
NEW FOUNDATIONS FOR MATHEMATICAL THEORIES

JAAKKO HINTIKKA

§1. The motivation. In this paper, I shall outline a new approach
to the logical foundations of mathematical theories. One way of looking at its
motivation is as follows (I am following here Hintikka, 1989):

In the foundational work around 1900, e.g. in Hubert's Foundations of
geometry, a crucial role was played by assumptions of extremality (i.e., mini-
mality and maximality). For instance, Hubert's so-called axiom of completeness
is a maximality assumption. The Archimedean axiom can be thought of as a
minimality assumption, the principle of induction likewise as a minimality ax-
iom, and Dedekind's assumption of the existence of a real for each cut as a
maximality assumption. Slowly, it has become clear to everybody that such
extremality assumptions cannot normally be expressed as ordinary first-order
axioms. To what extent they can or cannot be expressed in other ways, e.g. as
higher-order axioms or set-theoretical axioms, and to what extent we should try
to express them in such ways, will not be discussed here. In any case, in spite
of the tremendous prima facie interest and power of extremality assumptions,
they have not attracted much interest lately.

The approach proposed and outlined here relies crucially on extremality
assumptions but seeks to implement them in a new way on a first-order level.
Instead of introducing extremality assumptions on the top of a ready-made logic
as explicit axioms, I propose to build them into the very logic we are employ-
ing, thus by-passing the difficulties the earlier uses of extremality assumptions
encountered.

A logic is in effect specified by a space Ω of models together with a def-
inition of what it means for a statement (closed formula) to be true in a model
M G Ω (and for a formula to be satisfied with in M). I shall not modify the
latter ingredient. Instead, I propose to modify the usual space of models (of a
given first-order language L) in the simplest possible way, viz. by omitting some
of its members.

Even though this kind of modification looks innocuous, it facilitates a
radical new look at the prospects of mathematical and logical theories. Most
importantly, the possibility of reaching completeness can be profoundly affected.

What are the different kinds of completeness relevant here? Here are four
candidates, which have not always been distinguished from each other sufficiently
clearly:

(1) Descriptive completeness. It is an attribute of a non-logical theory. It
means that the theory has as its models only the intended (standard)
ones, i.e., that it has no non-standard ones. If there is only one standard
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model, a descriptively complete theory must be categorical. Here the
notion of standardness has to be characterized independently.

(2) Semantical completeness. It is a property of an axiomatization of (some
branch of) logic. It means that the theorems of the axiomatization exhaust
all valid formulas, where validity means truth in all the models of the space
Ω. Thus semantical completeness amounts essentially to the recursive
enumerability of the set of valid formulas.

(3) Deductive completeness. It is a property of a non-logical axiom system
together with an axiomatization of logic. It means that, for each statement
C, either C or ~C can be derived from the (non-logical) axioms by means
of the given logic.

(4) Hubert's so-called axiom of completeness is in effect a maximality assump-
tion in a non-logical axiom system. While Hubert's own intentions are not
clear, this axiom can be taken to say that one cannot add new individuals
to a (standard or intended) model without violating other axioms.

What happens when the space of models Ω is replaced by some Ω* C Ω?

(1) Descriptive completeness becomes ceteris paribus easier to reach since
some (or all) of non-standard models in Ω may belong to Ω — Ω*.

(2) Since there are fewer models, there are ceteris paribus more valid
formulas (i.e., formulas true in all of them). Hence semantical completeness can
become more difficult to achieve.

In other words, by moving from Ω to a suitable Ω* (Ω* C Ω) we can
trade in the semantical completeness of our underlying logic in order to achieve
the descriptive completeness of suitable mathematical theories. I have argued
elsewhere that this would represent a major gain in philosophical and conceptual
clarity. (See Hintikka 1989.)

For example, Gδdel showed elementary arithmetic to be incomplete in
the sense (3) (deductive incompleteness). From this it does not by itself follow
that elementary arithmetic is descriptively incomplete. This does follow if the
underlying logic is complete, which Gόdel had proved (for first-order logic) prior
to proving the the incompleteness of elementary arithmetic. However, if we
are willing to change this logic (strengthen it) so as to render it semantically
incomplete, we can very well hope to reach a descriptively complete first-order
theory of arithmetic. This in fact turns out to be possible.

More generally, by means of suitable extrerhality restrictions on models,
it will turn out to be possible to formulate categorical first-order axiom systems
inter alia for elementary number theory, the theory of reals, Euclidean geometry,
and the second number class (countable ordinals). (See §5 below.)

(3) Deductive completeness, being a kind of combination of descriptive
and semantical completeness, is not necessarily affected by any trade-off between
the other two kinds of completeness (l)-(2).

(4) The restriction of the space of models to a suitable subset serves the
same purpose as the axiom of completeness, and is supposed to replace any such

explicit axiom.
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§2. Model theory via constituents. The crucial question obviously
is how the ideas of minimality and maximality can be implemented in precise
and general terms. Since we are speaking of the minimality and maximality of
models (or parts thereof), the obvious resource here is the theory of models. I
shall review some of the basic ideas of model theory, but for the sake of certain
further developments I shall do so in an unfamiliar way. I shall use in the review
the technique of constituents and distributive normal forms. Even though this
technique may in the last analysis be dispensable in favor of more commonly
employed conceptualizations (e.g. back-and-forth techniques), it offers heuristic
advantages by allowing an almost geometrical (tree-theoretical) visualization of
the logical relationships under scrutiny in this paper.

An approach to model theory via constituents leads us straight to the field
of stability theory. However, it is in fact quicker and much more perspicuous to
develop the necessary theory directly here without going by way of stability
theory. (For stability theory, see e.g. Baldwin, 1988.)

In what follows, it is assumed that we are dealing with a given first-order
language L with a finite list of predicate constants, no function symbols, and
an unspecified supply of individual constants. I shall deal only with languages
without identity. It turns out that the presence or absence of identity does not
matter very much for the central purposes of this work.

A constituent L with the free variables x\ , £2, , %k will be expressed as
follows:

(2.1) cW[Xl,x2,...,xk]

It is a well- formed formula which has a number k of arguments X ι , X 2 » ->χk
and it is also characterized by its depth d. The subscript i serves to distinguish
different constituents with the same arguments and with the same depth from
each other.

Constituents can be defined recursively as follows:

(2-2)

is of the form

(2.3)

where the Aj[x\ , a?2, . . . , £*], j £ J, are all the different atomic formulas that can
be formed from the predicate constants of L and of x\ , x2 , . . . , x k , and where each
(±j) is either ~ or nothing, depending on j.

