§4. ULTRAPOWERS

Let \mathcal{M} be either a ppm or an sppm, and $\kappa < \rho_n^{\mathcal{M}}$. Let E be a (κ, λ) pre-extender over \mathcal{M} . (We are interested in the case that for some ppm or sppm \mathcal{N} such that $P(\kappa)^{\mathcal{N}} = P(\kappa)^{\mathcal{M}}$ we have $E = \dot{F}^{\mathcal{N}}$ or $\exists \gamma (E = \dot{E}_{\gamma}^{\mathcal{N}})$. It is easy to check that Eis a pre-extender over \mathcal{M} in this case.) We wish to define $\text{Ult}_n(\mathcal{M}, E)$.

We begin with the universe of $Ult_n(\mathcal{M}, E)$ and the \in relation on it.

If n = 0, then the elements of $\text{Ult}_0(\mathcal{M}, E)$ are equivalence classes $[a, f]_E^{\mathcal{M}}$, where $a \subseteq \lambda$ is finite and $f \in |\mathcal{M}|$ has domain $[\kappa]^{\operatorname{card} a}$. The equivalence relation is as usual: $(a, f) \sim (b, g)$ iff for $E_{a \cup b}$ a.e. $\bar{x}, \tilde{f}(\bar{x}) = \tilde{g}(\bar{x})$ where \tilde{f} and \tilde{g} come from f and g by adding the appropriate dummy variables. E measures enough sets that the definition makes sense. The \in relation on equivalence classes is as usual.

If n > 0, then let $\tau = \tau(v_0 \cdots v_i)$ be a term in Sk_n if \mathcal{M} is a ppm or in SK_n if \mathcal{M} is an sppm. Let $q \in |\mathcal{M}|$. Then for $\bar{\alpha} \in [\kappa]^i$

$$f_{\tau,q}(\bar{\alpha}) = \tau^{\mathcal{M}}[\bar{\alpha},q].$$

The elements of $\text{Ult}_n(\mathcal{M}, E)$ are equivalence classes $[a, f]_E^{\mathcal{M}}$ where $a \subseteq \lambda$ is finite and $f = f_{\tau,q}$ for some $q \in |\mathcal{M}|$ and $\tau \in \text{Sk}_n$ (resp. SK_n). The equivalence relation is as usual. E measures enough sets that the definition makes sense because $\kappa < \rho_n^{\mathcal{M}}$. Again, the \in relation is as usual.

 $\operatorname{Ult}_n(\mathcal{M}, E)$ may be illfounded; however, if it is wellfounded we shall identify it with the transitive set to which it is isomorphic.

We must define $\dot{E}^{\text{Ult}_n(\mathcal{M},E)}$ and $\dot{F}^{\text{Ult}_n(\mathcal{M},E)}$ to complete the definition of the structure $\text{Ult}_n(\mathcal{M}, E)$. Let

 $[\langle a, f \rangle]_E^{\mathcal{M}} \in \dot{E}^{\mathrm{Ult}_n(\mathcal{M}, E)} \text{ iff } \{ \bar{\alpha} \mid f(\bar{\alpha}) \in \dot{E}^{\mathcal{M}} \} \in E_a .$

It is easy to see that E_a measures the set in question, using the amenability of \mathcal{M} with resp. to $\dot{E}^{\mathcal{M}}$ in case n = 0.

In case \mathcal{M} is squashed or n > 0 we can set

$$[\langle a,f\rangle]_E^{\mathcal{M}} \in \dot{F}^{\mathrm{Ult}(\mathcal{M},E)} \text{ iff } \{ \bar{\alpha} \mid f(\bar{\alpha}) \in \dot{F}^{\mathcal{M}} \} \in E_a \,,$$

using amenability in the squashed n = 0 case. We are left with the case \mathcal{M} is active and n = 0. Let $\mu = \operatorname{crit} \dot{F}^{\mathcal{M}}$. Let also $\eta = [\langle b, f \rangle]_E^{\mathcal{M}} \in \operatorname{OR} \cap \operatorname{Ult}_0(\mathcal{M}, E)$, and $h = [\langle b, g \rangle]_E^{\mathcal{M}}$, where h is a function with domain $i_E(\mu)$.

We want to put (a, h, η) into $\dot{F}^{\text{Ult}(\mathcal{M}, E)}$ for exactly one a. We may assume without loss of generality that ran $h \subseteq \bigcup_n P([i_E(\mu)]^n)$.

Case 1. $\mu < \kappa$. So g is constant a.e.; in fact $g(\bar{x}) = h$ for almost every \bar{x} . Let $\gamma = \sup(\operatorname{ran} f \cap OR^{\mathcal{M}})$, and let c be such that $\dot{F}^{\mathcal{M}}(c, h, \gamma)$. Using c we can compute k inside of \mathcal{M} :

$$k(\bar{x}) =$$
 the unique d such that $F^{\mathcal{M}}(d, h, f(\bar{x}))$.

