
LABELLED DEDUCTIVE SYSTEMS:
A POSITION PAPER

D. M. GABBAY

§1. Labelled deductive systems in context.

The purpose of this paper is to introduce a general notion of a logical system,
namely that of a Labelled Deductive System (LDS), and show that many logical
systems, new and old, monotonic and non-monotonic, all fall within this new
framework. This research will eventually be published as a book, and this paper
is based on Chapter 1 of [19].

We begin with the traditional view of what is a logical system.
Traditionally, to present a logic L, we need to present first the set of well-

formed formulas of that logic. This is the language of the logic. We specify the sets
of atomic formulas, connectives, quantifiers and the set of well-formed formulas.
Secondly, we mathematically define the notion of consequence, that is, for sets of
formulas Δ and formulas Q, we define the consequence relation Δ HL Q, which is
read "Q follows from Δ in the logic L".

The consequence relation is required to satisfy the following intuitive proper-
ties: (Δ,Δ' abbreviates Δ U Δ').

Reflexivity
Δ h Q i f ρ e Δ

Monotonicity
Δ h Q

1.1. Transitivity (cut)
Δh

Δ h Q

If you think of Δ as a database and Q as a query, then reflexivity means
that the answer "yes" is given for any Q which is already listed in the database
Δ. Monotonicity reflects the accumulation of data, and transitivity is nothing but
lemma generation, namely, if Δ h Λ, then A can be used as a lemma to derive B
from Δ.

These three properties have appeared to constitute minimal and most natural
for a logical system, given that the main applications of logic were in mathematics
and philosophy.

LABELLED DEDUCTIVE SYSTEMS 67

The above notions were essentially put forward by Tarski [8] in 1936 and is
referred to as Tarski consequence. Scott [7], inspired by Gabbay [16], generalised
the notion to allow Q to be a set of formulas Γ. The basic relation is then of the
form Δ h Γ, satisfying:1

Reflexivity

Monotonicity
Δ h Γ

Δ,Δ'hΓ

1.2. Transitivity (cut)
Δ , Λ h Γ ; Δ ' l - Λ , Γ

Δ,Δ'hΓ,Γ'

Scott further showed that for any Tarski consequence relation h there exist
two Scott consequence relations (a maximal one and a minimal one) that agree
with it, namely, that Δ h A (Tarski) iff Δ h {A} (Scott) (see Gabbay [2]).

The above notions are monotonic. However, the increasing use of logic in
theoretical computer science and artificial intelligence has given rise to logical sys-
tems which are not monotonic, i.e., to systems in which the axiom of monotonicity
is not satisfied. There are many such systems, satisfying a variety of conditions
and presented in a variety of ways. Furthermore, some are characterized in a
proof-theoretical and some in a model-theoretical manner. All these different pre-
sentations give rise to some notion of consequence Δ h Q, but they only seem to
all agree on reflexivity. The essential difference between these logics (commonly
called non-monotonic logics) and the more traditional logics (now referred to as
monotonic logics) is the fact that Δ h A holds in the monotonic case because of
some ΔΛ C Δ, while in the non-monotonic case the entire set Δ is somehow used
to derive A. Thus if Δ is increased to Δ', there is no change in the monotonic
case, while there may be a change in the non-monotonic case.

The above describes the situation current in the early 1980's. We have had
a multitude of systems generally accepted as "logics" without a unifying under-
lying theory and many had semantics without proof theory or vice- versa, though
almost all of them were based on some sound intuitions of one form or another.
Clearly there was the need for a general unifying framework. An early attempt at
classifying non-monotonic systems was Gabbay [3]. It was put forward that basic
axioms for a Tarski type consequence relation should be reflexivity, cut (version
1.2 above) and restricted monotonicity, namely:

Restricted monotonicity (cumulativity)

Δ h Λ Δ h f l

xThe similarity with Gentzen sequents is obvious. A sequent Δ h Γ is a relation between
Δ and Γ. Such a relation can either be defined axiomatically (as a consequence relation) or be
generated via closure conditions like A h A (initial) and other generating rules. The generating
rules correspond to Gentzen rules. In many logics we have Δ h Γ i f f 0 h ^ Δ — » • V F> which gives
an intuitive meaning to K

68 D. GABBAY

A variety of systems seem to satisfy this axiom. Further results were obtained
(Lehmann [11, 12]), (Wojcicki [9, 10]), (Makinson [5, 6]) and the area was called
"axiomatic theory of the consequence relation" by Wojcicki. A recent general

theory is presented in Gabbay [20, 21].

Although some sort of classification was obtained and semantical results were

proved, the approach does not seem to be strong enough. Many systems do not
satisfy restricted monotonicity. Other systems such as relevance logic, do not
even satisfy reflexivity. Others have a richness of their own which is lost in a

simple presentation as an axiomatic consequence relation. Obviously a different
approach is needed, one which would be more sensitive to the variety of features of

the systems in the field. Fortunately, developments in a neighbouring area, that of
automated deduction, seem to be of help. New automated deduction methods were
developed for non-classical logics, and resolution was generalised and modified to
be applicable to these logics. In general, because of the value of these logics in
theoretical computer science and artificial intelligence, a greater awareness of the
computational aspects of logical systems was developing and more attention was
being devoted to proof-theoretical presentations. It became apparent to us that
a key feature in the proof-theoretic study of these logics is that a slight natural
variation in an automated or proof-theoretic system of one logic (say LI), can yield
another logic (say 1.2).

