial (Ξ)-clauses.

THEOREM 1.5. (a) If X is a set of formulas of the form Vxi xnC, where
n > 0 and C are initial clauses, Y, Y1 are lists of literals and d : X, Y => Y1 is a
pruned p-inverted GK-derivation containing no thinnings then

GR'(d) : Xv h~y V Y' by the rules (RP1), (RP£ (16)

where X* is the result of dropping initial ^-quantifiers from the formulas in X,
or

X is empty and Y = Y' is one and the same literal. (17)

(b) If X, C are lists of initial clauses, Y is a list of literals, and VX, Y ̂  C
is GK-derivable, then X h (~Y V C)' by the rules (RP')9 (ΛPg) where minus
means deletion of some (possibly no) literals from ~Y, C.

(c) In particular GK-derivability ofVX =Φ- D for a clause D implies X h D~
and if X is inconsistent (i.e., X =3* is GK- derivable), the X h 0.

Proof, (a) Apply induction on (the number of inferences in) the pruned
derivation d of sequent X, Y =$> Y1.

Induction base. If Y1 is X then Y is empty and ~Y V Y1 = Y1 = X is the
initial clause. If Y1 is Y the X is empty and we have (17).

Induction step. Only the rules ~=Φ , =Φ~, V = ,̂ V =Φ> and final thinning can
be applied in the derivation.

Case 1. The inference =>~: A,X,Y => Y'/X,Y =* Y',~A is transformed
into repetition ~Y V Y'V ~A/ ~Y V Y'V ~A (recall that we identify clauses
differing only by permutation).

Case 2. The rule ~=Φ-. If the main formula does not belong to -X", then
~=Φ is transformed into repetition since ~~A = A. In the opposite case the
~=^ is transformed into the figure (15) which is the application of RP. The
only non-trivial case is where (7) holds for the premise of the rule. Then the
electron ~F V Y should satisfy the purity restriction. Indeed, our derivation
is pruned, so any atom (including Y) is traceable to an axiom Y => Y and the
purity restriction is satisfied.

Case 3. The rule V =». It has the form (12) and is transformed into (13)
where (3y) is absent and C is LI V V Ln. The purity condition for the
premises of (13) satisfying (17) is valid for the same reason as in case 2.

Case 4. The rule (Ξ =Φ>). This is the main new point of our proof compared
to Theorem 1.3 of Part I. The main formula of the rule 3 => is the initial clause
(3y)C, so C should be a disjunction. Since the given Gentzen-type derivation d
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is p-inverted, its final part is of the following form:

d' :

d:

By the definition GR'(d') ends in RP':

In view of the proviso for the rule (3 =>) the variable y does not occur in F, K',
so prefixing (By) to the nucleus LI V V Ln in (18) transforms our (RP) into
a correct application of (RP^).

Note for the following that the (JZP^-inferences in GR'(d) exactly corre-
spond to (5 =Φ»)-inferences in d.

Case 5. The rule (V =>).

d:

The derivation GR'(ef') differs from GR'(d) only by replacement of some
nuclei C[x := t] in rules (RP1), (RP^) by C with corresponding addition of the
element [x := t] to the substitution σ. The only thing to check is the preservation
of the Ξ-proviso in each (ΛP^-inference

V - - V £„); ~l( V Dl 1 . . . -£'„ V 0, ,

If its nucleus is different from C[x := t], this inference is not changed at all.
Otherwise the nucleus is changed to C, i.e., the substitution x := t is removed
from LI V V Ln and added to σ. As was just noted, the variable y of (RP^)
in GR'(d') is an eigenvariable of some (3 =Φ)-inference in d1. So it cannot occur
free in the last sequent of d1, in particular in the substitution x := t, and new
substitution in (RP^) does not contain y as required.

This concludes the proof of (a).
(b) Let X, C be lists of clauses, C = CΊ, ... ,Cn. Let Y be a list of

literals, and VJf, Y => C be GK-derivable. Let C7~ be the result of replacing all
disjunctions in C by commas. Then V-Y, F =^ C^ is GK-derivable (use cuts with
derivable sequents d => Cf ) and ~F V C = ~F V C". The pruned p-inverted
GK-derivation of X, Y =^ C~, which exists by Theorem 1.2(d), contains thinning
only at the very end: VX",F" =» CΓ- / VX,F =» C. Applying part (a) of
the present theorem to VJί"",F" =Φ C~, we have JΓ I — F~ V C~ as required
in (b). Additional information is that taking subclauses corresponds to thinning
inferences in Gentzen-type derivation.