Thus $k \in |\mathcal{M}|$. We then put

$$([\langle b, k \rangle]_E^{\mathcal{M}}, h, \eta) \in \dot{F}^{\mathrm{Ult}_0(\mathcal{M}, E)}$$

Case 2. $\kappa \leq \mu$. Let ℓ be a function in $|\mathcal{M}|$ with domain = μ and

$$\operatorname{ran} \ell = \bigcup_{\bar{x} \in [\kappa]^{\operatorname{card} b}} (\operatorname{ran} g(\bar{x}) \cap \bigcup_{n < \omega} P([\mu]^n)).$$

(We may assume dom $g(\bar{x}) = \mu$ all \bar{x} .) Let $\gamma = \sup(\operatorname{ran} f \cap OR^{\mathcal{M}})$. Let c be such that $\dot{F}^{\mathcal{M}}(c, \ell, \gamma)$. Using c we can compute in \mathcal{M}

 $k(\bar{x}) =$ the unique d such that $\dot{F}^{\mathcal{M}}(d, g(\bar{x}), f(\bar{x}))$.

So $k \in |\mathcal{M}|$. We then put

$$([\langle b, k \rangle]_E^{\mathcal{M}}, h, \eta) \in \dot{F}^{\mathrm{Ult}_0(\mathcal{M}, E)}.$$

This completes the definition of $\text{Ult}_n(\mathcal{M}, E)$. Notice the definition guarantees Los' Theorem holds for atomic formulae of $\mathcal{L} - \{\dot{v}, \dot{\gamma}\}$ (resp. \mathcal{L}^*).

Theorem 4.1. (Los' Theorem). Let $n \ge 0$, let \mathcal{M} be a ppm or sppm, and let E be a (κ, λ) pre-extender over \mathcal{M} , where $\kappa < \rho_n^{\mathcal{M}}$. Let $[a_i, f_i]_E^{\mathcal{M}}$ be an element of $\operatorname{Ult}_n(\mathcal{M}, E)$ for each $i \le k$, and let $b = \bigcup_{i \le k} a_i$. Then

$$\begin{aligned} \text{Ult}_n(\mathcal{M}, E) &\models \varphi[[a_0, f_0]_E^{\mathcal{M}}, \dots, [a_k, f_k]_E^{\mathcal{M}}] \\ & \text{iff } \exists B \in E_b \forall \bar{u} \in B \, \mathcal{M} \models \varphi[\tilde{f}_0(\bar{u}), \dots, \tilde{f}_k(\bar{u})] \end{aligned}$$

for any generalized $r \Sigma_n(\text{resp. } q\Sigma_n)$ formula φ . Here \tilde{f}_i comes from f_i by adding the appropriate dummy variables.

Remark. Assume \mathcal{M} , etc., are as in the hypotheses. If n > 0, then

 $A = \{ \bar{u} \in [\kappa]^{\operatorname{card} b} \mid \mathcal{M} \models \varphi[\tilde{f}_0(\bar{u}) \cdots \tilde{f}_k(\bar{u})] \}$

is in \mathcal{M} as $\kappa < \rho_n^{\mathcal{M}}$.

If n = 0, then $A \notin |\mathcal{M}|$ is possible. However, our proof will show there is a $B \in E_b$ (so $B \in |\mathcal{M}|$) such that $B \subseteq A$ or $B \cap A = \emptyset$.

PROOF. We consider only the case that \mathcal{M} is a ppm (passive or active type I or II) as sppm behave exactly like passive ppm here.

Suppose first that φ is $r\Sigma_0$. If n > 0 we get the desired conclusion easily as there are enough functions defined by terms in Sk_n . So suppose n = 0.

For any $r\Sigma_0$ formula $\varphi = \varphi(v_0 \cdots v_k)$ and functions $f_0 \cdots f_k \in |\mathcal{M}|$ such that dom $f_i = [\kappa]^{\operatorname{card} b}$ for all $i \leq k$ (where $b \subset \lambda$ is finite), we let

$$\bar{u} \in A_{\varphi, \bar{f}}$$
 iff $\mathcal{M} \models \varphi[f_0(\bar{u}) \cdots f_k(\bar{u})]$.

We show by induction on φ that there is a set $B \in E_b$ (so $B \in |\mathcal{M}|$) such that

$$B \subseteq A_{\varphi,\bar{f}}$$
 or $B \cap A_{\varphi,\bar{f}} = \emptyset$

and

$$B \subseteq A_{\varphi,\bar{f}}$$
 iff $\operatorname{Ult}_0(\mathcal{M}, E) \models \varphi[[\langle b, f_0 \rangle]_E^{\mathcal{M}} \cdots [\langle b, f_k \rangle]_E^{\mathcal{M}}].$

For formulas φ which are Σ_0 in \mathcal{L} , a subinduction on Σ_0 in \mathcal{L} formulas (using amenability) gives the result as usual. For $\varphi = \dot{F}(v_0, v_1, v_2)$, the construction of $\dot{F}^{\text{Ult}_0(M,E)}$ guarantees the desired result. If φ is built from simpler $r\Sigma_0$ formulae by \wedge , \vee , or \neg the inductive step is easy. Suppose $\varphi(v_0 \cdots v_k) = "v_0$ is finite \wedge $(\exists v_{k+1} \in v_0) \theta(v_0 \cdots v_{k+1})"$. We may assume $f_0(\bar{u})$ is finite E_b a.e. as otherwise $B = \{\bar{u} \mid f_0(\bar{u}) \text{ infinite}\}$ does the job. But then we can fix $\ell \in \omega$ such that card $f_0(\bar{u}) = \ell$ for E_b a.e. \bar{u} , and functions $g_1 \cdots g_\ell$ with dom $= [\kappa]^{\text{card } b}$ such that $f_0(\bar{u}) = \{g_1(\bar{u}) \cdots g_\ell(\bar{u})\}$ for E_b a.e. \bar{u} , say for $\bar{u} \in C$ where $C \in E_b$. Let B_i satisfy the induction hypothesis for $A_{\theta, \bar{f} \frown g_i}$, and let $B = C \cap \bigcap_{i \leq \ell} B_i$. Then B works for $A_{\omega, \bar{f}}$.