Although LI and L2 may be conceptually far apart (in their philosophical
motivation, and mathematical definitions) when it comes to automated techniques
and proof-theoretical presentation, they turn out to be brother and sister. This
kind of relationship is not isolated and seems to be widespread. Furthermore, non-
monotonic systems seem to be obtainable from monotonic ones through variations
on some of their monotonic proof-theoretical formulation, thus giving us a handle
on classifying non-monotonic systems.

This phenomena has prompted Gabbay [4, 15] to put forward the view that
a logical system L is not just the traditional consequence relation h (monotonic

or non-monotonic) but a pair (h,Sh), where I- is a mathematically defined conse-
quence relation (i.e., the set of pairs (Δ,(J) such that Δ h Q) satisfying whatever
minimal conditions on a consequence relation one happens to agree on, and S|- is
an algorithmic system for generating all those pairs. Thus according to this def-
inition classical logic h perceived as a set of tautologies together with a Gentzen

system S|- is not the same as classical logic together with the two-valued truth
table decision procedure TV for it. In our conceptual framework,(h, SH) is not the
same logic as (h,Th)

To illustrate and motivate our way of thinking, observe that it is very easy
to move from T»- for classical logic to a truth table system Tf for Lukasiewicz
n-valued logic. It is not so easy to move to an algorithmic system for intuition-
istic logic. In comparison, for a Gentzen system presentation, exactly the oppo-
site is true. Intuitionistic and classical logics are neighbours, while Lukasiewicz
logics seem completely different. In fact, some of the results of this book show
proof-theoretic similarities between Lukasiewicz's infinite valued logic and Girard's
Linear Logic, which in turn is proof-theoretically similar to intuitionistic logic.

LABELLED DEDUCTIVE SYSTEMS 69

There are many more such examples among temporal logics, modal logics,
defeasible logics and others. Obviously, there is a need for a more unifying frame-
work. The question is then whether we can adopt a concept of a logic where the
passage from one system to another is natural, and along predefined acceptable
modes of variation? Can we put forward a framework where the computational
aspects of a logic also play a role? Is it possible to find a common home for a vari-
ety of seemingly different techniques introduced for different purposes in seemingly
different intellectual logical traditions?

To find an answer, let us ask ourselves what makes one logic different from
another? How is a new logic presented and described and compared to another?
The answer is obvious. These considerations are usually dealt with on the meta-
level. Most logics are based on modus ponens and the quantifier rules are formally
the same anyway and the differences between them are meta-level considerations
on the proof theory or semantics. If we can find a mode of presentation of logical
systems where meta-level features can reside side by side with object-level features
then we can hope for a general framework. We must be careful here. In the logical
community the notions of object-level vs. meta-level are not so clear. Most people
think of naming and proof predicates in this connection. This is not what we
mean by meta-level here. We need a more refined understanding of the concept.
There is a similar need in computer science. In [19] we devote a chapter to these
considerations. See also [25].

We found that the best framework to put forward is that of a Labelled De-
ductive System, LDS. Our notion of what constitutes a logic will be that of a pair
((-, SH) where h is a set-theoretic (possibly non-monotonic) consequence relation

on a language L and SH is an LDS, and where h is essentially required to satisfy
no more than Identity (i.e., {A} h A) and Surgical Cut (see below and [20, 21]).
This is a refinement of our concept of a logical system mentioned above and first
presented in Gabbay [4]. We now not only say that a logical system is a pair
(h,S(-), but we are adding that SH itself has a special presentation, that of an

LDS.

An LDS system is a triple (L, Γ, M), where L is a logical language (connectives
and wffs) and Γ is an algebra (with some operations) of labels and M is a discipline
of labelling formulas of the logic (from the algebra of labels Γ), together with
deduction rules and with agreed ways of propagating the labels via the application

of the deduction rules. The way the rules are used is more or less uniform to all
systems. In the general case we allow Γ, the algebra of labels, to be an LDS system
itself! Furthermore, if our view of a logical system is that the declarative unit is a
pair, a formula and a label, then we can also label the pair itself and get multiple

labelling.

The perceptive reader may feel resistance to this idea at this stage. First be

assured that you are not asked to give up your favourite logic or proof theory nor
is there any hint of a claim that your activity is now obsolete. In mathematics
a good concept can rarely be seen or studied from one point of view only and it
is a sign of strength to have several views connecting different concepts. So the

traditional logical views are as valid as ever and add strength to the new point of

70 D. GABBAY

view. In fact, a closer examination of [19] would reveal that manifestations of our
LDS approach already exist in the literature in various forms (see [1] and [18] and
the references there), however, they were locally regarded as convenient tools and
there was not the realisation that there is a general framework to be studied and
developed. None of us is working in a vacuum and we build on each others' work.
Further, the existence of a general framework in which any particular case can be
represented does not necessarily mean that the best way to treat that particular
case is within the general framework. Thus if some modal logics can be formulated
in LOS, this does not mean that in practice we should replace existing ways of
treating the logics by their LDS formulation. The latter may not be the most
efficient for those particular logics. It is sufficient to show how the LDS principles
specialise and manifest themselves in the given known practical formulation of the
logic.

The reader may further have doubts about the use of labels from the com-
putational point of view. What do we mean by a unifying framework? Surely a
Turing machine can simulate any logic, is that a unifying framework? The use of
labels is powerful, as we know from computer science, are we using labels to play
the role of a Turing machine? The answer to the question is twofold. First that
we are not operating at the meta-level, but at the object-level. Second, there are
severe restrictions on the way we use LDS. Here is a preview:

1. The only rules of inference allowed are the traditional ones, modus ponens
and some form of deduction theorem for implication, for example.