(2-4)

is of the form

(2.5)

[y,*ι,*2,. .-,**] & (Vy) V Cffe/,*,,^,. .. ,xk]
j€J

& Cl0)[Xl,x2,...,xk}.
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Here the last conjunct is simply some one constituent without quantifiers with
x\, #2? - , %k as its only free individual symbols. The index set J is a subset of
the set of the subscripts of all the different constituents

(2.6) C^Hy,xι,X2, - ,£*]•

Intuitively, a constituent like (2.5) of depth d + I tells us what kinds of
individuals there exist (in relation to x\, #2? > #fc) and do not exist. The latter
is accomplished in the universally quantified disjunction of (2.5) by saying that
each individual must be of one of the kinds listed in the first of the three conjuncts
in (2.5). Here the "kinds of individuals" are in turn specified by constituents
(2.6) of a lesser depth d.

Each constituent (2.5) thus has a tree structure where the nodes of this
labeled tree are constituents of increasingly smaller depth each occurring in its
predecessor. Intuitively, each branch of such a tree describes a sequence of d + 1
individuals that you can find in a model of L in which (2.5) is true. The tree
structure show how the initial segments of such sequences limit their possible
continuations.

In a sense, a constituent thus presents an explicit description of certain
salient structural features of a model M in which it is true. The constituent tells
you which (ramified) sequences of individuals (up to the length d + 1) you can
hope to find in a model in which it is true.

In this work, the term "constituent" will also be applied to substitution-
instances of (2.4) with respect to the individual constants of L, i.e., to formulas
like

(2.7)

or

(2.8)

If identity is present in i, the definition of a constituent can be changed
as follows: (2.2) is now of the form

(2.9)

and (2.5) is now of the form

(2.10)

m=k

m=l j€J

What this means is that in the presence of identity constituents can be
written precisely in the same way as in the identity-free case provided that an
exclusive interpretation of quantifiers and free individual variables is adopted.

In the rest of this paper, I shall assume that identity is not present.
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The concept of ( quant ificational) depth of d(S) of a formula S can be
defined for arbitrary formulas as follows:

(d.i) If there are no quantifiers in 5, d(S) = 0.
(d.ii) d(Sι & 52) = d(Sι V S2) = max[d(5ι),d(S2)]

(d.iii) d(~S) = d(5)
(d.iv) d((3x)S[x}) = d((Vx)S[x}) = d(S[x}) + 1

It is easily seen that this definition agrees with the way the notion of depth was
used in connection with constituents.

In discussing the identity of constituents we shall consider (i) the order
of disjuncts and conjuncts, (ii) the choice of bound variables, and (iii) possible
repetitions of identical (modulo (i)-(ii)) members as inessential. If this idea is
used in the numbering (indexing) constituents we can prove the following:

LEMMA 2.1: Hi j,

(2.11) C [ x 1 , x 2 , . . . , x f c ]

This is easily proved by induction on d. It is also obvious on the basis of
the intuitive meaning of constituent.

We can also prove

LEMMA 2.2: If S is a closed formula of L of depth d, then for each i
either

(2.12) C\d} h 5

or

(2.13) C\d} h ~S.

This, too, can be proved by induction on d.
The same can be proved for formulas S[#ι,z2,. . . ,#*] and constituents

\ , £2, . . . , Xk] having the same free variables x\ , #2, . . . , x*. We shall call
this result Lemma 2.3.

In particular,

LEMMA 2.4: For each constituent of the form

(2.14) Cίd+1)[*ι,*2,...,*fc]

there is precisely one constituent

(2.15) Cj%,*2>. ..,**]

such that (2.14) logically implies (2.15). For other values of j, (2.14) logically
implies the negation of (2.15).

In the former case (2.15) can be obtained from (2.14) by omitting it from
all constituents of depth 1, together with connectives that thereby become idle,
and all repetitions. It is obvious that the result is implied by (2.14).

What Lemma 2.4 says is in effect that you can omit the last layer of
quantifiers from any constituent and obtain a shallower one which is implied
by the original. In fact you can omit any one layer of quantifiers in a given
constituent.



FOUNDATIONS FOR THEORIES 127

Together Lemmas 2.1-2.4 entail

LEMMA 2.5: Each consistent formula S^[xι , z2, . . . , Xk] of depth d with
the free variables x\ , x2 , - , %k is logically equivalent with a disjunction of con-
stituents of the form

Not only can we omit layers of quantifiers from a constituent; we can
likewise omit arguments from it.

LEMMA 2.6: Given a consistent constituent

(2.16) Cί*[*ι,*2,. ..,**],

consider the constituent

(2.17) Cί%,*2,.. ,**-!,{**}]

obtained from (2.16) by omitting from it all atomic formulas containing xk, all
connectives which thereby become vacant, and all repetitions. Then (2.17) is the
only constituent of the form

(2.18) C«[xι,:r2,...,*fc-ι]

which is implied by (2.16).

Proof: It is again obvious that (2.16) implies (2.17). If it implied any
other constituent of form (2.18), it would be inconsistent by Lemma 2.1.

Several of the basic concepts of model theory are easily and naturally
defined by reference to constituents.

A consistent sequence of constituents

(2.19) C|(
dj)[x1,x2,...)xfc]

with a fixed k (k > 0), but with an ever increasing d = 1, 2, 3, ... defines a fc-type.
It is easily shown that this definition is equivalent with the usual one, according
to which a fc-type is the maximal consistent set of formulas with £ι,a?2> >#*
as their only free variables.

When fc = 0, we have a sequence of closed constituents

(2.20) Cyd) (d = l,2,...)

From Lemma 2.5, it is seen that (2.20) defines a complete theory, and that each
complete theory can be represented in this way.

Notice that each fc-type (2.19) implies a unique complete theory (2.20).
For each member of the sequence (2.19) implies a unique constituent without
any individual constants in virtue of Lemma 2.6. Those types (2.19) which so
imply (2.20) are the only ones consistent with (2.20).

The fc-type (2.19) is compatible with the complete theory iff constituents
(2.19) all occur in the successive members of (2.20).

The types compatible with (2.20) will be called the types of the complete
theory (2.20). Each type satisfied in a model of (2.20) is a type of (2.20), but
all the types of (2.20) need not be satisfied in a given model of (2.20). The
question as to which of them are satisfied is one of the central ones in model
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theory. Different kinds of models are distinguished from each other by the types

that are satisfied in them.
One particularly useful result concerning constituents is the following:

LEMMA 2.7: Given a complete theory (2.20), a model M of (2.20), and
a constituent C (or a substitution instance of a constituent containing names of
members of dom(M)), if C is compatible with the set of sentences true in M,
C is satisfied in M. For constituents without names, it suffices to assume that
they are compatible with TJι(M).

We can here perhaps see some of the advantages of the use of constituents.
All the lemmas of this section can be seen to be valid directly on the basis of
the import of a constituent. (Cf. the explanation of the meaning of the tree
structure of a constituent given above.) Lemma 2.7 is a case in point, though
perhaps slightly less obvious at first than the earlier lemmas.