This completes the proof of 4.1 in the case that φ is $r\Sigma_0$.

We now show by induction on $i \leq n$ that 4.1 holds when φ is $r\Sigma_i$. We have done the case i = 0. The case φ is $r\Sigma_1$ and does not involve $\dot{\mu}$, $\dot{\nu}$, or $\dot{\gamma}$ now follows by the usual argument as there are enough functions defined by terms in Sk_n. But then 2.6 (b) implies that $\mathcal{P} = \text{Ult}_n(\mathcal{M}, E)$ is a ppm of the same type as \mathcal{M} , and that $i_E(\mu^{\mathcal{M}}) = \mu^{\mathcal{P}}$, $i_E(\nu^{\mathcal{M}}) = \nu^{\mathcal{P}}$, $i_E(\gamma^{\mathcal{M}}) = \gamma^{\mathcal{P}}$. This gives 4.1 for arbitrary $r\Sigma_1$ formulae φ .

So now let i > 1. Notice first that as the relation $\operatorname{Th}_{i-1}^{Q}(a) = b$ is \prod_{1} over $r\Sigma_{i-1}$ definable over Q, uniformly over all ppm Q, and as we have 4.1 for \prod_{1} over $r\Sigma_{i-1}$ formulae by induction hypothesis and the fact that there are enough functions given by terms in Sk_n , we have (for Ult = $\operatorname{Ult}_n(\mathcal{M}, E)$.),

(*)
$$\operatorname{Th}_{i-1}^{\operatorname{Ult}}([a,f]) = [b,g] \text{ iff for } E_{a\cup b} \text{ a.e. } \bar{x}, \ \operatorname{Th}_{i-1}^{\mathcal{M}}(\tilde{f}(\bar{x})) = \tilde{g}(\bar{x}).$$

Let $\pi : \mathcal{M} \to \text{Ult}_n(\mathcal{M}, E)$ be the canonical embedding. It follows that

(**)
$$\rho_{i-1}^{\text{Ult}} = \begin{cases} \text{OR}^{\mathcal{M}} & \text{if } \rho_{i-1}^{\mathcal{M}} = \text{OR}^{\text{Ult}} \\ \pi(\rho_{i-1}^{\mathcal{M}}) & \text{otherwise.} \end{cases}$$

We prove the case $\rho_{i-1}^{\text{Ult}} = \pi(\rho_{i-1}^{\mathcal{M}})$. Suppose $\rho_{i-1}^{\mathcal{M}} < \text{OR}^{\mathcal{M}}$. We show first that $\pi(\rho_{i-1}^{\mathcal{M}}) \leq \rho_{i-1}^{\text{Ult}}$. For let $\alpha = [a, f]_E^{\mathcal{M}} < \pi(\rho_{i-1}^{\mathcal{M}})$, and let $q = [a, g]_E^{\mathcal{M}}$. We may assume $f(\bar{x}) < \rho_{i-1}^{\mathcal{M}}$ for all \bar{x} . Define

$$\begin{split} h(\bar{x}) &= \operatorname{Th}_{i-1}^{\mathcal{M}}(f(\bar{x}) \cup \{g(\bar{x})\}) \\ &= \operatorname{least} b \text{ such that } \dot{T}_{i=1}^{\mathcal{M}}(\langle f(\bar{x}), g(\bar{x}) \rangle, b) \,. \end{split}$$

Then h is one of the functions used in forming $Ult_n(\mathcal{M}, E)$, and as we observed above in (*)

$$\operatorname{Th}_{i-1}^{\operatorname{Olt}}(\alpha \cup \{q\}) = [a,h]_E^{\mathcal{M}}.$$

Thus $\alpha < \rho_{i-1}^{\text{Ult}}$. Thus $\pi(\rho_{i-1}^{\mathcal{M}}) \leq \rho_{i-1}^{\text{Ult}}$.

On the other hand, pick $q \in |\mathcal{M}|$ such that $\operatorname{Th}_{i-1}^{\mathcal{M}}(\rho_{i-1}^{\mathcal{M}} \cup \{q\}) \notin |\mathcal{M}|$. Then by (*) $\operatorname{Th}_{i-1}^{\operatorname{Ult}}(\pi(\rho_{i-1}^{\mathcal{M}}) \cup \{\pi(q)\}) \notin \operatorname{Ult}$. Thus $\rho_{i-1}^{\operatorname{Ult}} \leq \pi(\rho_{i-1}^{\mathcal{M}})$.