Part (c) of the theorem immediately follows from (b).

Now we define GR(d) as the result of the lifting, i.e., moving substitutions
maximally down the derivation GR'(d). For any derivation

d : X h C by the rules (RP1), (RP^)
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we define by induction on d the derivation d : X h C~ in the system RP such
that C = C^θ for some substitution θ.

If C is in X then d' = d. If C is LV ~L, then CT is P(ZI, . . . ,zn)V
~P(#ι , . . . , Xn) where P is the predicate symbol of L and x\ , ... , xn are pairwise
distinct variables.

Let d end in the rule (RP^):

(3y)(L1 V V Ln)(input); ~L{ V Dl : . . . ~£'n V £n ^σ = LJ,

A V - . - V D n » = 1, ... ,n

By the induction assumption we have derivations c^ : Jf h (~£( V U, )̂  for
i = 1, ... ,n, such that ~L V A = (~L, = Di)~ θi. Slightly abusing ~~
notation we write (~£J V -D,\P = ~Lp V -DJ". Note that ~&p can contain
more than one literal, but it is unified in one literal ~L\ by the substitution
θi. So applying if necessary the factorization rule (F) we will assume that all
~Lp (i = 1, ... , n) are literals. In view of the proviso for (RP^) the substitution
σ does not contain the variable y, and the substitutions θi do not introduce it
into DI V ••• V Dn. Renaming if necessary free variables in ~Lp V D* ,
we can assume that renaming conditions are satisfied for (3y}(L\ V V Ln),
~LΊ* V jD^, . . . ,~I/n~ V D'n* . Collecting θi into the common substitution θ
we have

Liσθ = Liσ = L'{ = L'^θ = if σθ.

So σθ is a general unifier of all pairs (JD, ,LJ),i = 1, ... ,n satisfying these
conditions for the following (ΛPg)-inference:

v v £ " j ~£ v J > ; - ~^ v ̂

Since σ~ is the most general unifier, we have σθ = σ^ff for some substitution
θ'.

Since D^θ = D^θi = D, (z = 1, ... , n), and σβ on -D^, . . . , £)̂  coincides
with 0, we have £>; = D~θ = D^σ^θ1 (i = 1, ... ,n), so the former resolvent
DI V V Dn is indeed a substitution instance of the new resolvent. That
concludes the treatment of the rule (RP^).

If d ends in the rule (ΛP'), the treatment is similar, but easier since there
are no 3-restrictions. This concludes description of GR(d).

THEOREM 1.6. (a) IfX is a set of initial clauses, Y, Y' are lists of literals,
and d : V-X", Y => Y' is a pruned p-inverted GK-derivation containing no thin-
nings, then GR(d) : X h ~F V Y' in the system RP, or X is empty and Y = Y1

is one and the same literal.
(b) I f X , C are lists of initial clauses, Y is a list of literals, and V-X", Y => C

is GK-derivable, then X h (~Y V C)~ in the system RP where minus means
subsumption.

(c) In particular GK-derivability ofVX => D for a clause D implies X h D",
and if X is inconsistent (i.e., X => is GK-derivable), then X h 0.

The proof is the same as for Theorem 1.5 using operation GR instead of
GR'.
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1.4- Translation RG of semi-input resolution into Gentzen-type derivations.
Operation RG will be applied to a derivation by semi-input resolution d : X h D
of a clause D from a set of clauses X and arbitrary partition D = DI V D2

of D into (possibly empty) clauses DI, D2. The result RG(d,Dι,D2) (which
we shall usually write as RG(d)) is a Gentzen-type derivation of the sequent
VJf, ~D\ =Φ D2 where ~D\ consists of complements of literals in D\ (if any).

Definition of RG(d) by induction on d.
If DI V D2 = D is a member of X, then (assuming for simplicity that DI , DI

are both unit clauses), RG(d) is of the form

Dι =ϊ D2

(thinning)

If DI V DI = ~L V L (in some order) then RG(c?) is the obvious derivation from
the axiom L => L.