Other results can likewise be read off from the intuitive meaning of a
constituent, albeit not equally directly. As an example of such a result, we can
mention the following result off almost immediately from the intuitive meaning
of a constituent in the following:

LEMMA 2.8: Assume that

(2.21) Cf^αα^,...,^]

is compatible with

(2.22)

Then (2.22) implies

(2.23)

Proof (informal): In exploring a world in which (2.22) is true, we can
come upon x\ — α\,X2 = α^, . . . , x^ = α& in this order. If (2.21) is likewise true
in the same world, as it can be if (2.21) and (2.22) are compatible, the rest of

the world is described by C\ [αi, 02, . . . , α*].
This lemma holds by the same token if there are additional free variables

or constant parameters in (2.21) and (2.22).

Many of the well-known results in model theory are proved easily and in
a perspicuous way by means of constituents. As an example of the use of con-
stituents to systematize old results and to obtain new ones, Rantala's monograph
Aspects of definability (1977) can be mentioned.

More illustrations of the use of constituents are offered in the next few
sections.

§3. A wrong implementation of the extremalίty idea. At this
point, it might seem to be easy to implement extremality conditions on models.
The natural way to interpret our extremality requirements is to say the following:
A model is minimal iff as few kinds of individuals as possible are instantiated in
it; a model is maximal iff as many kinds of individuals as possible are instantiated
in it. Then the prima facie plausible idea is to take the concept of type defined
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above as the explication of the pre- theoretical idea of a kind of individuals (or
a kind of fc-tuples of individuals). Then the question raised at the end of the
preceding chapter (Which types are satisfied in a model?) would become highly
relevant to the extremality project.

What can we say by way of a response to this suggestion? In order to
answer the question, we need a few further concepts. It may happen that the
fc-type

(3.1)

compatible with the complete theory Tj

(3.2) C$) (d = l,2,...)

stops branching from some point on. Then there is an initial segment of (3.1)
such that only one continuation of it is compatible with (3.2). Such a type is
called atomic in Tj = (3.2).

It may happen that each initial segment of each fc-type (for each fc) com-
patible with (3.2) is consistent with an atomic fc-type. Then the entire complete
theory (3.2) will be called atomic.

Clearly, each atomic fc-type compatible with (3.2) must be satisfied in
each model of (3.2). The interesting question is whether any other types need
to be satisfied. This question turns out to be more complicated than one might
first suspect, A model M is called atomic iff each fc- tuple of the elements of
the domain dom(M) of M satisfies an atomic fc-type. A partial answer to the
question just posed is given by

LEMMA 3.1: A complete theory has a countable atomic model iff it is
atomic.

In the other direction, there are models M such that each fc-type, for
each fc, compatible with the complete theory Th(Af) true in M, is satisfied.
Such models are called weakly saturated.

A related requirement is the following: Suppose a fc-type ti [xι , x% , . . . , Xk]
is compatible with a (fc + l)-type t^xi^i, ,£fc,#fc+ι] in Th(M) and that
αi , α2 , . . . , αjt € dom(M) satisfy t\ [aι , α2 , . . . , α*]. If there always exists α t+i €
dom(M) such that αι,α2, . . . ,αfc,α*+ι satisfy ^2(^1 ̂ 2? ,αfc?αfc+ι]> then a
weakly saturated model M is called saturated.

Saturated models are interesting "special models." It is not difficult to
prove that any consistent complete theory has such a model.

Atomic models are — or seem to be — minimal models in some reasonable
sense, and saturated models seem to be maximal models in an equally clear
sense. The idea is this: It seems that 1-types constitute the finest partition
of individuals into different "kinds" that can be affected by first-order means;
and mutatis mutandis for fc-types with fc > 1. Hence it seems that the poorest
models one can characterize by first-order means are the ones in which only
those "kinds" (i.e., types) are exemplified which must be satisfied in any case,
i.e., atomic models. Likewise, it appears that the richest models that can be dealt
with on the first-order level are the ones in which all the different "kinds" (i.e.,
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types) are instantiated, perhaps with the proviso that these types are instantiated
so as to allow all possible steps from fc-types to (k + l)-types. In other words,
the richest models seem to be weakly saturated or perhaps saturated models.

In brief, the concepts of atomicity and saturation seem to be the natu-
ral explications of the ideas of minimality and maximality that are guiding my
thinking. Yet they do not do this job well at all. Extremality requirements so
interpreted do not allow us to capture the intended (standard) models in the
interesting cases.

For instance, we cannot in this way capture naturally the intended "stan-
dard" model of Peano arithmetic. On the contrary, it is known (see, e.g., Chang
and Keisler, Example 3.4.5) that any consistent complete extension of Peano
arithmetic is an atomic theory and hence has atomic models. This holds also
for complete theories not true in the intended structure of natural numbers.
Hence the atomicity requirement does not do the job of capturing the structure
of natural numbers.

Another example is offered by the (first-order) theory of dense linear order.
It has a model which has the structure of the rationale. This model is at the
same time an atomic model and a saturated one. But it is not really a minimal
model in some intuitive sense, for you can omit elements from it and yet preserve
its status as a model. It is not really a maximal model, either, in some striking
sense, because it can be embedded in a richer one, viz. the structure of the reals,
which is not isomorphic with it.

The notions of atomicity and saturation of course do not exhaust the
resources of contemporary model theory. For instance, there is the notion of
prime model.

DEFINITION: A model MQ of a theory T is a prime model iff it can be
elementarily embedded in every model M of T.

Prime models might look like plausible candidates for the role of a minimal
model. However, on a closer look even the notion of prime model is not an
adequate explication of the idea of a minimal model. For one thing, the way this
notion is usually introduced is not useful to us as such. What we are looking
for are some intuitive structural characterizations of minimality and maximality,
and the notion of primeness does not give us such a characterization.

When I say this I mean the following: What made the idea of atomicity
so appealing is that there is a clean syntactically definable notion of a kind of
individual which enabled us to speak of a model in which a minimum of such
"kinds" were instantiated. More generally, what we are looking for are charac-
terizations of a minimal model M in terms of the constituent representation of
the complete theory Th(M) true in M. For the constituent representation is
in some obvious sense an explicit description of the most easily understandable
features of the structure of M. In a sense, therefore, we want to have a charac-
terization of minimality whose applicability can so to speak seem directly from
the theory Th(M). Now it surely cannot be seen directly from model M itself
or from the theory Th(M) whether M can be embedded elementarily in certain
other models.
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Of course, another way of defining primeness might do the trick. But the
most prominent alternative characterization of a prime model, viz. to character-
ize it as a countable atomic model, does not fare much better. From a theory it
is very hard to see directly what the cardinality of its several models might be.