2. Allowable modes of label propagation are fixed for all logics. They can be
adjusted in agreed ways to obtain variations but in general the format is the
same. For example, it has the following form for implications:
(A -» B) gets label t iff Vx € Γα [If A is labelled x then B can be proved
with labels t + x], where Γi is a set of labels characterising the implication
in that particular logic. For example Γi may be all atomic labels or related
labels to t, or variations. The freedom that different logics have is in the
choice of Γi and the properties of "+". For example we can restrict the use
of modus ponens by a wise propagation of labels.

3. The quantifier rules are the same for all logics.

4. Meta-level features are implemented via the labelling mechanism, which is
object language.

The reader who prefers to remain within the traditional point of view of:

assumptions (data) proving a conclusion

can view the labelled formulas as another form of data.
There are many occasions when it is most intuitive to present an item of

data in the form t : A, where t is a label and A is a formula. The common
underlying reason for the use of the label t is that t represents information which
is needed to modify A or to supplement (the information in) A which is not of the

LABELLED DEDUCTIVE SYSTEMS 71

same type or nature as (the information represented by) A itself. A is a logical
formula representing information declaratively, and the additional information of
t can certainly be added declaratively to A to form A \ however, we may find it
convenient to put forward the additional information through the label t as part
of a pair t : A.

Take for example a source of information which is not reliable. A natural
way of representing an item of information from that source is t : A, where A is
a declarative presentation of the information itself and t is a number representing
its reliability. Such expert systems exist (e.g. Mycin) with rules which manipulate
both t and A as one unit, propagating the reliability values £, through applications
of modus ponens. We may also use a label naming the source of information and
this would give us a qualitative idea of its reliability.

Another area where it is natural to use labels is in reasoning from data and
rules. If we want to keep track, for reasons of maintaining consistency and/or
integrity constraints, where and how a formula was deduced, we use a label t. In
this case, the label t in t : A can be the part of the data which was used to get
A. Formally in this case t is a formula, the conjunction of the data used. We thus
get pairs of the form Δ, : Λt, where Ai are formulas and Δ, are the parts of the
database from which Ai was derived.

A third example where it is natural to use labels is time stamping of data.
Where data is constantly revised and updated, it is important to time stamp the
data items. Thus the data items would look like £, : A t, where ti are time stamps.
Ai itself may be a temporal formula. Thus there are two times involved, the logical
time Si in A, (s,) and the time stamping ti of Ai. For reasons of clarity, we may
wish to regard tt as a label rather than incorporate it into the logic (by writing
for example v4*(£t ,s,)).

To summarise then, we replace the traditional notion of consequence between
formulas of the form AI, . . . , An h B by the notion of consequence between labelled
formulas

Depending on the logical system involved, the intuitive meaning of the labels
varies. In querying databases, we may be interested in labelling the assumptions
so that when we get an answer to a query, we can record, via the label of the answer,
from which part of the database the answer was obtained. Another area where
labelling is used is temporal logic. We can time stamp assumptions as to when
they are true and query, given those assumptions, whether a certain conclusion
will be true at a certain time. Thus the consequence notion for labelled deduction
is essentially the same as that of any logic: given assumptions does a conclusion
follow?

Whereas in the traditional logical system the consequence is defined by using
proof rules on the formulas, in the IDS methodology the consequence is defined
by using rules on both formulas and their labels. Formally we have formal rules
for manipulating labels and this allows for more scope in decomposing the various
features of the consequence relation. The meta features can be reflected in the

72 D. GABBAY

algebra or logic of the labels and the object features can be reflected in the rules

of the formulas.
The notion of a database or of a "set of assumptions" also has to be changed.

A database is a configuration of labelled formulas. The configuration depends
on the labelling discipline. For example, it can be a linearly ordered set {αi :
AI, ..., αn : An}, aι < α2 < < αn. The proof discipline for the logic will specify
how the assumptions are to be used. We need to develop the notions of the Cut
Rule and the Deduction Theorem in such an environment. This we do in a later

section.
The next two sections will give many examples of LDS disciplines featuring

many known monotonic and non-monotonic logics. It is of value to summarise our
view listing the key points involved:

• The unit of declarative data is a labelled formula of the form t: A, where A

is a wίf of a language L and t is a label. The labels come from an algebra
(set) of labels.

• A database is a set of labelled formulas.

• An LDS discipline is a system (algorithmic) for manipulating both formulas
and their labels. Using this discipline the statement Δ h Γ is well defined

for the two databases Δ and Γ. Especially Δ h t : A is well defined.

• h must satisfy the minimal conditions, namely

1.3. Identity
{t: A} h t : A

1.4. Surgical cut
Δ\-t:A,Γ[t:A]\-s:B

Γ[Δ] h s : B

where T[t : A] means that t : A is contained/occurs somewhere in the struc-
ture Γ and Γ[Δ] means that Δ replaces A in the structure.

• A logical system is a pair (h, Sh), where h is a consequence relation and Si-
is an LDS for it.

§2. Examples from monotonic logics.

To motivate our approach we study several known examples in this section.
Example 2.1 below shows a standard deduction from Relevance Logic. The

purpose of the example is to illustrate our point of view. There are many such
examples in Anderson and Belnap [1]. Example 2.3 below considers a derivation
in modal logic. There we use labels to denote essentially possible worlds. The
objective of the example is to show the formal similarities to the relevance logic
case in Example 2.1. Section 2.4 can reap the benefits of the formal similarities of
the first two examples and introduce, in the most natural way, a system of relevant

LABELLED DEDUCTIVE SYSTEMS 73

modal logic. The objective of Example 2.4 is to show that the labels in Example

2.1 and Example 2.3 can be read as determining the meta-language features of
the logic and can therefore be combined "declaratively" to form the new system

of Example 2.4. Example 2.5 considers strict implication. This example shows
that for strict S4 implication one can read the labels either as relevance labels
or as possible world labels. Examples 2.6, 2.7 show how labels can interact with

quantifiers in modal logic.