If the last inference of d is RP, choose the partition in each of the premises
in accordance with the partition of the conclusion, i.e., put literals from DI in
the first part, and the literals from DI in the second part. Then the RP in
question can be written as

Lλ V ..- V L n ; ~L( V DU V £>12; . . . ;~£'n V Dm V Dn2

(Du V - - V Dni V Du V - - V Dnι)σ ΞΞ (Dl V D2)σ

Putting the resolved literals ~Li , . . . , ~L'n in the first part of the partition-
ing and applying the inductive assumption we can construct GKp-derivations of
the sequents

After making substitution σ we can conclude RG(d) by the following (V =>) and
(V =>)-inferences taking into account that L\σ Ξ L σ:

~Dιισ =» D^σ\ . . .;VX,Lnσ,~Dnισ => Dn2σ . ,

MX, (Li V - V Ln)σ, ^ J

If the last inference of d is (F), one should make a factorizing substitu-
tion, erase superfluous copies of identical literals, and add (if necessary) the ~
inferences to complete former axioms L =Φ> L which became ~L, L =Φ> or =Φ ~L, L.

If the last inference of d is (-RPa), the treatment is similar to the case of
(RP)' One has only to add (3 =^)-inference in the figure (19). The proviso of the
rule (5 =^) is satisfied in view of the proviso for the rule (RPi). This concludes
the definition of RG(d).

THEOREM 1.7. If d : X h Dl V DΊ then RG(d,Dι,D2) : VX,~£ι =» JD2-
In particular d : X \- D implies RG(d) : \/X =» I>.
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Proof by induction on d is in fact contained in the definition of RG(d).

Important note. Operations RG and GR (defined in the previous section)
preserve much of the structure of the derivation. In particular there is a close
correspondence between the (V =4>), (3 =>)-inferences in a Gentzen-type deriva-
tion and (ΛP), (ΛPa)-inferences in corresponding /IP-derivation. This enabled
Maslov [10] to transfer many results on strategies for one of these formulations
to another one.

1.5. Completeness of strategies. We illustrate the use of the apparatus of
the preceding section in proving completeness of two strategies. A much more
general result was established by Maslov [9].

V. Neiman and V. Orevkov noted that hyperresolution is incomplete for
input clauses with 3, as the following example due to V. Orevkov shows:

(3x)P(x), Vy(~P(y) V Q(y)),Vw ~Q(u) h 0

On the other hand, V. Orevkov noticed that it is possible to require that all
(JZP3)-inferences follow (i.e., be situated below) all (jRP)-inferences.

From now until the end of this section we will be interested in derivability
relations X h g encoding (according to a refinement of Theorem 1.1) the deriv-
ability of a predicate formula F. It was noted very early that the introduction
of new predicates for this encoding leads to an increase in the search space.
We shall prove the completeness in the Skolemized case of a strategy combining
hyperresolution with a device essentially restricting this defect.

Let us consider first a more economical encoding. We use the notation
from the proof of Theorem 1.1, especially formulas (1), (2) and symbols CΓ£, Cj.
Instead of including into the encoding set all clauses C\, C^ as was done in (3)
there, we include only C\ if the replaced occurrence of A is positive, and C^ if
the replaced occurrence is negative. Instead of the predicates PA for non-atomic
formulas A we use PjjPj respectively for positive and negative occurrences.
Instead of the equivalence (1) we use implications

ΓA=(Pϊ(y}^A); /+=(A->P+(2/)) (21)

and put

) A is a non-atomic subformula having sign σ in F}.

Note that it is not necessary to introduce new predicates for all non-atomic
subformulas of F. For example one can treat literals as atoms, and encode
multiple disjunction or conjunction of literals by a single predicate. The same
is true for chains of negative quantifiers, for example for positive occurrences
of (3z)(3y) ^(Vz) or negative occurrences of VxVy ~(Bz) . . . , etc. Similar op-
timization for positive quantifiers would be possible if we introduced a special
resolution rule for chains of existence quantifiers.

We call the relation Zp K Pp obtained in this way (possibly with optimiza-
tion of the kind mentioned above) a standard encoding of the formula F.

Instead of the deductive equivalence stated in Theorem 1 we shall describe
a more close connection between derivations of F and its standard encoding
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ZF f~ PF Without loss of generality we consider closed formulas F since free
variables can be replaced by new constants.

Definition. Let d be a GK-derivation of the formula F. Then dc will be a
derivation of the clause form of F

dc : VZF h P+

constructed as follows. Replace each occurrence of non- atomic subformulas
A[x := t] as a member of a sequent in d by P^(t). Here x is the list of free
variables A which are bound in F, and σ is + if the replaced occurrence is in
the succedent (i.e., is positive in the whole sequent); if the replaced occurrence
of A[x := t] is in the antecedent, then put σ = — . Then add MZp to the an-
tecedents of all sequents of the resulting figure except the uppermost ones, and
make insertions to turn the figure into the derivation.