Moreover, the notion of prime model is subject to most of the same ob-
jections as were marshaled above against atomic models as implementations of
minimality. For instance, even though the structure of natural numbers N is the
unique prime model of the Peano arithmetic, it is not the prime model of all the
consistent extensions of this arithmetic, viz. of those which are not true in N.

The most flagrant source of dissatisfaction is the fact that a prime model
of a complete theory might be elementary equivalent with a proper submodel
of itself. An example is offered by the theory of dense linear order, where a
prime model, for instance, the structure of the rationale, could obviously be
elementarily equivalent with its proper submodel. Hence prime models are not
always minimal models in any intuitive sense of the word.

§4. Super models. The explanation of the failure of special models to
implement the extremality idea is not very hard to see. Types are not the right
explication of the idea of "kinds of individuals" existing in a model M. A type,
say a one-type, characterizes a kind of individual in so far as this individual is
considered alone. In order to catch full the idea of a kind of individual, we have
to consider them also in relation to the other individuals in the model.

This refined idea of a "kind of individual" can be captured by means of
the following definition:

Let M be a model and let αi, «2 ? be a sequence of members of the
domain dom(M) of M. Let

(4-1) Cίg ιt)[x,α1,α3,...,αfc] (d= 1,2,..., fc = 0,1,2,...)

be a (double) sequence of mutually consistent constituents compatible with
the complete theory Th(M) true in M. Assume also that the constituents

Ct /d ^J{x},αι,α2,... ,αjt] are all true in M. Then (4.1) is said to define su

pertype in A = {a\, 02? } relative to M.
The justification of formulating the definition of a supertype in this way

is that the theory defined by (4.1) clearly does not depend on the order of the
αι,α2,...

The corresponding sequence with individual variables instead of con-
stants, i.e.,

(4.2) C$tk)[x,yι,y2,...yk]

can be called the structure of the supertype (4.1), alias a supertype structure.
Many of the same things can be said mutatis mutandis of supertypes as

can be said of types. For instance, the supertype (4.1) is said to be atomic iff it
stops branching after a certain point. More explicitly, (4.1) is atomic iff it has a
member

(4.3) Cg)fc)[a:,α1,α2,...,αfc]
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such that for any e and any GI, c2,... c/ £ dom(M) there is only one constituent
of the form

(4.4) CJd + e )[a:,α1,α2,...,αA:,c1,c2,...c /]

compatible with (4.3).
One of the basic properties of supertypes is the following

LEMMA 4.1: Given M and a supertype (4.1) compatible with the com-
plete theory Th(M) true in M, each member of the sequence (4.1) (and hence
each initial segment of (4.1)) is satisfied in M by some individual b, i.e., there is
b £ dom(M) such that

(4.5) M\=C$!k)[b,αϊ,α2,...,αk].

This follows clearly from Lemma 2.7.
Hence in a sense each initial segment of each supertype compatible with

Th(M) is satisfied in M. The only open question is whether the entire supertype
is.

From what has been said it follows that each atomic supertype is satisfied.
Assume now that (4.1) defines an atomic supertype in M and that

(4.6) Cje

)

)0[x,α1,α2,...,α/]

is the member of (4.1) after which (4.1) no longer branches. We shall say that
(4.6) determines the atomic supertype. Let us also assume that Th(M), repre-
sented in the form (3.2), is the complete theory true in M.

One the assumptions just stated, we have

LEMMA 4.2: Let

(4.7) Cf+/)[x,a1,a2,..., «,,&!, 6 2,. . ., δm]

be any constituent compatible with (4.6) and Th(M). Then we must have j =
i(e + /, / + m), i.e., (4.7) must be a member of (4.1).

Proof: This is what it means for (4.1) to stop branching at (4.6).

LEMMA 4.3: On the same assumptions, each member of (4.1) later than
(4.6) is equivalent with all of its successors, given Th(M).

Proof: Each member of (4.1) is implied by its successors by Lemmas 2.4
and 2.6. Hence what we have to prove is that it implies them, given Th(M).
For this purpose, it suffices to show that (4.6) is not compatible (together with
Th(M)) with any other constituent of the form

(4.8) (7Je+/)[x, αi, α2, - , α/, yι, 2/2, - •, 2/m]

In order to see this, let (4.8) be compatible withTh(Af) and (4.6). Then
by the same reasoning as in Lemma 2.7, there are δι,62,...,6m € dom(M)
such that (4.7) occurs in some supertype (4.1) of M. But if so, by Lemma 4.2,
j = i(e + /, / + ra), in other words, there is only one constituent of form (4.8)
compatible with Th(M) and (4.6).
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LEMMA 4.4: If Th(M) implies that, in a sequence like (4.1), each mem-
ber is equivalent with its successors from (4.6) on, then (4.6) determines an
atomic supertype.

Proof: If (4.6) is equivalent with each if its successors, say (4.7) with
j < i(e + /, / + m), then by Lemma 2.1 it is incompatible with (4.7) with any
other j. In other words, (4.1) can be continued from (4.6) in only one way, i.e.,
(4.6) determines an atomic supertype.

THEOREM 4.1: On the same assumptions as in Lemma 4.2,
(4.9)

Th(M) h (4.6) D (Vy1)(Vy2).. (Vym)Cje+
/

/

)

|/+ro)[x,α1,α2,...,α/,y1,y2,...,ym]

Moreover, if (4.9) holds for all F, M, (4.6) determines an atomic supertype.

Proof: From Lemma 4.3 we have

(4.10) Th(M)h((4.6)DC(

(

e

e+/J+m)[x,α1,α2,...,α ί,61,62,...,δm])

From this (4.9) follows by first-order logic.
Conversely, if (4.9), then (4.6) implies (given Th(M)) all its successors.

By Lemma 4.4, it determines an atomic supertype.

THEOREM 4.2: On the same assumptions

(4.11) Th(M) h (Vz!)(W2) - - (V*,)(C£ey*, Zl , *2, . . . , *,] D

(Vyι)(Vy2) (Vy m )C 4

f

/ )

/ + m [χ, zl , z2, - - , */, yi , y2, - - , y™])

Conversely, if (4.11) holds, (4.6) determines an atomic supertype, provided that
(4.6) is true in M.

Proof: In the same way as in Theorem 4.1.

THEOREM 4.3: Assume that (4.6) determines an atomic supertype.
Then the same supertype structure is determined by a constituent of the form

(4.12) C{e+0[x].

Proof: Consider

(4.13) Cje+'/

)

!/)[x,α1,α2,...,αi].