Putting (*) and (**) together, we have

$$\dot{T}_{i-1}^{\text{Ult}}([a,f],[b,g]) \text{ iff for } E_{a\cup b} \quad \text{a.e. } \bar{x}, \, \dot{T}_{i-1}^{\mathcal{M}}(\tilde{f}(\bar{x}),\tilde{g}(\bar{x})) \, .$$

Now suppose

$$\varphi(\bar{v}) = \exists a \exists b (T_{i-1}(a, b) \land \psi(a, b, \bar{v}))$$

where ψ is $r\Sigma_1$. We check one direction of the conclusion of 4.1. Suppose that for E_b a.e. $\bar{u}, \mathcal{M} \models \varphi[f_0(\bar{u}) \cdots f_k(\bar{u})]$. Let $f_i = f_{\tau_i q_i}$ where $\tau_i \in \operatorname{Sk}_n$ and $q_i \in |\mathcal{M}|$. We can translate " $\psi(a, b, \bar{v}) \wedge \dot{T}_{i-1}(a, b)$ " into an $r\Sigma_n$ formula; this gives us terms σ_0 and σ_1 in Sk_n which Skolemize the result, i.e., such that for E_b a.e. \bar{u}

$$\mathcal{M} \models \psi(\sigma_0(\bar{u},\bar{q}),\sigma_1(\bar{u},\bar{q}),\tau_0(\bar{u},q_0)\cdots\tau_k(\bar{u},q_k)) \wedge \dot{T}_{i-1}(\sigma_0(\bar{u},\bar{q}),\sigma_1(\bar{u},\bar{q})),$$

where $\bar{q} = \langle q_1 \cdots q_k \rangle$. But then, letting $g_0 = f_{\sigma_0,\bar{q}}$ and $g_1 = f_{\sigma_1,\bar{q}}$,

$$\text{Ult}_{n}(\mathcal{M}, E) \models T_{i-1}([b, g_{0}], [b, g_{1}]) \land \psi([b, g_{0}], [b, g_{1}][b, f_{0}] \cdots [b, f_{k}])$$

as desired.

Finally, we prove 4.1 in the case φ is generalized $r\Sigma_n$ with n > 0. Notice first that if $\tau(v_0 \cdots v_k) \in Sk_n$, then

$$au^{ ext{Ult}}[[a,f_0],\ldots,[a,f_k]] = [a,\lambdaar{u}\cdot au^{\mathcal{M}}[f_0(ar{u})\cdots f_k(ar{u})]]_E^{\mathcal{M}}$$

for any $[a, f_0] \cdots [a, f_k] \in \text{Ult} = \text{Ult}_n(\mathcal{M}, E)$. To see this, it is enough to consider the basic terms $\tau_{\theta} \in \text{Sk}_n$. But the graph of such a term is definable by a Boolean combination of $r\Sigma_n$ formulae, uniformly over all ppm, so we can use the term-free case of 4.1 just proved.

But now if $\varphi(v)$ is $r\Sigma_n$ and $\tau(v) \in Sk_n$ then

$$\begin{aligned} \text{Ult} &\models \varphi(\tau(v))[[a, f]_E^{\mathcal{M}}] \text{ iff } \text{Ult} \models \varphi[\tau^{\text{Ult}}[[a, f]_E^{\mathcal{M}}]] \\ &\text{ iff } \text{Ult} \models \varphi[[a, \lambda u \cdot \tau^{\mathcal{M}}[f(\bar{u})]]_E^{\mathcal{M}}] \\ &\text{ iff for } E_a \text{ a.e. } \bar{u}, \mathcal{M} \models \varphi[\tau^m[f(\bar{u})]] \\ &\text{ iff for } E_a \text{ a.e. } \bar{u}, \mathcal{M} \models \varphi(\tau(v))[f(\bar{u})] \end{aligned}$$

as desired. Of course, the case φ or τ having more variables involves only more notation.

In the course of proving 4.1 we have shown

Corollary 4.2. Let \mathcal{M} , etc., be as in the hypotheses of 4.1, and let $\pi : \mathcal{M} \to \text{Ult}_n(\mathcal{M}, E)$ be the canonical embedding. Then for i < n

$$\rho_i^{\mathcal{M}} < \mathrm{OR}^{\mathcal{M}} \quad \mathrm{iff} \; \rho_i^{\mathrm{Ult}} < \mathrm{OR}^{\mathrm{Ult}}$$

and

$$\rho_i^{\mathcal{M}} < \mathrm{OR}^{\mathcal{M}} \Rightarrow \pi(\rho_i^{\mathcal{M}}) = \rho_i^{\mathrm{Ult}}$$

(where $\text{Ult} = \text{Ult}_n(\mathcal{M}, E)$).

We would like to show that under the hypotheses of 4.1, the canonical π : $\mathcal{M} \to \text{Ult}_n(\mathcal{M}, E)$ is generalized $r\Sigma_{n+1}$ elementary. For this we seem to need (essentially) that \mathcal{M} be *n*-sound. Fortunately, we shall never want to form $\text{Ult}_n(\mathcal{M}, E)$ unless \mathcal{M} is *n*-sound.

