ON ω_1 -COMPLETE FILTERS

HANS-DIETER DONDER

Let us start with a definition. For an uncountable cardinal κ set $\mu(\kappa) = \min\{|H| \mid H \text{ is a set of } \omega_1\text{-complete uniform filters on } \kappa \text{ and}$ $\forall A \subseteq \kappa \exists F \in H(A \in F \text{ or } \kappa - A \in F)\}$

Clearly, $1 \le \mu(\kappa) \le 2^{\kappa}$.

A classical result of Ulam says that κ must be very large, if $\mu(\kappa) = 1$. On the other hand, by definition we have that $\mu(\kappa) = 1$ if κ is bigger than some strongly compact cardinal. Only recently (see [3]) Gitik has shown that $\mu(\kappa) \leq \omega$ implies that $\mu(\kappa) = 1$.

Can $\mu(\kappa)$ be small for small cardinals κ ? Using a huge cardinal, Magidor showed in [4] that $\mu(\omega_3) \leq \omega_3$ is consistent. Shelah constructed a model of $\mu(\omega_1) = \omega_1$ starting with many supercompact cardinals (see [6]). With an almost huge cardinal Woodin produced a model where $\mu(\omega_1) = \omega_1$ is witnessed by normal filters. It seems to be an open problem whether $\mu(\omega_2) = \omega_1$ is consistent.

In this note we treat the following question. Is there always some κ such that $\mu(\kappa) \leq \kappa$? Prikry showed in [5] that $\mu(\omega_1) > \omega_1$ is consistent. Jensen showed later that the appropriate combinatorial principle holds in L which implies that $\mu(\omega_1) > \omega_1$ is true in L. We shall show:

THEOREM 1. Assume V = L. Then $\mu(\kappa) > \kappa$ for all regular $\kappa > \omega$.

To prove this we reduce the problem to a purely combinatorial question. So let us introduce the following principle. Let $\kappa > \omega$ be regular. Then Q_{κ} denotes the following property:

There is some $G \subseteq \{f \mid f : \kappa \to 2\}$ such that $|G| > \kappa$ and for all $G^* \subseteq G$ such that $|G^*| > \kappa$ there is a countable $\overline{G} \subseteq G^*$ such that $\{\alpha < \kappa \mid \forall f, g \in \overline{G}, f(\alpha) = g(\alpha)\}$ is nonstationary.

This principle is closely related to some properties discussed in [7]. So the interested reader might also consult that paper. Now we have:

LEMMA 1. Let $\kappa > \omega$ be regular and assume that Q_{κ} holds. Then $\mu(\kappa) > \kappa$.

Proof. Assume not. Let $\mu(\kappa) \leq \kappa$ be given by H. By a result of Taylor (see [8]) we may assume that all $F \in H$ contain the club filter on κ . Let Q_{κ} be given by G. For each $f \in G$ choose $F_f \in H$ and $i_f < 2$ such that $\{\alpha < \kappa \mid f(\alpha) = i_f\} \in F_f$. Then there are $G^* \subseteq G$, i < 2, $F \in H$ such that

 $|G^*| > \kappa$ and $F_f = F$, $i_f = i$ for all $f \in G^*$. Choose some countable $\overline{G} \subseteq G^*$ as in Q_{κ} . Then $\bigcap \{\alpha < \kappa \mid \forall f \in \overline{G}f(\alpha) = i\} \in F$ by ω_1 -completeness and is nonstationary. This is a contradiction. \Box

So in order to prove Theorem 1 we only need to show:

PROPOSITION 1. Assume V = L. Then Q_{κ} holds for all regular $\kappa > \omega$.

Proof. We shall use the natural $(\kappa, 1)$ -morass and the natural \Box_{∞} -sequence in *L*. The reader should look at [1] for the basic definitions. We use the standard notations. So for example $S = \{\nu \mid \nu > \omega, \nu \text{ p.r. closed, } \nu \text{ singular}\}, \langle C_{\nu} \mid \nu \in S \rangle$ is the \Box_{∞} -sequence, \prec is the morass tree, $\pi_{\overline{\nu}\nu}$ are the morass maps. Set $E = \{\nu \in S \cap \kappa^+ \mid C_{\nu} = \emptyset\}$. So we have