By Lemma 4.3, (4.13) is equivalent with (4.6), given Th(M). The formula

(4.14) C J+.'>I)[x,{α1},{αa},...,{α/}]

is of the form (4.12), and in fact can serve as (4.12).
In order to show that this is what we want, it suffices in virtue of Lemma

4.4 that for each / and m there is a constituent of the form

(4.15) C'(e+l+Λ[x,y,,W,...,ym]

implied by (4.14), given Th(M).
Now, in virtue of Lemma 2.8, (4.14) implies

(4.16) (3zj )(3z2) (3zi)c%tt)[x, z, , z2, . . . z,].
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In virtue of Lemma 4.3, there is a unique constituent of the form (4.15)
implied by Th(M) and

(4.17) Cf^li,*!,**,...,*,].

But there obviously is such a unique constituent implied by Th(M) and (4.14).
Results like Theorem 4.3 are interesting in a wider perspective. At first

sight, it might seem that the switch from special models to superspecial models
destroys the strategic advantages offered by concepts like type and atomicity.
The crucial thing about them is how they help us to read off (as it were) the
structural (model-theoretical) properties of the models of a theory, especially a
complete theory, from the syntactical structure of this theory. The way in which
the atomicity of a model of a complete theory hangs together with the structure
of types in the constituent representation of this theory is a typical example of
this strategy.

It might seem that the way supertypes are defined deprives us of the use of
this syntax-to-models strategy. For supertypes are defined by reference to some
given model. Hence it seems circular to study supertypes and their interrelations
for the purpose of gaining insights into the structure of models.

What the theorems just proved show is that this impression is mistaken.
Even though supertypes are defined by relation to one particular model, some
of their most crucial properties depend only on the structure of the complete
theory Th(M ) true in M. In particular, what the atomic supertypes of M are is
in a certain sense completely determined by Th(M). For instance, each atomic
supertype is determined by a constituent of form (4.12) or C\ [x] occurring in
the constituent representation of the given theory. Here (4.12) does not depend
on any particular member of dom(M).

One application of these observations is that we can define the notion of
superatomicity for a complete theory in analogy with the definition of atomicity
of complete theories, the complete theory Th(M) true in M is superatomic
iff each initial segment of each supertype structure compatible with Th(M) is
compatible with (the structure of) an atomic supertype.

Then we can also define a superatomic model. A superatomic model M is
one in which only atomic supertypes are satisfied, and each different supertype
by precisely one individual. Then we can also prove easily the following:

THEOREM 4.4: Each superatomic complete theory has a superatomic
model.

It is also easily seen that this superatomic model is uniquely determined
(up to isomorphism).

THEOREM 4.5: A model M of a complete theory T = Th(M) is super-
atomic iff it is a prime model but none of its proper elementary submodels is
prime.

In order to prove Theorem 4.5, we can first prove

LEMMA 4.5: A superatomic model M of a complete theory T = Th(M)
is prime.
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In order to show that M is prime, we have to show that it can be ele-
mentarily embedded in an arbitrary model M* of T. Now each member 6, of
dom(M) satisfies a supertype determined by a constituent of the form

(4.18) C,e(<)[x].

But, by Lemma 4.1 (4.18) must be satisfied by some individual, call it 6* in M*.
The mapping of each 6, on 6* defines an embedding of M into M*. It is easily
seen that this is an elementary embedding.

To return to the proof of Theorem 4.5 it is clear that if we try to map
M elementarily into itself, each 6, G dom(M) must be mapped on itself. For
the image 6* must satisfy the same constituent (4.18) as 6j, the mapping being
an elementary embedding. But the only member of dom(M) to satisfy this
constituent is hi itself. This proves Theorem 4.5.

In this way we can also see that one of the main shortcomings of prime
models as explications of minimality is overcome by superatomic models.

This is prima facie a major difference between atomic and superatomic
models in that in an atomic model, every A:-type, for k = 1,2,..., satisfied in
it must be atomic, whereas the definition of a supertype involves directly only
formulas with one free individual variable. These apparently correspond to one-
types only.

To reassure the reader, we can prove

LEMMA 4.6: A superatomic model is atomic.

In order to show this, assume first that M is a superatomic model of
Th(M). Then each element of dom(M) satisfies an atomic supertype. If
(αι,α2,.. . , a*) is a fc-tuple of such elements, one can see by the same line of
argument as was given fro Theorem 4.1 that there is a consistent structure

(4.19) CfW2,...,*t]

satisfied by (αι,α2,... ,a&) (and hence compatible with Th(M)) such that each
formula

(4.20) C rf)[αι,α2,... .α^,*,^,... ,αfc]

defines a supertype. Then for each e there is only one constituent of the form

(4.21) C<d+e)[*ι,*2,...,**]

compatible with (4.18) and with Th(M). In other words, (4.18) determines an
atomic type.

This proof illustrates how we can get along in our "supertheory" by means
of supertypes with only one free variable, i.e., with what primα facie should be
called one-supertypes. Just because in supertypes we heed the relation of the
kinds of individuals characterized by them to other individuals in the models,
we do not need fc-supertypes with k > 2.

In order to extend one horizon to arbitrary theories instead of just com-
plete ones, we must first extend our main concepts.

A supertype is said to be strongly atomic if it stops branching in all models
compatible with one of its initial segments.
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More explicitly, a constituent

(4.22) C(
i
e}[x,al,a2,...,al]

determines a strongly atomic supertype iff it determines an atomic supertype in
any model of (4.22).

A theory T is strongly superatomic iff each initial segment of each super-
type structure compatible with T is compatible with (the structure of) a strongly
atomic supertype.

A strongly superatomic model M is one in which only strongly atomic
supertypes are satisfied, and each of them by precisely one individual.

It is now easy to prove suitable extensions of our earlier results, for in-
stance

THEOREM 4.6: Each complete theory compatible with a strongly su-
peratomic theory has a strongly superatomic model.

The most natural generalization of the notion of saturation (of a model
M) is not equally directly connected with the structure of the complete theory
Th(M).

DEFINITION: A model M is absolutely supersaturated iff each supertype
compatible with Th(M) is satisfied.

A model M is supersaturated relative to a set of individuals A = {di}(i €
/),A C dom(M) iff each supertype (4.1) with αι,α2, £ A compatible with
Th(M) is satisfied in M.

These notions still rely fairly heavily on the particular model M. How-
ever, the insights so far reached enable us to define a somewhat less demanding
characteristic of a model which will turn out to be most useful.

DEFINITION: A model M is αtomicαlly supersaturated iff
(i) Each atomic supertype structure is satisfied in M by precisely one indi-

vidual αi and
(ii) M is supersaturated with respect to the set A = {αi} of the individuals

satisfying the different atomic supertype structures.

It is easily seen that the following theorem holds:

THEOREM 4.7: Each complete theory has an atomically saturated
model.

Many results familiar from the traditional model theory have related re-
sults that can be proved for supertypes. Here I shall mention only one as an
example.