Corollary 4.3. Let \mathcal{M} , etc., be as in the hypotheses of 4.1, and let $\pi: \mathcal{M} \to \text{Ult}_n(\mathcal{M}, E)$ be the canonical embedding. Suppose that for some $p \in |\mathcal{M}|$, $\mathcal{M} = \mathcal{H}_n^{\mathcal{M}}(\rho_n^{\mathcal{M}} \cup \{p\})$. Then π is generalized $r\Sigma_{n+1}$ (resp. $q\Sigma_{n+1}$) elementary; moreover $\rho_n^{\text{Ult}(\mathcal{M}, E)} = \sup \pi'' \rho_n^{\mathcal{M}}$.

PROOF. Let $\text{Ult} = \text{Ult}_n(\mathcal{M}, E)$. We show first that $\sup \pi'' \rho_n^{\mathcal{M}} \ge \rho_n^{\text{Ult}}$; for this it is enough to show that if $\mathcal{H}_n^{\mathcal{M}}(\rho_n^{\mathcal{M}} \cup \{p\}) = \mathcal{M}$, then

$$\mathcal{H}_n^{\mathrm{Ult}}(\sup \pi'' \rho_n^{\mathcal{M}} \cup \{\pi(p)\}) = \mathrm{Ult}.$$

(For then $\operatorname{Th}_{n}^{\operatorname{Ult}}(\sup \pi'' \rho_{n}^{\mathcal{M}} \cup \{\pi(p)\}) \notin \operatorname{Ult}$ by a diagonal argument.) So let $\mathcal{H}_{n}^{\mathcal{M}}(\rho_{n}^{\mathcal{M}} \cup \{p\}) = \mathcal{M}$, and let $[a, f] \in \operatorname{Ult}$. Then there is a term $\tau \in \operatorname{Sk}_{n}$ (resp. SK_{n}) and parameters $\overline{b} \in [\rho_{n}^{\mathcal{M}} \cup \{p\}]^{<\omega}$ such that for all $\overline{u}, f(\overline{u}) = \tau^{\mathcal{M}}[\overline{u}, \overline{b}]$. Let $\operatorname{id}(\overline{u}) = \overline{u}, \quad c_{\overline{b}}(\overline{u}) = \overline{b}$. By the Los Theorem, $[a, f]_{E}^{\mathcal{M}} = \tau^{\operatorname{Ult}}[[a, \operatorname{id}]_{E}^{\mathcal{M}}, [a, c_{\overline{b}}]_{E}^{\mathcal{M}}] = \tau^{\operatorname{Ult}}[a, \pi(\overline{b})]$. Since $a \in [\pi(\kappa)]^{<\omega}$ and $\kappa < \rho_{n}^{\mathcal{M}}$, and since $\pi(\overline{b}) \in [\sup \pi'' \rho_{n}^{\mathcal{M}} \cup \{\pi(p)\}]^{<\omega}$, we're done.

We claim next that $\rho_n^{\text{Ult}} \ge \sup \pi'' \rho_n^{\mathcal{M}}$. For by the Los Theorem we have easily that for $a, b \in |\mathcal{M}|$

$$\operatorname{Th}_{n}^{\mathcal{M}}(a) = b$$
 iff $\operatorname{Th}_{n}^{\operatorname{Ult}}(\pi(a)) = \pi(b)$

[For the "only if" direction, let $\bar{c} \in \pi(a)^{<\omega}$ and φ be generalized $r\Sigma_n$. Let $\bar{c} = [d, f]_E^{\mathcal{M}}$. Then $(\varphi, \bar{c}) \in \operatorname{Th}_n^{\mathrm{Ult}}(\pi(a))$ iff (for E_d a.e. $\bar{u} (\varphi, f(\bar{u})) \in \operatorname{Th}_n^{\mathcal{M}}(a)$) iff $(\varphi, \bar{c}) \in \pi(b)$.]

It follows that $\forall \gamma < \sup \pi'' \rho_n^{\mathcal{M}}, \forall p \in |\mathcal{M}|, \operatorname{Th}_n^{\operatorname{Ult}}(\gamma \cup \{\pi(p)\}) \in \operatorname{Ult}$. Now fix p such that $\mathcal{H}_n^{\mathcal{M}}(\rho_n^{\mathcal{M}} \cup \{p\}) = \mathcal{M}$. Let $\alpha < \sup \pi'' \rho_n^{\mathcal{M}}$ and $r \in \operatorname{Ult}$; we must see that $\operatorname{Th}_n^{\operatorname{Ult}}(\alpha \cup \{r\}) \in \operatorname{Ult}$. Fix $\gamma < \sup \pi'' \rho_n^{\mathcal{M}}$ such that $\alpha < \gamma$ and for some $\bar{\beta} \in \gamma^{<\omega}$, and some $\tau \in \operatorname{Sk}_n$, $r = \tau^{\operatorname{Ult}}[\bar{\beta}, \pi(p)]$. Then $\operatorname{Th}_n^{\operatorname{Ult}}(\gamma \cup \{\pi(p)\})$ is in Ult, and from it we can compute $\operatorname{Th}_n^{\operatorname{Ult}}(\alpha \cup \{r\})$ inside Ult.