EXAMPLE 2.1. Relevance and linear logic.

Consider a propositional language with implication "—»" only. The forward
elimination rule is modus ponens. From the theorem proving view, modus ponens
is an object language consideration. Thus a proof of h (B —> A) —» ((A —> B) —>

(A —> B)) can proceed as follows:

Assume αi : B —» A and show (A —> B) —> (A —> B). Further assume

α2 : A —» B and show A —> B. Further assume α3 : A and show B. We thus end

up with the following problem:

Assumptions

1. al : B -+ A

2. a2: A-> B

3. α3 : A

Derivation

4. α2α3 : B by modus ponens from lines (2) and (3).

5. αια2α3 : A from (4) and (1).

6. α2αια2α3 : B from (5) and (2).

7. α2αια2 : A —> B from (3) and (6).

8. α2α! : (A -> B) -> (A -> B) from (2) and (7).

9. α2 : (B -* A) -» ((A -> B)-* (A-> B)) from (1) and (8).

The meta aspect of this proof is the annotation of the assumptions and the

keeping track of what was used in the deduction. A meta-level condition would

determine the logic involved.

74 D. GABBAY

Box

(1) α! : B -> A

Box α2

show (A -» B) -* (A

(2) α2 :

Box α

show A

(3)03:
(4)

(5)

(6)

show

:B

:A

(7) exit α2αια2 :

(8) exit a2al : (A -> J5) -> (A -* B)

(9) exit α2 : (B -> A) -> ((A -> β) -* (A

Figure 1

A formal definition of the labelling discipline for this class of logics is given
in [19]. For this example it is sufficient to note the following three conventions:

1. Each assumption is labelled by a new atomic label.

An ordering on the labels can be imposed, namely αi < α2 < o3. This is
to reflect the fact that the assumptions arose from our attempt to prove
(B -+ A) -> ((A -> B) -» (A -> /?)) and not for example from (A -» B) -+
((B —> A) —> (A —> B)) in which case the ordering would be α2 < α! < α3.
The ordering can affect the proofs in certain logics.

2. If in the proof, A is labelled by the multiset α and A —* # is labelled by /?
then # can be derived with a label α U /? where UU" denotes multiset union.

3. If B was derived using A as evidenced by the fact that the label α of A is a
submultiset of the label β of B (a C β) then we can derive A —> B with the
label β — a ("—" is multiset subtraction).

LABELLED DEDUCTIVE SYSTEMS 75

The derivation can be represented in a more graphical way.
To show (B -> A) -> ((A ->B)-*(A-+ B)): See figure 1.
Figure 1 is the meta-box way of representing the deduction. Note that in line

8, multiset subtraction was used and only one copy of the label α2 was taken out.
The other copy of α2 remains and cannot be cancelled. Thus this formula is not
a theorem of linear logic, because the outer box does not exit with label 0. In
relevance logic, the discipline uses sets and not multisets. Thus the label of line 8
in this case would be a\ and that of line 9 would be 0. The above deduction can
be made even more explicit as follows:

(B -> A) -+ ((A -> B) -»(A -* B)) follows with a label from Box m.

Box a\
αi : B —> A assumption
α2αι : (A —> B) —> (A —> B) from Box α2

Box α2

α2 : A —> B assumption
α2αια2 : A —* B from Box 0,3

Box α3

: A assumption

α2 : A —> B reiteration from box α2

α2α3 : B by modus ponens

a\ : B —* A reiteration from box αi

αια2αa : A modus ponens from the two preceding lines

α2 : A —> B repetition of an earlier line

: B modus ponens from the two preceding lines

The following meta-rule was used:
We have a systems of partially ordered meta-boxes a\ < α2 < 03.

assumption in a box α can be reiterated in any box 6 provided α < 6.

REMARK 2.2.

Any

a. The above presentation of the boxes makes them look more like possible
worlds. The labels are the worlds and formulas can be exported from one
world to another according to some rules. The next example 2.3 describes
modal logic in just this way.

b. Note that different meta-conditions on labels and meta-boxes correspond to

different logics.

The following table gives intuitively some correspondence between meta-
conditions and logics.

76 D. GABBAY

Met a- condition:

ignore the labels
accept only the derivations
which use all the assumptions
accept derivations which
use all assumptions exactly once

Logic

intuitionistic logic
relevance logic

linear logic

The meta-condίtions can be translated into object conditions in terms of
axioms and rules. If we consider a Hubert system with modus ponens and
substitution then the additional axioms involved are given below:

Linear Logic
A->A

(A -» (B -» C)) -» (B -» (A -» C))
(C -» A) -» ((B -» C) -> (B -» A))
(C^A)^ ((A -+B)^(C-+ B))

Relevance Logic
Add the schema below to linear logic
(Λ -» (β -> C)) ->((A -* B) -> (A -* C))

Intuitionistic Logic
Add the schema below to relevance logic:
A -> (B -> Λ)

The reader can note that the following axiom (Peirce Rule) yields classical
logic. Further note that for example, we can define "Linear Classical Logic"
by adding the Peirce Rule to linear logic. A new logic is obtained.