THEOREM 4.8: From a model MI of a complete theory T one can omit
a countable number of individuals, each satisfying only nonatomic supertypes,
and obtain a model MI of T which is an elementary submodel of MI .
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§5. Super special models as implementations of extremality re-
quirements. The concepts defined in the preceding section serve as excellent
explications of the notions of minimality and maximality which are the focal
ideas of this study. The minimality requirement (principle of paucity) is natu-
rally captured by the idea of strong superatomicity, which literally amounts to
imposing on models the least possible qualitative variety in so far as the relevant
qualitative differences are understood by references to supertypes. This proce-
dure is vindicated by the fact that superatomic models of complete theories turn
out to be the minimal prime models, i.e., models elementarily embeddable into
any model of the given complete theory, but not into any of their own proper
submodels.

Strongly superatomic models turn out to be capable of doing the kind of
job they were cast to do. For one thing, a Peano-type axiomatization of elemen-
tary arithmetic turns out to be categorical and have the structure N of natural
numbers as its sole model, if the space of models is restricted to strongly super-
atomic ones. The only strongly superatomic model of the Peano axiomatization
of elementary number theory can be shown to be the structure N of natural num-
bers, if the space of models is restricted to strongly superatomic models. This
does not conflict with Gόdel's incompleteness result, because the new "paucity
logic" is not axiomatizable. Hence the new perspective on elementary arith-
metic does not automatically create new avenues of actually establishing new
number-theoretical results. What it nevertheless can in principle do is to facil-
itate the discovery of stronger and stronger proof methods. For the search for
such methods can now be guided by clear-cut semantical considerations.

But how do I know that the structure of natural numbers N is the only
superatomic model of the Peano axioms? These axioms are compatible with a
number of different complete theories, only one of which is true in N. We can

call it Th(JV). It is easily seen to be strongly superatomic. It has different non-
isomorphic models, of which N is one. It is easily seen that N is in fact the only
superatomic model of Th(7V).

But what about the other complete theories compatible with Peano arith-
metic? How do we know that they do not have strongly superatomic models,
too?

Perhaps the quickest way of seeing that they do not is to note a trivial-
looking property of strongly superatomic models. Let each member of such a

model M, say 6, be correlated one-to-one with one of the constituents C{ [x]
which determines the strongly atomic supertype that 61 satisfies. Given two

such individuals b\ and 62, the second one being correlated with C^ [#], one can
construct effectively the formula that determines the strongly atomic supertypes
satisfied by their sum, likewise for their product. This means that sum and
product are recursive relations in a strongly superatomic model.

The details of this argument are given in an appendix below.

Now Tennenbaum has shown (see Tennenbaum 1959; Feferman 1958;
Scott 1959; Kaye 1991, p. 153) that sum and product are not recursive in any
non-standard model of Peano arithmetic (in the sense of relative recursivity just
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explained). From this it follows, together with the observations just made, that
non-standard models of Peano arithmetic cannot be superatomic, just as was
claimed.

Things are somewhat more complicated with respect to the notion of
maximality (principle of plenitude). Hubert's completeness axiom amounted to
requiring that any attempted adjunction of a new individual to the intended
model must lead to a violation of the other axioms. But such requirements can-
not be satisfied in first-order theories in view of the upwards Skolem-Lόwenheim
theorem. In Hubert's axiomatization of geometry, his completeness axiom has
the intended effect only because he had also assumed the Archimedean axiom
and also tacitly interpreted the notion of natural number involved in the Archi-
medean axiom in the standard sense. Fortunately, the intended maximality
conditions can typically be interpreted so as to require only maximal qualitative
richness, not necessarily the presence of the maximal selection of individuals in
the intended model or models. Hence the natural course for us here is, if we
want to keep our conceptualizations generally applicable, to require only maxi-
mal qualitative richness but not completeness in Hubert's strong sense. But this
does not really mean giving up Hubert's original ideas. For even geometry, the
function of the completeness axiom is to enforce continuity, not to restrict the
"size" of the universe of discourse. Indeed, Hubert's completeness axiom can be
replaced by a pair of assumptions that can be roughly expressed as follows:
(H.I) If two points have the same relations to all other points and lines, they

are identical.
(H.2) If M is a model of the other axioms and if there is a set of relations between

an unspecified individual x and the members of M which is compatible
with the other axioms and with the diagram of M, there exists in M an
individual with these relations.
As you can easily see, (H.I) follows from other axioms. (Axioms of inci-

dence and order suffice for the purpose.) Hence the import of the completeness
axiom is essentially (H.2), which is an assumption of maximal qualitative rich-
ness rather than of maximal size as far as individuals are concerned. In fact,
the force (H.2) is easily seen to amount to requiring that maximal number of
supertypes be instantiated, compatible with the other assumptions.

Hence we can safely think of the maximality idea as being captured by
a requirement of maximal qualitative richness. But in the preceding section we
found that we have a genuine choice here. We can require either absolute super-
saturation or atomic supersaturation of our models. The difference between the
two appears nevertheless to be relatively unimportant. For one thing, the former
implies the latter. Furthermore it will turn out that even atomic supersaturation
is quite a strong assumption.

More has to be done here, however, than to explicate the twin notions
of minimality and maximality. In the most interesting mathematical theories
beyond elementary number theory, such as the theory of reals, axiomatic ge-
ometry, and set theory, the crucial thing turns out to be neither minimality
assumptions nor maximality assumptions, but their interaction. Typically, we
can assume that we are dealing with a theory which contains a one-place pred-
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icate, say N(x), for natural numbers, and suitable axioms for natural numbers.
(That is, when the axioms of the theory are relativized to TV(a ), they must yield
as consequences a reasonable axiomatization of natural numbers.) Notice that
N(x) does not necessarily have to be a primitive predicate. Then, we obviously
have to assume that part of a model of the theory which corresponds to natural
numbers is superatomic but that the rest of the model is maximal. But maximal
in what sense? The crucial fact here is that we cannot simply assume that the
individuals satisfying ~N(x) form a atomically supersaturated model, for that
may be incompatible with the requirement that {x : M \= N(x)} is superatomic.
We can only require that the model realizes a maximal number of supertypes
(either absolutely or reelative to the set of individuals satisfying superatomic
types) compatible with the requirement that {x : M 1= N(x)} be superatomic.

We have thus motivated the following definitions:
Let us assume that we are given a model M of a complete theory Th(M)

which contains a one-place predicate N(x) for natural numbers. Let us assume
further that the theory Th(M) as restricted to {x : M 1= N(x)} is superatomic.
Then the model M is absolutely Hilbertian iff the following requirements are also
satisfied:

(i) M restricted to {x : M N N(x)} is superatomic.
(ii) A maximal, subset of supertypes compatible with (i) are instantiated in

M.
M is an atomically Hilbertian model iff the following conditions are sat-

isfied:
(i) As before.