Thus $\rho_n^{\text{Ult}} = \sup \pi'' \rho_n^{\mathcal{M}}$. Now let $[a, f]_E^{\mathcal{M}} = \langle \alpha, q \rangle$, where $\alpha < \sup \pi'' \rho_n^{\mathcal{M}}$. We claim that for any g

$$T_n^{\text{Ult}}([a, f], [a, g]) \quad \text{iff for } E_a \text{ a.e. } \bar{u}, \ T_n^{\mathcal{M}}(f(\bar{u}), \ g(\bar{u})).$$

⇐ is easy since $\operatorname{Th}_{n}^{\mathcal{P}}(a) = b$ is uniformly Π_{1} over $r\Sigma_{n}^{\mathcal{P}}$, and we have the Los Theorem for $r\Sigma_{n}$ formulae. So suppose $\dot{T}_{n}^{\text{Ult}}([a, f], [a, g])$. Let $q = \tau^{\text{Ult}}[\bar{\beta}, \pi(p)]$ where $\bar{\beta} \in [\sup \pi'' \rho_{n}^{\mathcal{M}}]^{<\omega}$ and pick $\gamma < \rho_{n}^{\mathcal{M}}$ such that $\bar{\beta}, \alpha < \pi(\gamma)$. Let $b = \operatorname{Th}_{n}^{\mathcal{M}}(\gamma \cup \{p\})$, so that

$$\pi(b) = \operatorname{Th}_n^{\operatorname{Ult}}(\pi(\gamma) \cup \{\pi(p)\}).$$

Then we have

(1) $(\varphi, \bar{c}) \in [a, g]$ iff

$$\varphi$$
 is generalized $r\Sigma_n$ and $\bar{c} \in [\alpha \cup \{q\}]^{<\omega}$ and $(\varphi^*, \bar{c}^*) \in \pi(b)$,

where $\varphi^*(\bar{c}^*)$ is the obvious way of rewriting $\varphi(\bar{c})$ so that the parameters \bar{c}^* come from $\pi(\gamma) \cup \{\pi(p)\}$. Thus the map $(\varphi, \bar{c}) \mapsto (\varphi^*, \bar{c}^*)$ is $r\Delta_1$ over Ult in the parameters α , q, and $\bar{\beta}$. Let $\bar{\beta} = [a, h]_E^{\mathcal{M}}$, where we assume for notational convenience that the support is a (otherwise enlarge all supports). Then the fact that (1) holds in Ult is a $r\Pi_1$ fact about [a, f], [a, g], and [a, h]. It follows that for E_a a.e. \bar{u} ,

$$(\varphi, \bar{c}) \in g(\bar{u})$$
 iff
 φ is generalized $r\Sigma_n$ and $\bar{c} \in [\alpha_{\bar{u}} \cup \{q_{\bar{u}}\}]^{<\omega}$ and $(\varphi^*, \bar{c}^*) \in b$,

where $f(\bar{u}) = \langle \alpha_{\bar{u}}, q_{\bar{u}} \rangle$ and (φ^*, \bar{c}^*) comes from rewriting (φ, \bar{c}) by substituting $\tau(h(\bar{u}), p)$ for occurrences of $q_{\bar{u}}$. But now

$$q_{ar{u}} = au^{\mathcal{M}}[h(ar{u}), \, p]$$

for E_a a.e. \bar{u} , by the Los Theorem. As $b = \operatorname{Th}_n^{\mathcal{M}}(\gamma \cup \{p\})$, we see

$$g(\bar{u}) = \operatorname{Th}_{n}^{\mathcal{M}}(\alpha_{\bar{u}} \cup \{q_{\bar{u}}\})$$

for E_a a.e. \bar{u} . As $\alpha_{\bar{u}} < \rho_n^{\mathcal{M}}$ a.e., we get

$$T^{\mathcal{M}}_{n}(f(\bar{u}), g(\bar{u}))$$

for E_a a.e. \bar{u} , as desired.

Finally, let

$$\varphi(\bar{v}) = \exists a \exists b \left(\dot{T}_n(a, b) \land \psi(a, b, \bar{v}) \right)$$

be an $r\Sigma_{n+1}$ formulae. If $\mathcal{M} \models \varphi[\bar{x}]$, then we have a, b such that $\dot{T}_n^{\mathcal{M}}(a, b) \land \psi^{\mathcal{M}}(a, b, \bar{x})$, so $\dot{T}_n^{\text{Ult}}(\pi(a), \pi(b))$ and $\psi^{\text{Ult}}(\pi(a), \pi(b), \bar{x})$, so Ult $\models \varphi[\pi(\bar{x})]$. On the other hand if Ult $\models \varphi[\pi(\bar{x})]$, then we have a, f, g such that $[a, f] = \langle \alpha, q \rangle$ for some $\alpha < \sup \pi'' \rho_n^{\mathcal{M}}$, and

Ult
$$\models T_n([a, f], [a, g]) \land \psi([a, f], [a, g], \pi(\overline{x}))$$
.

By our claim, for E_a a.e. \bar{u}

$$\mathcal{M} \models \dot{T}_n(f(\bar{u}), g(\bar{u})) \land \psi(f(\bar{u}), g(\bar{u}), \bar{x}).$$

Thus $\mathcal{M} \models \varphi[\bar{x}]$, as desired.