To simplify the description we assume that the formula A in any axiom
A => A of the derivation d is atomic. Then no insertion is made for thinnings.
Suppose that L is a logic inference.

1. L is =^~:
A[s;=*],jr-»r

X->Y,~A[x:=t]

By the steps already described it is transformed in the figure:

'

The presence of the positive occurrence of ~ A means that the list ZF
of clauses describing new variables introduced for encoding of the formula F
contains the clause P*A(x) V Pj(ίc), and so the antecedent X' above contains
its universal closure. Now we make an insertion transforming the figure (22) into
the following deduction:

Note that the leftmost sequent is an axiom.
2. L is ~=>:

X=ϊY,A[t]

Using the corresponding clause in ZF it is transformed into the following deduc-
tion:

p;Aw * f^(o , . ,
^

3. Now we list the results of transforming V -rules, assuming to simplify
notation that the (=» V ) rule has the form X =» Y, A / X => F, A V B. It is
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transformed into the deduction

X' => Y',PA(t) +

The rule (V =r>) is transformed into the deduction

4. The rule =Φ V:

is transformed into the deduction:

) p+ .. p+

,6) V

using clause Vx(3y)(~P^(z,y) V P^A(z)) and the rules (V =Φ ), (3 =>•). The
same proviso for the variable 6 is required in both cases.

5. The rule (V =φ ) is transformed similarly using clause VxVy(PA(x,y)V

6. The rules for 3 are treated similarly using clauses Va?Vy(P/t xΛ(aj)V

y)) and Vx(3y)(~P(3,)Λ(β) V PJ(*,y)).

This concludes description of the derivation c?c.

Let us describe a strategy for resolution derivation of the canonical encoding
which corresponds to Gentzen-type derivation of the encoded formula F. Recall
that each clause in the antecedent ZF of the standard encoding of F belongs to
a set Iσ

A for some non-atomic subformula A of F. So such a clause contains a
unique literal beginning with the predicate PJJ for σ = + or — . We call it the
leading literal of the clause.

The resolution inference

(3y)°(£ι V V £Λ); ~l( V A; . . . ~I'Λ V Dn

(Dl V .. V Dn)σ

with the nucleus (3y)°(Lι V ••• V Ln) from ZF will be called G-inference (or
G'Ttsolution) if the electron ~L\ V A corresponding to the leading literal of the
nucleus is a tautology ~L( V L\. In other words, the leading literal is in fact not
resolved in G-resolution, but preserved in the conclusion in the form L\σ, i.e.,
possibly with some substitution.
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THEOREM 1.8. Let d be a Off-derivation of a predicate formula F. Then:
(a) dc : Zp => Pp is a GK-derivation of the canonical encoding of F;

(b) GR(dc) : Zp H Pp is the derivation of the canonical encoding of F by
G-resolution.

Proof. Part (a) was verified in the definition of dc.
Part (b) immediately follows from the following facts.

(bl) In each (V =>)-inference in dc with the main formula being the result
of dropping quantifiers from a clause in ZF, the premise containing the leading
literal is an axiom for this literal. This is verified by inspection of the definition
oίdc.

(b2) If a premise of an (V =^)-inference in a GK-derivation d is an axiom
for some side formulas, then the corresponding electron of the resolution rule in
GR(d) is a tautology. This is verified by inspection of the definition of GR(cQ.
This concludes the proof.

Let us now prove that G-resolution is compatible with the hyperresolution
for the canonical encodings of Skolemized formulas F in positive normal form,
i.e., constructed from literals by V , &, 3. Without this latter restriction even the
encoding of ~~α V ~α:

(~α V ~n), n V d,aV d\~ d

with leading literals underlined, does not have a hyperresolution G-derivation.
The restriction to positive normal form is inessential for Skolemized formulas
since elimination of implication and moving negation inside is done in linear
time and preserves the structure of a formula.

THEOREM 1.9. Hyperresolution together with G-resolution is complete for
canonical encodings of formulas in positive normal form.

The proof uses the idea employed in Section 1.5 of Part I. Note that for a
formula F in positive normal form all leading literals from the clauses in ZF are
positive, since they correspond to non-atomic subformulas of ί1, and the latter
occur in F positively. We call a clause P V JV, where P (the positive part of
the clause) consists of positive literals and N (negative part) of negative literals,
to be essentially negative in a sequent S = (P V TV, X =>), if X contains as
separate clauses the negations of all literals in P. For example, in the sequent
α V b V c, ~α V b V c, ~6, ~c, b V ~d V ~e =ϊ the second clause and the last
clause are essentially negative, but the first clause is not. Our strategy (call it
essentially negative) allows us to apply V =Φ only with an essentially negative
main formula, i.e., to analyze in the process of the proof search only essentially

negative clauses.