Classical Logic

Add the schema below to intuitionistic logic:

((A -*B)-+A)-+A.

EXAMPLE 2.3. This example shows the meta-level/object-level division in the
case of modal logic. Modal logic has to do with possible worlds. We thus think of
our basic database (or assumptions) as a finite set of information about possible
worlds. This consists of two parts. The configuration part, the finite configuration
of possible worlds for the database, and the assumptions part which tells us what

formulas hold in each world. The following is an example of a database:

Assumptions

(1)
(2)

t :ΠΠB
Configuration

t<s

The conclusion to show (or query) is:

t: OOC.

The derivation is as follows:

3. From (2) create a new point r with s < r and get r : B —* C.

We thus have
Assumptions

LABELLED DEDUCTIVE SYSTEMS 77

Configuration
(1), (2), (3) ί < a < r

4. From (1), since t < s we get 5 : ΏB.

5. From (4) since s < r we get r : B.

6. From (5) and (3) we get r : C.

1. From (6) since s < r we get s : OC.

8. From (7) using t < s we get t: 00(7.

Discussion:
The object rules involved are:

ΏE Rule:

t < s; t : ΠA

77λ
O/ Rule:

t < s,s : B

t:$B

QE Rule:

t:<>A

create a new point s with t < s and deduce s : A

Note that the above rules are not complete. We do not have rules for deriving,
for example, ΠA. Also, the rules are all for intuitionistic modal logic.

The meta-level consideration may be properties of <,
e.g. transitivity: t<s/\s<r —> t < r oτ
e.g. linearity: t < s V t = s V s <t etc.

EXAMPLE 2.4. The reader can already see the benefit of separating the meta-
level (the handling of possible worlds, i.e., labels) and the object-level (i.e., formu-
las) features. We can combine both the meta-level features of Examples 2.1 and
2.3 to create for example a modal relevance logic in a natural way. Each assump-
tion has a relevance label as well as world label. Thus the proof of the previous
example becomes the following:

Assumptions Configuration
(1) (αι,*):DDJ9 t<s

We proceed to create a new label r using QE rule. The relevance label is

carried over. We have t < s < r.

3. (α2,r) : B -> C

78 D. GABBAY

Using OE rule with relevance label carried over, we have:

4. (αι,ί)

5. (altr):B

Using modus ponens with relevance label updated

6. (α!,α2,r) : C

Using φ7 rule:

7. α l l α 2 , 3 : θ C r

(8) means that we got i : 00^ using both assumptions αi and α2.
There are two serious problems in modal and temporal theorem proving. One

is that of Skolem functions for 3xQA(x) and §3xA(x) are not logically the same.
If we skolemise we get QA(c). Unfortunately it is not clear where c exists, in the
current world ((3x = c)QA(x)) or the possible world (θ(3x = c)A(x)).

If we use labelled assumptions then, t : 3x$A(x) becomes i : $A(c) and it is
clear that c is introduced at t.

On the other hand, the assumption t : $3xA(x) will be used by the §E rule to
introduce a new point s,t < s and conclude s : 3xA(x). We can further skolemise
at s and get s : A(c), with c introduced at s. We thus need the mechanism
of remembering or labelling constants as well, to indicate where they were first
introduced.

Labelling systems for modal and temporal logics is studied in [22].

EXAMPLE 2.5. The following example describes the logic of modal S4 strict
implication. In this logic the labels can be read either as relevance labels or as
possible worlds. S4 strict implication A — > B can be understood as a temporal
connective, as follows:

"A — > B is true at world t iff for all future worlds s to t and for t itself we
have that if A is true at s then B is true at s". Thus A — > B reads "From now
on, if A then B".

Suppose we want to prove that A — * B and A — » (B — * C) imply A — > C. To
show this we reason semantically and assume that at time £, the two assumptions
are true. We want to show that A — » C is also true at t. To prove that we take
any future time s, assume that A is true at s and show that C is also true at s.
We thus have the following situation:

1. t:A-+B

2. t:A-*(B-+C)

3. show t : A -> C
from box

LABELLED DEDUCTIVE SYSTEMS 79

3.1 Assume s : A Show s : C
Since s is in the future of £, we get that at s,
(1) and (2) are also true.

3.2 s : A -* B from (1)
3.3 s : A -+ (B -> C) from (2)

We now use modus ponens, because X —> Y means
"from now on, if X then Y"

3.4 s : B from (3.1) and (3.2)
3.5 s : B -> C from (3.2) and (3.3)
3.6 s : C modus ponens from (3.4) and (3.5)

exit t: A -> C

Notice that any t : D can be brought into (reiterated) the box as s : Z),
provided it has an implicational form, D = D\ —> D^. We can thus regard the
labels above as simply naming assumptions (not as possible worlds) and the logic
has the reiteration rule which says that only implications can be reiterated.

Let us add a further note to sharpen our understanding. Suppose —* is read
as a K4 implication (i.e., transitivity without reflexivity). Then the above proof
should fail. Indeed the corresponding restriction on modus ponens is that we do
perform X, X —> Y h Y in a box, provided X —> Y is a reiteration into the box
and was not itself derived in that same box. This will block line (3.6).

EXAMPLE 2.6. Another example has to do with the Barcan formula

Assumption Configuration

(1) t : VxΠA(x) t < s

We show
s : VxA(x)

We proceed intuitively

1. t : ΠA(x) (stripping Vx, remembering x is arbitrary).