We can now show $\pi(\tau^{\mathcal{M}}(x)) = \tau^{\text{Ult}}(\pi(x))$ for all $\tau \in \text{Sk}_{n+1}$, since the graphs of basic terms in Sk_{n+1} are definable by boolean combinations of $r\Sigma_{n+1}$ formulae. It follows that π is generalized $r\Sigma_{n+1}$ elementary.

Relations to Dodd-Jensen.

It is easy to see that if \mathcal{M} is *n*-sound, $\operatorname{Ult}_n(\mathcal{M}, E)$ is exactly what is obtained by the Dodd-Jensen procedure of coding \mathcal{M} onto $\rho_n^{\mathcal{M}}$, taking a Σ_0 ultrapower of the coded structure, and then decoding.

For let \mathcal{M} be a ppm or sppm, $n \geq 1$, and $\mathcal{M} = \mathcal{H}_n^{\mathcal{M}}(\rho_n^{\mathcal{M}} \cup \{q\})$. Let $\pi : \mathcal{M} \to \text{Ult}_n(\mathcal{M}, E) = \mathcal{N}$

be the canonical embedding. Now let

$$A^{\mathcal{M}} = \operatorname{Th}_{n}^{\mathcal{M}}(\rho_{n}^{\mathcal{M}} \cup \{q\}), \text{ coded as a subset of } \rho_{n}^{\mathcal{M}},$$

 $A^{\mathcal{N}} = \operatorname{Th}_{n}^{\mathcal{M}}(\rho_{n}^{\mathcal{N}} \cup \{\pi(q)\}), \text{ similarly coded }.$

Let

$$\begin{aligned} \mathcal{P} &= (J_{\rho_n^{\mathcal{M}}}^{\dot{E}^{\mathcal{M}}}, \in, \dot{E}^{\mathcal{M}} \upharpoonright \rho_n^{\mathcal{M}}, A^{\mathcal{M}}) \\ Q &= (J_{\rho_n^{\mathcal{M}}}^{\dot{E}^{\mathcal{N}}}, \in, \dot{E}^{\mathcal{N}} \upharpoonright \rho_n^{\mathcal{N}}, A^{\mathcal{N}}) \end{aligned}$$

be the master code structures associated to \mathcal{M} and \mathcal{N} . Then

$$\pi: \mathcal{P} \xrightarrow{\Sigma_0} Q$$

cofinally; this is contained in 4.3. Note also that if $[a, f]_E^{\mathcal{M}} \in |Q|$, then $\exists_{\beta} < \rho_n^{\mathcal{M}}$ such that $f(\bar{u}) < \beta E_a$ a.e., so since f is given by a term in Sk_n , in fact $f \in |\mathcal{M}|$ and hence $f \in |\mathcal{P}|$. So in fact

$$Q = \mathrm{Ult}_0(\mathcal{P}, E)$$

and $\pi \upharpoonright |\mathcal{P}|$ is the canonical embedding for this Σ_0 ultrapower. Notice finally that all of \mathcal{N} can be decoded from Q, since $\mathcal{N} = \mathcal{H}_n^{\mathcal{N}}(\rho_n^{\mathcal{N}} \cup \{\pi(q)\})$.

Although we can make sense of $\operatorname{Ult}_n(\mathcal{M}, E)$ in the case \mathcal{M} is not *n*-sound, in practice we shall never need to form such an ultrapower. Thus our construction of $\operatorname{Ult}_n(\mathcal{M}, E)$ does not go beyond Dodd-Jensen in any important way.

We describe now the preservation of the core parameters $p_i(\mathcal{M})$, for $i \leq n$, in the case that \mathcal{M} is *n*-sound.

Lemma 4.4. Let \mathcal{M} be n-sound, let E be an extender over \mathcal{M} with $\operatorname{crit}(E) < \rho_n^{\mathcal{M}}$, and let $\pi : \mathcal{M} \to \operatorname{Ult}_n(\mathcal{M}, E)$ be the canonical embedding. Then

- (a) $Ult_n(\mathcal{M}, E)$ is n-sound, and
- (b) π is an *n*-embedding.

PROOF. Let $\mathcal{N} = \text{Ult}_n(\mathcal{M}, E)$. It is enough to show that for all $i \leq n$

$$\mathfrak{C}_{i}(\mathcal{N})=\mathcal{N},$$

and

$$p_i(\mathcal{N}) = \pi(p_i(\mathcal{M})).$$

For then by soundness $\rho_i(\mathcal{N}) = \rho_i^{\mathcal{N}}$ for all $i \leq n$, and similarly for \mathcal{M} , so that π maps the core project properly by 4.2 and 4.3.

We proceed by induction on $i \leq n$. For i = 0 there is nothing to prove. Now let i = 1 and Let r be the first standard parameter of \mathcal{M} . Thus as \mathcal{M} is 1-sound, $p_1(\mathcal{M}) = \langle r, \emptyset \rangle$ and r is 1-solid and 1-universal over \mathcal{M} .