LEMMA 1.10. Essentially negative strategy is complete for propositional

calculus.

Proof (reproduced from Part I). It is sufficient to prove that each provable

sequent X =£- where X is a list of clauses, either contains a complementary pair p,
~p, or contains an essentially negative clause of length > 1. Indeed, in the latter
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case we can apply (V =>) bottom-up according to our strategy and diminish the
length of the sequent. Assume for contradiction that X does not contain such a
clause. Then each clause C in X of length > 1 contains a positive literal pc such
that ~pc is not a member of X. Then the valuation making all pc true validates
all clauses of length > 1 and does not falsify any clause of length 1. Putting all
the latter true validates X, which contradicts derivability of X =Φ>.

Proof of Theorem 1.9. Let X be the contradictory set of clauses and d
be its derivation in GK according to essentially negative strategy. We show
that GR(c?) is an essentially negative derivation of 0 from X according to G-
strategy. Recall that any application of the rule (RP1) in GR(<f) results from
an (V =Φ*)-inference in the derivation d. To simplify notation, assume that all
(V =Φ>)-inferences in d are below all (~=r»)-inferences. This is easy to achieve by
simply moving (~=3»)-inferences up to axioms. So all sequents in d except axioms
have empty succedents. To fix notation suppose that Iq, . . . ,Ljb in (RP1) are
negative, and Lfc+i, . . . ,Ln are positive. Since d satisfies essentially negative
strategy, all premises of (RP1) containing positive side formulas //fc+i* ,Ln,
contain as well their complement, i.e., can be obtained from axioms in one step.
So one can assume that the only positive atomic members in the conclusion of
any (V =Φ>)-inference are initial clauses. Now we can write V =Φ in the form

~Lx V .. V ~£fc

so (RP1) is of the form ~Iα V V ~Lfc V Lfc+ι V - V Ln; LI V Z?ι; . . . Lk V
Dk] Lk+i V ~Lfc+ι; . . . Ln V ~Ln/D and dropping the last n — k tautological
premises we have the derivation by hyperresolution, in which all positive literals
in the nucleus are preserved. Lifting in the passage from GR'(d) to GR(cZ) does
not change this property, and this concludes the proof.

§2. Modal logic S4. In this and the following section we extend to modal
logic material from the Part I, i.e., [Mints, 17]. We begin with quantified S4,
i.e., with the result of adding to prepositional S4 the usual quantifier postulates,
which correspond to the semantics of growing domains. It is difficult to expect
that our methods will be applicable to systems with the Barcan formula (except
S5), since no cutfree Gentzen-type formulation is known for them.

2.1. Modal clauses. We again employ depth-reducing by introduction of
new predicate variables to transform any formula into clause form using the
equivalence

VD(A <-»£)-* (F[A] <-> F[B]) (I)

which holds in S4 and its extensions. In fact it is sufficient to write V only for
variables free in A, B but bound in F.

We define predicate literals as atoms and their negations and denote them
by /,/ ι , . . . . Modal literals are by definition expressions of the form /, D/, §1.
They are denoted by L,M, JV, LI, MI, JVΊ, ---- Complements are defined by

D~/ in a natural way.
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Predicate clauses are disjunctions of predicate literals. Modal clauses (or
simply clauses) are disjunctions of modal literals. Initial modal clauses are ex-
pressions of the form DVC or DV(Ξy)C where C is a modal clause or has a form
QD where D is a disjunction of predicate literals. To simplify notation we re-
quire that D contain at least two terms, but this is as inessential as in Section
1.1.

We proceed as in Section 2.1.

THEOREM 2.1. Let S be an extension of the system S4. Then for any
formula F one can construct (by introduction of new variables) the list Xp of
initial clauses and a propositional variable g such that

\-s F iff \-s

Proof. Exactly as in the proof of Theorem 1.1 introduce predicates PA for
non-atomic subformulas A and write clauses CA obtained from clauses in (2)
Section 1.1 by prefixing DVx. For example if A = (B & D} with non- atomic A,
£, we put

C\ = {DVj/(~PB(y)V ~PD(y) V PA(y)}}

C~A = {UNy(~PA(y) V PB(j/)),DVy(~PA(y) V PD(y})} (2&)

The definition is extended to D-case. If A = ΏB then we put

C+ = {DVy(~PB(y) V ΏPA(y))}

C-A = {DVy(0 ~PΛ(y) V PB(J/))} (2Π)

After this it remains only to repeat the proof of Theorem 1.1.
Since our modal systems are based on classical logic, it is easy to reduce

derivability of an arbitrary formula to inconsistency of a set of clauses, i.e., to
derivability of the constant 0 or empty clause.