2. Since the configuration contains s,t < s we get

3. Since x is arbitrary we get
s : VxA(x)

The above intuitive proof can be restricted.
The rule

t : ΠA(x),t < s

s : A(x)

is allowed only if x is instantiated.
To allow the above rule for arbitrary x is equivalent to adopting the Barcan

formula axiom:
VxΠA(x) -> ΠVxA(x)

EXAMPLE 2.7. To show VxΠA(x) -» ΠVxA(x) in the modal logic where it is

supposed to be true.

80 D. GABBAY

1. Assume t : VxΠA(x)
We show ϋNxA(x) by the use of the meta-box:

create α, t < a
(2) t : ΠA(x) from (1)
(3) a : A(x) from (2) using a rule

which allows this with x a variable.
(4) a : VxA(x) universal generalisation.

(5) Exit: t : ΠVxA(x).

This rule has the form:

Create α, t < a
Argue to get a : B
Exit with t : ΏB

The above are just a few examples for the scope we get using labels. The
exact details and correspondences are worked out in our monograph [19].

EXAMPLE 2.8. (Relevance reasoning.) The indices are α, /?, and 7 = (β — a).
The reasoning structure is:
Assume a. : A
Show β : B
If β D a then exit with (β-a):A-+B.
To show A -> (B -> C) h B -> (A -> C)

CL2 : B show A — > C

α3 : A
C

aids : B —> C

a\a^a^ : C

exit αια2 : A — > C

exit aι : B -> (A -* C)

Figure 2

LABELLED DEDUCTIVE SYSTEMS 81

Assume

d! : A -> (B -> C)

we use the meta-box to show B — * (A — > C). See figure 2.

EXAMPLE 2.9. (Lukasiewicz many-valued logics.) Consider Lukasiewicz
infinite-valued logic, where the values are all real numbers or rationale in [0,1].
We designate 0 as truth and the truth table for implication is

x -> y = max(0, y - x)

Here the language contains atoms and implication only, assignments h give values
to atoms in [0,1], h(q) € [0, 1] and h is extended to arbitrary formulas via the table
for — »> above. Define the relation

to mean that for all ft, h(Aι) H ----- \- h(An) > h(B], where + is numerical addition.
This logic can be regarded as a labelled deductive system, where the labels

are values t £ [0, 1]. t : A means that h(A) = t, for a given background assignment
ft. The interesting part is that to show t : A — * B (i.e., that A — » B has value t)
we assume x : A (i.e., that A has value x) and then have to show that B has value
t + x, i.e., show t + x : B.

This is according to the table of — >.
Thus figure 3 shows the deduction in box form:

x : A assumption

t + x : B

exit t: A -» B

Figure 3

This has the same structure as the case of relevance logic, where + was un-
derstood as concatenation.

A full study of many valued logics from the LDS point of view is given in [19].

EXAMPLE 2.10. (Formulas as types.) Another instance of the natural use of
labels is the Curry-Howard interpretation of formulas as types. This interpretation
conforms exactly to our framework. In fact, our framework gives the incentive to
extend the formulas as types interpretation in a natural way to other logics, such
as linear and relevance logics and surprisingly, also many valued logics, modal
logics, and intermediate logics. A formula is considered as a type and its label

82 D. GABBAY

is a definable λ-term of the same type. Given a system for defining λ-terms, the
theorems of the logic are all those types which can be shown to be non-empty.

The basic propagation mechanism corresponding to modus ponens is:

tA:A

: B

It is satisfied by application.

Thus if we read the + in tA~*B + tA as application, we get the exact parallel
to the general schema of propagation. Compare with relevance logic where + was
concatenation, and with many valued logics where + was numerical addition!

To show t : A —> B we assume x : A, with x arbitrary, i.e., start with a term x
of type A, use the proof rules to get B. As we saw, applications of modus ponens
generate more terms which contain x in them via application. If we accept that
proofs generate functional, then we get B with a label y = t(x). Thus t = Xxt(x).
This again conforms with our general schema for -».

In our paper [18] on the Curry-Howard interpretation we exploit this idea
systematically. There are two mechanisms which allow us to restrict or expand our
ability to define terms of any type. We can restrict λ-abstraction, (e.g. allow Xxt(x)
only if x actually occurs in £), this will give us logics weaker than intuitionistic
logic, or we can increase our world of terms by requiring diagrams to be closed
e.g., for any φ of classical logic such that

H (A -* B) -» (φ(A) -» φ(B)}

in classical logic, we want the following diagram to be complete, i.e., for any term
t there must exist a term t1 (see figure 4).

ψ(A)
t1

ψ(B)

B

Figure 4

Take for example the formula A —* (B —* A) as type. We want to show a
definable term of this type, we can try and use the standard proof (see figure 5),

LABELLED DEDUCTIVE SYSTEMS 83

xA:A

xA:A

exit: XyB.xB A

exit XxA.\yB.xA

Figure 5

however, with the restriction on λ-abstraction which requires the abstracted vari-
able to actually occur in the formula, we cannot exit the inner box. For details
see [18].

EXAMPLE 2.11. (Readability interpretation.) The well-known realisability
interpretation for intuitionistic implication is another example of a functional in-
terpretation for —> which has the same universal LDS form. A notation for a
recursive function {e} realises an implication A —> B iff for any n which realises
A,{e}(n) realises B. Thus

e : A -> B iff Vn[n : A =» (e}(n) : β]

It is an open problem to find an axiomatic description of the set of all wffs which
are realisable.

§3. Examples from non-monotonic logics.

The examples in the previous section are from the area of monotonic reason-
ing. This section will give examples from non-monotonic reasoning. As we have
already mentioned, we hope that the idea of LDS will unify these two areas.