- (1) (a) E is stationary in κ^+
 - (b) for all singular $\tau, E \cap \tau$ is not stationary in τ
 - (c) if $\overline{\nu} \prec \nu, \overline{\nu} \in E$ and $\pi_{\overline{\nu}\nu}$ is cofinal, then $\nu \in E$.
- Set $E_0 = \{\nu < \kappa \mid \nu \in S^+ \cap E, \nu \text{ is minimal in } \prec\}$. We also need:
- (2) There is a sequence $\langle X_{\eta} \mid \eta \in E_0 \rangle$ such that
 - (a) $otp(X_{\eta}) = \omega, X_{\eta} \subseteq \eta$ is cofinal in η
 - (b) for all unbounded $X \subseteq \kappa^+$ there are $\nu \in S_{\kappa}$ and $\eta \in E_0$ such that $\eta \prec \nu$ and $\pi_{\eta\nu} "X_{\eta} \subseteq X$.

The proof of this is very similar to the argument used in §3 of [1]. So we only give a sketch. We define $\langle X_{\eta} \mid \eta \in E_0 \rangle$ by recursion. Given $\eta \in E_0$ let Z_{η} be the $\langle L$ -least unbounded subset of η such that there are no $\nu \in S_{\alpha_{\eta}}$ and $\tau \in E_0$ such that $\tau \prec \nu$ and $\pi_{\tau\nu} X_{\tau} \subseteq Z_{\eta}$. Then choose $X_{\eta} \subseteq Z_{\eta}$ such that $\operatorname{otp}(X_{\eta}) = \omega$ and $\sup X_{\eta} = \eta$. Note that every element of E_0 has cofinality ω . This will do it.

Now using (1) we easily get:

(3) For $\alpha < \kappa$ and $\mu < \alpha^+$ there is a function $h^{\mu}_{\alpha} : \mu \to 2$ such that for all $\nu \in S_{\alpha} \cap \mu, \ \eta \prec \nu, \ \eta \in E_0$ we have that $h^{\mu}_{\alpha} \upharpoonright \pi_{\eta\nu} X_{\eta}$ is not eventually constant.

Now let $\nu \in S_{\kappa}$. Set $A_{\nu} = \{\alpha_{\tau} \mid \tau \prec \nu\}$. We define a function $f_{\nu} : A_{\nu} \to \kappa$ such that $f_{\nu}(\alpha) < \alpha^{+}$ as follows. Let $\tau \prec \nu$, $\alpha = \alpha_{\tau}$ and $\pi = \pi_{\tau\nu}$. Here we regard π as a map from L_{τ} to L_{ν} . Set $U = \{X \subseteq \alpha \mid X \in L_{\tau}, \alpha \in \pi(X)\}$. Define a sequence $\langle \tau_{i} \mid i \leq \gamma \rangle$ as follows. Set $\tau_{0} = \alpha + 1$. If $\tau_{i} > \tau$, then set $\gamma = i$ and stop. If $\tau_{i} \leq \tau$, then let τ_{i+1} be the least ordinal Θ such that $U \cap L_{\tau_{i}} \in L_{\Theta}$. If λ is a limit ordinal, set $\tau_{i} = \sup\{\tau_{i} \mid i < \lambda\}$. Because we are in L it is easy to see that $\gamma \leq \omega + 1$. Set $f_{\nu}(\alpha) = \tau_{\gamma}$.

We are now ready to define the set of functions G which will give us Q_{κ} . It suffices that every element of G is defined on a club subset of κ . So let $\nu \in S_{\kappa}$. We define $g_{\nu} : A_{\nu} \to 2$ by $g_{\nu}(\alpha) = h^{\mu}_{\alpha}(\tau)$ where $\mu = f_{\nu}(\alpha)$ and τ is the unique $\tau \prec \nu$ such that $\alpha = \alpha_{\tau}$. Then set $G = \{g_{\nu} \mid \nu \in S_{\kappa}\}$. Finally, we show that G satisfies Q_{κ} . So let $X \subseteq S_{\kappa}$ be unbounded. By (2)(b) choose $\nu_0, \nu_1 \in S_{\kappa}, \eta_0, \eta_1 \in E_0$ such that $\nu_0 < \nu_1$ and $\eta_i \prec \nu_i, \pi_{\eta_i \nu_i} "X_{\eta} \subseteq X$ for i < 2. Set $Y_i = \pi_{\eta_i \nu_i} "X_{\eta_i}$ and $Y = Y_0 \cup Y_1$. It suffices to show that there is a club $C \subseteq \kappa$ such that for all $\alpha \in C$ there are $\tau_0, \tau_1 \in Y$ such that $F_{\tau_0}(\alpha) = 0$ and $f_{\tau_1}(\alpha) = 1$. For this let $\alpha \in A_{\nu_0} \cap A_{\tau_1}$ be sufficiently large. Let $\tau_i \prec \nu_i$ such that $\alpha_{\tau_i} = \alpha$. Set $\pi_i = \pi_{\tau_i \nu_i}$. Then $\pi_0 \subseteq \pi_1$. Looking at the definition of the functions f_{ν} we see that the sequence $\langle f_{\nu}(\alpha) | \nu \in Y_0 \rangle$ or the sequence $\langle f_{\nu}(\alpha) | \nu \in Y_1 \rangle$ is eventually constant. So (3) gives us what we need. \Box