COROLLARY 2.2. Under the assumptions of Theorem 2.1 provability of a
formula F can be reduced to inconsistency of a set of clauses.

Proof. Take XF, g as in Theorem 2.1 and put X'F = XF U {~g}.

Note. Further simplification is possible when additional reduction axioms
for modality are available. For example in S5 it is possible to consider only initial
clauses of the forms:

ΠV(/ι V - - V /m) (m < 3); ΠV(3y)(/1 V /2); V^ V L2) (2')

Indeed clauses corresponding to propositional connectives have the first of
the above forms, the quantifiers add the second of these forms and clauses (2π)
are equivalent in S5 respectively to

Vy(D ~PB(v) V DPΛ(y)) and VytO ~PA(y) V

2.2. Gentzen-type modal calculus GS4 Sequents are expressions of the
form X => Y where X, Y are (possibly empty) lists of formulas (in the language
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Π, V , ~). Axioms and inference rules for classical connectives and quantifiers are
the same as in GK (cf. Section 1.2).

Modal rules have the following form:

V ' ^ }

Pruned derivation is again one containing thinnings only immediately pre-
ceding the last sequent of the derivation. The proof of part (a) of the following
statement can be found in [Curry, 2]; the proof of (b) is standard.

THEOREM 2.3. (a) Formula F is derivable in S4 iff the sequent => F is
derivable in GS4.

(b) Any provable sequent has a p-inverted pruned derivation.

2.3. Resolution calculus RS4 Derivable objects of this calculus are modal
clauses

Ii V V L , (3)

where L\ V V Lp are modal literals, and we are interested in the derivability
relations X h C where X is a set of initial clauses and C is a modal clause.
Clauses from X are input clauses.

Axioms are initial clauses as well as L V ~L for modal literals L with the
obvious purity restriction.

There are five inference rules. The rules (ΛP), (RP^) are as in Section 1.4,
but the nucleus (3y)°Lι V V Ln of the rules (ΛP), (Λft) should be one of
the input clauses or the result of deleting DV from it. The rule

is to be applied only together with ΛP,
Various modal systems will differ mainly by additional rules for modalities.

These rules play the role somewhat similar to unification for the predicate logic.
The rules for S4 are the following:

O/ V D DJ V QD

Note that all rules are obviously valid for derivability from D-formulas in
S4.

2.4- Intertranslations between Gentzen-type and resolution systems. The
translation GR into GS4-derivations is defined for pruned Gentzen-type deriva-
tion d : X => g where X is a list of initial clauses and g is a prepositional variable.
We extend the definition from Section 1.3. Note that any sequent in d has the
form

X',Y=ϊY' (4)

where X' consist of the clauses in X and the results of deleting from them some
initial occurrences of D, V, i.e., of clauses ΏQD = ϋf(Lι V V in), n > 2. Y
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is the set of remaining antecedent members. Y and Y9 are lists of literals of the
form D/, /. We obtain GR(eQ by replacing sequents (4) by

~y v γ9 (5)
and adding necessary input clauses to construct correct inferences by ΛP, RP^.

Proceed by induction on d. Axioms are replaced as in Section 1.3. Consider
the last inference L in d. If L is V => apply the same transformation as in the
classical case, adding (Π~~) when necessary.

Let L be (D =Φ). If the main formula belongs to X1 , simply ignore the rule.
If it belongs to F, i.e., is of the form D/, then L is transformed into the rule (φ)
of RS4: ~/ V ~Y V Y'/Q~l V ~Y V Y1. If L is (=* D), then it is transformed
into the rule (D): 0~F V //<> ~Y V D/.

The definition of the transformation GR is concluded.
The definition of the transformation RG from a derivation in RS4, d : XF H

g, into the derivation in GS4 is modeled after Section 1.4.
We define for d : X h D and a given representation of D as D\ V ΏΊ (modulo

permutation of disjunctive members) the derivation RG(d, -Di, Zλ^) ' X' -, ~D\ =>
DΊ where ~D\ consists of complements of literals in D\ .