EXAMPLE 3.1. (Ordered logic.) An ordered logic database is a partially
ordered set of local databases, each local database being a set of clauses. The
diagram (figure 6) describes an ordered logic database.

The local databases are labelled ti, £2, *3> ^i, s2 and 0 and are partially ordered
as in the figure.

To motivate such databases, consider an ordinary logic program C\ = {p *—
->#}. The computation of a logic program assumes that, since q is not a head of
any clause, ~*q is part of the data (this is the closed world assumption). Suppose
we relinquish this principle and adopt the principle of asking an advisor what to do
with -*q. The advisor might say that -*q succeeds or might say that -*q fails. The
advisor might have his own program to consult. If his program is Ci, he might run
the goal q (or ^q), look at what he gets and then advise. To make the situation

84 D. GABBAY

symmetrical and general we must allow for Horn programs to have rules with both
q and -»ςr (i.e., literals) in heads and bodies and have any number of negotiating
advisors. Thus we can have C2 = {-«<7},CΊ = {q <— ~*q} and C\ depends on (72.
Ordered logic develops and studies various aspects of such an advisor system which
is modelled as a partially ordered set of theories. Such a logic is useful, e.g. for
multi-expert systems where we want to represent the knowledge of several experts
in a single system. Experts may then be ordered according to an "advisory" or a
relative preference relation.

Figure 6

A problem to consider is what happens when we have several advisors that
are in conflict. For example, C\ depends on (72 and C\ depends on C^. The two
advisers, (72 and Cs, may be in conflict. One may advise ->(?, the other q. How to
decide? There are several options:

1. We can accept q if all advisors say "yes" to q.

2. We can accept q if at least one advisor says "yes" to q.

3. We can apply some non-monotonic or probabilistic mechanism to decide.

If we choose options (1) or (2) we are essentially in modal logic. To have a
node t and to have Ίq refer to advisors ί1 ?..., tn with t < £t , i = 1,..., n is like
considering ?Dg at t in modal logic with ^,..., tn possible worlds in option 1 and
like considering §q at t in option (2). Option (3) is more general, and here an LDS
approach is most useful. We see from this advisors examples an application area
where the labels arise naturally and usefully. The area of ordered logic is surveyed
in [13].

LABELLED DEDUCTIVE SYSTEMS 85

EXAMPLE 3.2. (Defeasible logic.) This important approach to non-monotonic
reasoning was introduced by Nute [14]. The idea is that rules can prove either an
atom q or its negation -«ςf. If two rules are in conflict, one proving q and one proving
-«<7, the deduction that is stronger is from a rule whose antecedent is logically more
specific. Thus the database:

! : Bird (x) - Fly (x)
t2 : Big (x) Λ Bird (x) -> -. Fly (x)

*3: Big(α)
U : Bird (α)

tι< t2

can prove:

M3*4: -Fly(α)
M 4: Fly(α)

The database will entail -«Fly (α) because the second rule is more specific.

As an LDS system the labelling of rules in a database Δ is very simple. We

label a rule by its antecedent. The ordering of the labels is done by logical strength
relative to some background theory Θ (which can be a subtheory of Δ of some
form). Deduction pays attention to strength of labels.

EXAMPLE 3.3. (Prepositional circumscription.) Circumscription is defined se-
mantically via satisfaction in minimal models. Surprisingly, results of Olivetti [26]
allow one to present an LDS discipline for (at least) propositional circumscription.

To explain the idea let hm denote consequence in minimal models. For this
consequence we have, for example, p V q hm -«p V -iςr, which does not follow in
classical logic. Suppose we try and find a semantic tableaux counter-model for the
above. In classical logic we try the tableaux construction and if all the top nodes
are closed then there is no countermodel. For hm we just change the notion of

"closed" This can depend on labelling. A more precise study of this theme will
be done later.

§4. Conclusion.

Logic is widely applied in computer science and artificial intelligence. The

needs of the application areas in computing are different from those in mathe-
matics and philosophy. In response to computer science needs, intensive research
has been directed in the area of non-classical and non-monotonic logic. New logics
have been developed and studied. Certain logical features, which have not received
extensive attention in the pure logic community, are repeatedly being called upon
in computational applications. Two features in logic seem to be of crucial impor-

tance to the needs of computer science and stand in need of further study. These

are:

1 . The meta-level features of logical systems

86 D. GABBAY

2. The "logic" of Skolem functions and unification

The meta-language properties of logical systems are usually hidden in the
object language. Either in the proof theory or via some higher-order or many-
sorted devices. The logic of Skolem functions is non-existent. Furthermore, the
traditional presentation of classical and non-classical logics is not conducive to
bringing out and developing the features needed for computer science applications.
The very concept of what is a logical system seems to be in need of revision and
clarification. A closer examination of classical and non-classical logics reveals
the possibility of introducing a new approach to logic; the discipline of Labelled
Deductive Systems (LDS) which, I believe, will not only be ideal for computer
science applications but will also serve, I hope, as a new unifying logical framework
of value to logic itself. What seem to be isolated local features of some known logics
turn out to be, in my view, manifestations of more general logical phenomena of
interest to the future development of logic itself.

LDS is part of a more general view of logic. This view is discussed elsewhere
[19, 20, 21], however in brief, we claim the following. The new concept of a
logical system is that of a network of LDS systems which has mechanisms for
communication (through the labels, which code meta-information) and evolution
or change.

Evaluation is a general concept which can embrace updating, abduction, con-
sistency maintenance, action and planning. The above statement of position is
vague but it does imply that we believe that notions like abduction and updating
are logical notions of equal standing to those of provability. See [17].