(ίi)* A maximal number of supertypes relative to the set of individuals satis-
fying a superatomic type are instantiated in M.
For instance, consider a set of axioms for real numbers which includes a

predicate N(x) for natural numbers. Then (i) becomes essentially the Archime-
dean axiom; By the usual Dedekind-type line of thought, one can then show
that the structure of the (actual) reals is the only one which is also atomically
Hilbertian.

Essentially, the same also happens in Hubert's axiomatization of geom-
etry. Hubert needs the Archimedean axiom (utilizing the standard concept of
natural number) to force as it were the multiples of the unit line to match the
structure of natural numbers, and the axiom of completeness to ensure conti-
nuity. The latter point is especially clear in Hubert (1900), where the axiom
of completeness first made its appearance (as an axiom for the theory of reals
rather than as an axiom of geometry). Hubert's formulation of his axiom there
also makes it clear that he thought of it as a maximality assumption.

If we give up requirement (i), we can obtain sundry non-standard models
of reals. If we give up (ii), we need not any longer have all "real reals" in our
model. Depending on the axiomatization, it may be sufficient, e.g., for the model
to contain only all algebraic numbers.

Thus, we can again reach one of our main objectives. If we restrict the
models of (the first-order language of) a theory of reals to atomically Hilbertian
ones, then any reasonable theory of reals is categorical and yields the intended
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structure of reals as its only model (up to isomorphism). This descriptive com-
pleteness is not due to the requirement of minimality (superatomicity) alone,
nor to the requirement of maximality (atomic supersaturation), but to the com-
bination of the two in the requirement of the (atomically) Hilbertian character
of the models.

An interesting pitfall here is that a complete theory need not have a
unique richest model of a given cardinality, either in the sense of being absolutely
Hilbertian or atomically Hilbertian. If we think of the supertypes compatible
with the given theory satisfied one by one, then the ultimate outcome can so to
speak depend on the order in which they are satisfied.

An interesting situation arises when the same ideas are extended to a
suitable axiomatization of set theory. In order to apply the ideas sketched here,
we have to assume that a predicate N(x) for natural numbers is included in
the language of the set theory or can be defined as the basis of the axiomatiza-
tion. Then we can again stipulate that the models be restricted to atomically or
absolutely Hilbertian ones, and see what happens.

I cannot here try to answer this question in general. Certain things are
nevertheless relatively easy to see. Perhaps the most interesting perspective of-
fered by our observation, is that in set theory, too, the greatest subtlety is due to
the interplay of minimality and maximality requirements. On the one hand, one
can construct poor (small) models of, say, ZF set theory which have a clear-cut
structure but which clearly are not what is intended. On the other hand, at-
tempts to enlarge the universe of set theory have not yielded any ultimate clarity
either. It seems to me that the real source of difficulties in set theory is that the
requirements of poverty and plenitude have to be balanced against each other.
For another example, we can construct a theory of finite types as a many-sorted
first-order theory. We might, e.g., assume that there is a primitive predicate
N(x) in the language for natural numbers which are among the individuals. If
we then require that the models of a suitable axiomatization of such a type theory
are automatically Hilbertian, the resulting theory has all sorts of nice features.
For instance, the Denumerable Axiom of Choice is valid and so is the Principle
of Dependent Choices for subsets of natural numbers. Furthermore, it will be
easy to give a descriptively complete and indeed categorical axiomatization for
a theory of the second number class (countable ordinals).

In this kind of many-sorted first-order reconstruction of type theory we
can even start from an axiomatization of a discrete linear order (with an initial
element) for natural numbers. Its only superatomic model is clearly {0,1,2,...}
with successor as the only relation. It is easily seen, however, that functions for
addition, multiplication, etc., all necessarily exist in all the models of the full
axiomatization, as indeed do all recursive functions. Thus the existence of the
usual arithmetical functions does not even have to be assumed; it follows logically
from the axioms. This would speak for a partial reducibility of mathematics to
logic, if it were not for the fact that certain mathematical assumptions were built
right into our concept of model and hence into our concept of logic.

A more sweeping philosophical perspective which opens here takes up
an issue which was mooted by Hubert and Kronecker. For Kronecker, natural
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numbers were the be-all if not the end-all of mathematics. In contrast, one of
Hubert's acknowledged aims in his Grundlagen der Geometric was to show
that there can be important mathematical theories which do not involve the
concept of natural numbers at all. (See here Blumenthal 1922, p. 68.)

If the approach advocated here is right, there is more to be said for Kro-
necker and less for Hubert than has been generally acknowledged. If the subtlety
of advanced mathematical theories lies in the interplay of superatomicity require-
ment for the natural numbers with suitable maximality assumptions, then the
concept of natural numbers is after all essentially involved in these mathematical
theories, via the requirement of superatomicity. Mathematics looks more like a
science of (natural) numbers than it has in a long time.

On a more technical level, there does not seem to be any obstacles in
principle to use the time-honored strategy of using set theory to speak of its own
semantics. In this way, e.g., Gόdel captured his own metalogical construction
of a constructible model in an explicit axiom. If this strategy works here, the
requirement that only atomically Hilbertian models are considered would be ex-
pressible by an explicit set-theoretical axiom of the old style (without restrictions
on the usual set of models). This axiom would be eminently acceptable, for (i)
merely spells out the nature of natural numbers while (ii) follows from the idea
that set theory is the theory of all sets, that in the world of set theory what can
exist does exist.

Whether or not we can along these lines solve the outstanding problems of
set theory remains to be seen. I do not seem to be the only one who thinks that
they can be so solved. Gόdel once wrote to Ulam, apropos John von Neumann's
axiomatization of set theory:

The great interest which this axiom [in von Neumann's axioma-
tization of set theory] has lies in the fact that it is a maximum
principle somewhat similar to Hubert's axiom of completeness in
geometry. For, roughly speaking, it says that any set which does
not, in a certain defined way, imply an inconsistency exists. Its
being a maximum principle also explains the fact that this axiom
implies the axiom of choice. I believe that the basic problems of
abstract set theory, such as Cantor's continuum problem, will be
solved satisfactorily only with the help of stronger axioms of this
kind, which in a sense are opposite or complementary to the con-
structivistic interpretation of mathematics. (See Ulam 1958.)

What Gδdel misses here is the crucial interplay between maximality and
minimality assumptions, though his remark on von Neumann type axioms being
complementary to constructivistic ideas perhaps suggests some degree of aware-
ness of this fact.