Definition of RG(c?) is given by induction on d. The main differences from
Section 1.4 are in the modal rules, and we treat only them. Let L be the last
inference of d. We proceed as in Part I.

Let L be D~ : D-D/-D. Here we could use the fact that ΏD =ϊ D is derivable
by (D =Φ-). This introduces cut, so we proceed slightly more cautiously. If D-D is
initial, we obviously have -D, ~D\ => jD2, and use D =£•. If ΏD is not initial, then
D is a literal, and dropping D from all predecessors of D-D in a given Gentzen-
type derivation of X => D-D we have a derivation of X =>• D where some axioms
C V ΏD => C V D-D are replaced by C V ΏD => C V -D, but these are easily
derivable.

Let L be (0): / V C / <>/ V C. Then it is transformed into => 0 if / is in D2,
or into D => if / is in D\ according to given partition §1 V C = DI V -D2.

Let L be (D). It is transformed into => D or 0 =^ Proviso for antecedent
members is satisfied, since all initial clauses begin with D.

The description of RG(d) is finished.

THEOREM 2.4. (Soundness and Completeness Theorem.) Let F be a modal
formula, and XF is as in Theorem 2.1.

(a) ltd : XF =» g is the derivation in LS4, then GR(d) : X'F h g (or XF H 9)
is a derivation in RS4, where X1 is a sublist of XF

(b) Ifd:XF\- 9 (or XF h 0j in RS4 then RG(d) : XF => g is the derivation
in GS4.

Proof, (a), (b) were established during the definitions of GR, RG, and (c)
follows from (a), (b), and Theorem 2.1. Q.E.D.

§3. Modal logic S5. Since cutfree Gentzen-type formulations are known
for the quantified systems T, K4, and K, there seems to be no difficulty in
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extending to them the formulations and results of Section 4 along the lines
of Part I (more precisely Section 4 of [Mints, 17]). For the quantified S5 the
situation is different from the prepositional case, where there exists a cutfree
formulation complete for modalized formulas [Shvartz, 18] which was used in
Part I, as well as a formulation with analytic cut complete for all formulas. The
best existing approximation to a cutfree system is the formulation in terms of
systems of sequents (semantical tableaux) due to Kripke [6] and Kanger [3]. The
formulation of Mints [12] in terms of systems of sequents is essentially equivalent.
We present here the modification of our approach suitable for this situation. The
general schema is as before: the resolution derivation is obtained by moving the
atomic part of the Gentzen-like derivation in the succedent, but now the original
objects are more complicated, and this will be reflected in the more complex
structure of clauses.

1. System TS5 of semantic tableaux for S5. We describe a system TS5
which is similar to system LS5 in Mints [12]. The main difference is that the
sequents will now consist not only of a succedent, as in LS5.

Let a tableau be any expression of the form {S} where 5 is a sequent. The
expression { } is treated as the constant false. Capital Greek letters Γ, Π, Φ etc.
stand for sequents.

Arbitrary lists of tableaux are called systems (of tableaux) and denoted by
5, T, 17, V etc. We disregard the order of tableaux in a system.

The non- modal postulates (i.e., axioms and inference rules) of the system
TS5 will be essentially the same as in GK. More precisely they will be obtained
from the corresponding postulates of GK by adding arbitrary tableaux. Modal
rules correspond to the Kripke semantics of S5-modality.

We shall ignore the order of members in a tableau and the order of tableaux
in a system.

The translation of a tableau {Aι,.. .,Λ n =>• #ι,...,#m} is a formula
D(~ AI V V ~ An V BI V V Bm). The translation of a sequent is the
disjunction of translations of its member tableaux.

Axioms: {A =ϊ A}
Inference rules:

{X =» y,A, V -. . V An},S m<n {X',X => Y,Y'},S,S'

(

({A, V VAn,X=>Y},S

where Xι U U Xn - X, YI U U Yn = Y and Si U U Sn = S, i.e., each of
the tableaux Si is obtained from S by deleting whole tableaux and/or members
of tableaux, and each formula in S is retained in at least one of the Si.

{A(x:=t},(VxA)°,X^Y},S {X =» Y, A[x := b]},S
k ; ^Y},S {X=ϊY,VχA},S ^ '
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with usual proviso for (=^ V),(Ξ =^): the eigenvariable 6 does not occur free in
the conclusion.