REFERENCES

[1] A. R. ANDERSON and N. D. BELNAP, Entailment, Princeton University
Press, 1975.

[2] D. M. GABBAY, Semantical Investigations in Hey ting's Intuitionis-
tic Logic, D. Reidel, 1981.

[3] D. M. GABBAY, Theoretical Foundations for non monotonic reasoning, in
Expert Systems, Logics and Models of Concurrent Systems, K. Apt
(ed.), Springer-Verlag, 1985, pp. 439-459.

[4] D. M. GABBAY, Theory of Algorithmic Proof, in Handbook of Logic in
Computer Science, Volume 1, S. Abramsky, D. M. Gabbay, T. S. E.
Maibaum (eds.), Oxford University Press, 1993, pp. 307-408.

[5] D. MAKINSON, General Theory of Cumulative Inference, in Nonmonotonic
Reasoning, M. Reinfrank, J. de Kleer, M. L. Ginsberg and E. Sandewall
(eds.), Lecture Notes on Artificial Intelligence, no. 346, Springer-Verlag.

[6] D. MAKINSON, General Patterns in nonmonotonic Reasoning, in Handbook
of Logic in Artificial Intelligence and Logic Programming, Volume
2, D. M. Gabbay, C. J. Hogger, J. A. Robinson (eds.), Oxford University
Press, to appear, 1993.

LABELLED DEDUCTIVE SYSTEMS 87

[7] D. SCOTT, Completeness and axiomatizability in many valued logics, in Pro-
ceedings of the Tarski Symposium, American Mathematical Society,
1974, pp. 411-436.

[8] A. TARSKI, On the Concept of Logical Consequence (in Polish), 1936. Trans-
lation in Logic Semantics Metamathematics, Oxford University Press,
1956.

[9] R. WOJCICKI, An Axiomatic treatment ofnon monotonic arguments, Studia
Logica, to appear.

[10] R. WOJCICKI, Heuristic Rules of Inference in non-monotonic arguments,
Studia Logica, to appear.

[11] S. KRAUS, D. LEHMANN, and M. MAGIDOR, Preferential models and cu-
mulative logics, Artificial Intelligence, vol. 44 (1990), pp. 167-207.

[12] D. LEHMANN, What does a conditional knowledge base entail? in KR 89,
Toronto, May 89, Morgan Kaufmann Publisher, pp. 1-18.

[13] D. VERMEIR and E. LAENENS, An overview of ordered logic, in Abstracts
of the Third Logical Biennial, Varga, Bulgaria, 1990.

[14] D. NUTE, LDR—A Logic for Defeasible Reasoning, 1986, ACMC Research
Report 01-0013.

[15] D. M. GABBAY, Algorithmic Proof with Diminishing Resource, I, in Pro-
ceedings CSL 90, LNCS 533, Springer-Verlag, pp. 156-173,

[16] D. M. GABBAY, The Craig Interpolation Theorem for Intuitionisic Logic I
and //, in Logic Colloquium 69, R. 0. Gandy (ed.), North-Holland Pub.
Company, pp. 391-410.

[17] D. M. GABBAY, Abduction in labelled deductive systems, a conceptual ab-
stract, in ECSQAU 91, R. Kruse and P. Siegel (eds.), Lecture notes in
Computer Science 548, Springer-Verlag, 1991, pp. 3-12.

[18] D. M. GABBAY and R. J. G. B. DE QUEIROZ, Extending the Curry-Howard
Interpretation to Linear, Relevant and other Resource Logics, The Journal
of Symbolic Logic, vol. 57 (1992), pp. 1319-1365.

[19] D. M. GABBAY, Labelled Deductive Systems, 1st Draft September 1989, 6th
draft February 1991. Published as a report by CIS, University of Munich.
To appear as a book with Oxford University Press.

[20] D. M. GABBAY, Theoretical Foundations for non monotonic reasoning Part
2: Structured non-monotonic Theories, in SCAI '91, Proceedings of the
Third Scandinavian Conference on AI, IOS Press, Amsterdam, pp. 19-40.

88 D. GABBAY

[21] D. M. GABBAY, A General Theory of Structured Consequence Relations,
to appear in a volume on substructured logics, P. Schrόder-Heister and K.
Dosen (eds.), Oxford University Press.

[22] D. M. GABBAY, Modal and Temporal Logic Programming II, in Logic
Programming—Expanding the Horizon, T. Dodd, R. P. Owens, S. Tor-

ranee (eds.), Ablex, 1991, pp. 82-123.

[23] D. M. GABBAY, How to construct a logic for your application, in Proceed-
ings of the 16th German AI Conference, GWAI 92, Lecture Notes

on AI, vol. 671, Springer-Verlag, 1992, pp. 1-30.

[24] D. M. GABBAY, Labelled Deductive Systems and Situation Theory, to appear
in Proceedings STA-III, 1992.

[25] D. M. GABBAY, Modal and Temporal Logic Programming HI, Metalevel
Features in the Object Language, in Non-Classical Logic Programming,
L. Farinas del Cerro and M. Penttonen (eds.), Oxford University Press, 1992,
pp. 85-124.

[26] N. OLIVETTI, Tableaux and Sequent Calculus for Minimal Entailment, Jour-
nal of Automated Reasoning, vol. 9 (1992), pp. 99-139.

Department of Computing
Imperial College, 180 Queen's Gate

London SW7 2BZ.
e-mail: dg@doc.ic.ac.uk

Tel: 071 589 5111