Appendix. Let us assume that a strongly superatomic model M of Peano
arithmetic has been given and that a one-to-one correlation has been established
between all natural numbers n and all the strongly atomic supertypes of M.
More explicitly, let the correlate φ(n) of each n be one of the constituents with
one free individual variable that determine a strongly atomic supertype in M,
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different supertypes for different values of n. (Equivalently, the correlate of n
could be the Gδdel number of this constituent.) This correlation establishes
an isomorphism between M and a certain relational structure. (Cf. here Kaye
1991, especially sec. 11.3.) In this isomorphism, a certain numerical relation will
correspond to the relation of being the sum of in M, i.e., the relation which
holds between three individuals in dom(M) say α, 6, c, when S(α, 6, c) is true in
M, where S is the expression of the sum of in Peano arithmetic. The question
is whether this relation is recursive.

In order to show that it is, let us suppose that we are given three con-
stituents each of which is correlated with some natural number by φ and each of
which therefore determines a strongly atomic supertype. Let these constituents
be

(1) C[d\z]

(2) C<e)[y]

(3) C<Λ[*].

From (1) and (2) we can form the formulas:

(4) C™[z] & CΪ\y\ & S(z,y,x)

(5) (3z)(3y}(C[d\z\ & C<e)[y] & 5(z,y,x))

By assumption, (1) and (2) each determines a strongly atomic supertype.
Clearly (5) is satisfied by the sum of the two individuals in dom(M) which satisfy
(1) and (2). What we are interested in here is whether it is possible to determine
recursively (effectively) whether (3) is also satisfied by this sum.

For the purpose, we shall first show that (5) determines a strongly atomic
supertype. In order to prove this, assume that M * is a model in which (5) is
satisfied. Hence (4) is also satisfied in M*. What has to be shown is that, given
αi, α 2,..., fljk G dom(M*) and g > max(c7, e) + 2, there is only one constituent of
the form

(6) C\9\x^a^...,ak]

compatible with (5) and Th(M*).
In order for (6) to be compatible with (5), it must be compatible with (1)

and (2). Since (1) and (2) both determine strongly atomic supertypes, there is
a unique constituent of the form

(7) C^t/^αi^,...,**]

compatible with (5) and Th(M*). But since it follows from the axioms of Peano
arithmetic that the sum of two numbers is uniquely determined, there is in (7)
one and only one constituent of the form

(8) C]9\x, y,z,al9 α2,...,α*]

compatible with (4). Hence the constituent

(9) C^[x,{y},{z},aι,a2,...,ak}
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is the only constituent with the parameters αι,α2,. . . ,α* G dom(M*) and g
compatible with (5) and Th(M*). In other words, it is the only constituent
which can serve as (6), which is therefore uniquely determined. This is just
what was to be proved.

It is important to realize that this part of the overall proof is not supposed
to be effective.

Consider now the unique constituent

(10) C(?n*χ(dte))

compatible with (4). It is true in M , and it can be obtained effectively from (4).
Assume first that / < max(d, e). Because (3) determines a strongly

atomic supertype in M, there is in (9) a unique constituent of the form

(11) C£nax(d,e)-l)[a.]

compatible with (3). It can be found effectively, given (3) and (14), and it clearly
determines a strongly atomic supertype.

Assume then that / > max(d,e). Then there is a unique constituent of
the form (11) in (10) compatible with (3). In this case it can be found simply
by omitting layers of quantifiers from (3), hence effectively.

In either case, since (1) and (2) both determine a strongly atomic super-
type in M , there is a unique constituent of the form

(12) Clr«Λ' »[z,y]

compatible with (4). It can be found effectively as follows: First we convert (4)
into its distributive normal form

(13)

This can be done effectively. However, we cannot in general know which
disjuncts in (13) are consistent and which ones are not. This uncertainty can
be eliminated simply by grinding out the logical consequences of (13) jointly
with (4) one after the other until only one survives undisproved. But it follows
from the axioms of Peano arithmetic that the sum of two individuals is uniquely
determined. Hence there is in (12) a unique constituent of the form

(14) Ct™«d>*-»(x,z,y}

But since (14) is uniquely determined, then so is

(15) C^d *-»[x,{y},{z}]

Now this constituent can be compared with (11) effectively for identity. If
the two are identical, (3) and (5) determine the same strongly atomic supertype,
if not, they do not.

By reviewing the argument, it is easily seen that this determination can
be made effectively. By Church's thesis, sum will therefore be a recursive relation
in M, which was to be proved.

Acknowledgments. In working on this paper, I have profited from the
comments, suggestions and criticisms by Professor Jouko Vaananen, by several



144 J. HINTIKKA

members of his research group in Helsinki, and by Professors David McCarty
and Philip Ehrlich. They are not responsible for any errors, however. My par-
ticipation in the ASL European Summer Conference in 1990 was facilitated by
a travel grant from the Academy of Finland, and my work by research support
from Boston University.

REFERENCES

JOHN D. BALDWIN, Fundamentals of Stability Theory, Springer-
Verlag, Berlin, 1988.

OTTO BLUMENTHAL, David Hubert, Die Naturwissenschaften, vol.
10 (1922), pp. 67-72.

C. C. CHANG and H. J. KEISLER, Model Theory, North-Holland, Am-
sterdam, 1973.

SOLOMON FEFERMAN, Arithmetically Definable Models of Formalized
Arithmetic, Notices of the American Mathematical Society, vol. 5 (1958),
pp. 679-680.

DAVID HlLBERT, Foundations of Geometry, tr. by Leo linger, tenth
ed., Open Court, La Salle, 1971. German original Grundlagen der Geome-
trie, 1899.

DAVID HlLBERT, Uber den Zahlbegriff, Jahresberichte der Deutschen
Mathematiker-Vereinigung, vol. 8 (1900), pp. 180-184.

JAAKKO HlNTIKKA, Is there Completeness in Mathematics after Gόdel?
Philosophical Topics, vol. 17, no. 2 (1989) pp. 69-90.

RICHARD KAYE, Models of Peano Arithmetic, Clarendon Press, Ox-
ford, 1991.

VEIKKO RANTALA, Aspects of Definability (Acta Philosophica Fen-
nica, vol. 29, nos. 2-3), North-Holland, Amsterdam, 1977.

HARTLEY ROGERS, Jr., Theory of Recursive Functions and Effec-
tive Computability, McGraw-Hill, New York, 1967.

DANA SCOTT, On Constructing Models for Arithmetic, in Infinitistic
Methods, Pergamon Press, Oxford, 1959, pp. 235-255.

S. TENNENBAUM, Non-archimedean Models for Arithmetic, Notices of
the American Mathematical Society, vol. 6 (1959), p. 270.

STANISLAW ULAM, John von Neumann, 1903-1957, Bulletin of the
American Mathematical Society, vol. 64 (1958, May Supplement), pp. 1-
49.

Department of Philosophy
Boston University

Boston, MA 02215, USA