We conjecture that $\mu(\kappa) \leq \kappa$ implies that there is an inner model with a measurable cardinal. Let us mention that in Theorem 1 we can replace the assumption V = L by V = K, where K denotes the Dodd-Jensen core model. We now indicate a proof of a very special case of our conjecture.

THEOREM 2. Assume $\mu(\omega_1) = \omega_1$. Then there is an inner model with a measurable cardinal.

For this we use a result of Taylor (see [8]). He showed that $\mu(\omega_1) > \omega_1$ is true if every ω_1 -complete filter on ω_1 containing the club filter possesses an almost disjoint family of sets of positive *F*-measure of size ω_2 . Now let $\langle f_{\nu} | \nu < \omega_2 \rangle$ be the sequence of canonical functions for ω_1 . By Taylor's result Theorem 2 follows from the following proposition.

PROPOSITION 2. Let F be an ω_1 -complete filter on ω_1 which contains every club subset of ω_1 . Assume that for every $f : \omega_1 \to \omega_1$ there is some $\nu < \omega_2$ such that $\{\alpha < \omega_1 \mid f(\alpha) < f_{\nu}(\alpha)\} \in F$. Then there is an inner model with a measurable cardinal.

Proof. This just uses the method applied in the proof of Theorem 2 in [2]. So we build the same system of embeddings as there. It is well known that we may assume that for all $\nu \in E$ and $\alpha \in C_{\nu}$ that $f_{\nu}(\alpha) = \nu_{\alpha}$. So by our assumption on F for all $f : \omega_1 \to \omega_1$ there is some $\nu \in E$ such that $\{\alpha \in C_{\nu} \mid f(\alpha) < \nu_{\alpha}\} \in F$. So we can easily construct $X \subseteq E$ such that $\operatorname{otp}(X) = \omega^2$ and $S_{\nu\tau} = \{\alpha \mid [\nu_{\alpha}, \tau_{\alpha}] \cap I_{\alpha} \neq \emptyset\} \in F$ for all $\nu, \tau \in X, \nu < \tau$. Then $S = \bigcap\{S_{\nu\tau} \mid \nu, \tau \in X, \nu < \tau\} \in F$. So S is stationary. Now we argue exactly as in [2]. \Box

References

[1] H.-D. Donder, Another look at gap-1 morasses, in **Recursion theory** (A. Nerode and R. Shore, editors), Proc. symp. in pure math. 42, American Mathematical Society, 1985, pp. 223-236.

[2] H.-D. Donder, Families of almost disjoint functions, Contemporary mathematics, vol. 31 (1984), pp. 71-78.

[3] M. Gitik and S. Shelah, Forcing with ideals and simple forcing notions, Israel journal of mathematics, vol. 68 (1989), pp. 129–160.

[4] M. Magidor, On the existence of non-regular ultrafilters and the cardinality of ultrapowers, **Transactions of the American Mathematical Society**, vol. 223 (1979), pp. 97-111.

[5] K. Prikry, On a problem of Erdős, Hajnal and Rado, Discrete mathematics, vol. 2 (1972), pp. 51–59. [6] S. Shelah, Iterated forcing and normal ideals on ω_1 , Israel journal of mathematics, vol. 60 (1987), pp. 345–380.

[7] J. Steprāns and S. Watson, Extending ideals, Israel journal of mathematics, vol. 54 (1986), pp. 201-226.

[8] A. Taylor, On saturated sets of ideals and Ulam's Problem, Fundamenta mathematicae, vol. 109 (1980), pp. 37–53.

Mathematisches Institut Universität München D-80333 München Germany