{M,X^Y},S v ' {X^Y,M},S

where M is a modalized formula.

v ' {ΏA^},{X=Ϊ:

(0 ̂ } {OA^},^ {=*VΦA},\X * Y}?S (=

Π)

Comments. During the proof search process (or in the derivation viewed
bottom-up) new tableaux in the system arise only in the rule (M), but they are
used in an essential way only in the rules (=> D), (φ =0- The tableaux in the
system correspond to different worlds in the Kripke model. The rule (M) says
that a modalized formula has the same value in all worlds. The rules (D =Φ>)
and (=> φ) express that if ΏA is true (QA is false) in some world, then A is true
(false, respectively) in any world.

Example 1. Let us derive the Barcan formula.

(P(α) =» P(q)}

{Vα;DP(x)=»},{Va:P(x)}

=»

The main step is the third one, where (if we view it bottom-up) the indi-
vidual a from the second world appeared in the first world, i.e., the symmetry

of the accessibility relation between worlds was implicitly used.

Equivalence of TS5 to more familiar formulations is easily established by

reference to [Kripke, 6] or [Mints, 12], and we shall not go into details of this.

S.2. Resolution calculus RS5. According to Note 1 in Section 2.1 each
formula F can be reduced in S5 to the sequent Xp =^ g where Xp is a list of
clauses of the form 2.1(2'). Using the Barcan formula to interchange D and V,
and dropping initial V we can put them into the form:

(/i V - . . V /m), m < 3; (3y)(/! V /2); L, V L2 (1)

where L\,Lι are modal literals containing D or φ.
Let us call (1) initial clauses, and define modal clauses (for S5) to be dis-

junctions

V ." V ΏDn V <>£>n+ι (2)

where each of the Di is the disjunction of predicate (non-modal) literals and

0(/ι V . . « V Ik) is understood as φ/i V V QIk and D0 = 00 = 0. We disregard
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as before the order and repetitions of terms in disjunctions. Note that these

objects are more complicated than modal clauses for S4 as defined in Section 3.
Let us describe a resolution system for relations X h C, i.e., for deriving

modal clauses C from the set X of initial clauses. The clauses from X are input

clauses.
Resolution system RS5.

Axioms: Input clauses, D(7 V ~/), L V ~L for modalized L with purity

restriction.
Inference rules are (-RP), (RPl) in each disjunctive member of (2) and S5-

modal rule. More precisely:

D(/ι V V fn); PHI V 0ι ) V £ι; D« V Dn) V Dn

Ώ(D1 V'.' VDn}σVD

where σ = MGU(/ι, /J; . . . /n, /JJ, £ Ξ I^σ U U£nσ, as well as a (Lα V L2)
version:

L! V L . -LΊ V£»ι;~I/2 V £>2

(A V 02)σ

0(3y)(/ι v /2);D(-//

1 v A) v £ι;α(^ v

where σ = MGU 3(/ 1,/i;. . .;/ n,O, :D =

^ V O/ V DD V £

Factorization rule (F) is as usual.

Example 2. p -» ϋ<)p.

Introducing variables x for Op? 2/ for Πz? z for p —> y and using reduction
to a clause form taking signs into account, we have the problem:

(1) D~p V Dz,(2)0~z V Dy,(3)D(~y V *),(4)D(p v z) h Dz

The derivation (by semi-input resolution is as follows.

D ~p V Dx 0 ^x V Dy

D(p V z) D ~p V Dy

D(^y V z) D^ V Dy

U2r V Ώz = D^

Example 8. Barcan formula. Introducing the variable p for VxPx we have
the problem

which is solved in one step of (RP^).

The description of the algorithm GR translating TS5-derivations into RS5-
derivations is by now standard. Delete from the given derivation all modalized
formulas which are not literals, move modalized literals into separate tables and
replace each system
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by the clause

D(~*! V Z O V V D ί - X n V Z n )

where D is not prefixed if a table consists of the only modalized formula.
Then the rule (V =>) is transformed into (a modal version of) (RP1) or

(ΛPg) (cf. Section 1.3) depending on the initial clause which is an ancestor of
the main formula of the (V =») considered. The rules (D =φ), (=Φ> φ) having a
modal literal as main formula are transformed into (D —> φ). After this, lifting
is applied as in Section 1.3 to assure the standard form of the rules.

Combined with soundness of the rules for RS5 this establishes the following.

THEOREM 3.1. The system RS5 is complete for S5-derivability of relations
V-X" h C where X is a list of initial clauses and C is a modal clause (modulo
subsumption).
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