Let $r = \langle \alpha_0 \cdots \alpha_\ell \rangle$, and

$$b_j = \operatorname{Th}_1^{\mathcal{M}}(\alpha_j \cup \{\alpha_0 \cdots \alpha_{j-1}\}), \quad 0 \leq j \leq \ell$$

so that $b_j \in |\mathcal{M}|$ by solidity. By 4.3, π is at least $r\Sigma_2$ elementary, so

$$\pi(b_j) = \operatorname{Th}_1^{\mathcal{N}}(\pi(\alpha_j) \cup \{\pi(\alpha_0) \cdots \pi(\alpha_{j-1})\}).$$

It follows that no $s <_{\text{lex}} \pi(r)$ can serve as the 1st standard parameter of \mathcal{N} . On the other hand, $\text{Th}_{1}^{\mathcal{N}}(\rho_{1}^{\mathcal{N}} \cup \{\pi(r)\}) \notin |\mathcal{N}|$ and in fact $\mathcal{H}_{1}^{\mathcal{N}}(\rho_{1}^{\mathcal{N}} \cup \{\pi(r)\}) = |\mathcal{N}|$. [If n = 1 this is implicit in the proof of 4.3. Suppose n > 1. Let [a, f] by an arbitrary element of $|\mathcal{N}|$. Notice that if we let, for $x \in |\mathcal{M}|$,

$$h(x) = 1 \text{ st (in order of construction)} (\tau, \bar{\beta}) \text{ such that}$$
$$\tau \in \text{Sk}_1 \quad \wedge \bar{\beta} \in (\rho_1^{\mathcal{M}})^{<\omega} \wedge \tau^{\mathcal{M}}[\bar{\beta}, r] = x$$

then $h(x) = \sigma^{\mathcal{M}}[x, r]$ for some term $\sigma \in Sk_2$. So if we let

$$g(\bar{u}) = h(f(\bar{u}))$$

then g is one of the functions used to form \mathcal{N} , and if $[a,g] = (\tau, \overline{\beta})$, then $\tau \in \mathrm{Sk}_1$ and $\overline{\beta} \in (\rho_1^{\mathcal{N}})^{<\omega}$ and $\tau^{\mathcal{N}}[\overline{\beta}, \pi(r)] = [a, f]$, as desired.]

So $\pi(r)$ is the 1st standard parameter of \mathcal{N} , is 1-solid and 1-universal and \mathcal{N} is 1-sound. As \mathcal{N} is 1-sound, $p_1(\mathcal{N}) = \langle \pi(r), \mathcal{O} \rangle = \pi(p_1(\mathcal{M}))$, as desired.

The case i > 1 of the induction involves a bit more notation but no new ideas, so we omit it.

The next question, clearly, is how π moves $\rho_{n+1}^{\mathcal{M}}$ and the n+1st standard parameter of $(\mathcal{M}, p_n(\mathcal{M}))$. We answer this under a solidity hypothesis. Our proof is in essence drawn from Mitchell [M?]; it was recently re-discovered by S. Friedman.

We must also, it seems, impose an additional condition on E.

DEFINITION 4.4.1. Let \mathcal{M} be a ppm or an sppm, and E a (κ, λ) extender over \mathcal{M} . Then E is close to \mathcal{M} iff for every $a \in [\lambda]^{<\omega}$

(1) E_a is $r\Sigma_1^{\mathcal{M}}$ (resp. $q\Sigma_1^{\mathcal{M}}$) and

(2) if $\mathcal{A} \in |\mathcal{M}|$ and $\mathcal{M} \models \text{card } \mathcal{A} \leq \kappa$, then $E_a \cap \mathcal{A} \in |\mathcal{M}|$.

The purpose of this restriction on E is explained by the following lemma.

Lemma 4.5. Suppose E is a (κ, λ) extender which is close to \mathcal{M} , and $\kappa < \rho_n^{\mathcal{M}}$. Then

$$P(\kappa) \cap |\mathcal{M}| = P(\kappa) \cap |\operatorname{Ult}_n(\mathcal{M}, E)|.$$

If, in addition, $\mathcal{M} = \mathcal{H}_n^{\mathcal{M}}(\rho_n^{\mathcal{M}} \cup \{q\})$ for some q and $\rho_{n+1}^{\mathcal{M}} \leq \kappa$, then

$$\rho_{n+1}^{\mathcal{M}} = \rho_{n+1}^{\mathrm{Ult}_n(\mathcal{M},E)} \,.$$

PROOF. The nontrivial part of the first sentence is the assertion that $P(\kappa) \cap |\operatorname{Ult}_n(\mathcal{M}, E)| \subseteq |\mathcal{M}|$. So let $[a, f]_E^{\mathcal{M}} \subseteq \kappa$, where $f : [\kappa]^i \to P(\kappa)$. Since $\kappa < \rho_n^{\mathcal{M}}$ and f is defined from a parameter by a term in Sk_n , in fact $f \in |\mathcal{M}|$. For $\alpha < \kappa$, let $A_{\alpha} = \{\bar{u} \in [\kappa]^i \mid \alpha \in f(\bar{u})\}$. From $E_a \cap \{A_{\alpha} \mid \alpha < \kappa\}$ we can compute $[a, f]_E^{\mathcal{M}}$. Since E is close to \mathcal{M} , we get $[a, f]_E^{\mathcal{M}} \in |\mathcal{M}|$.

For the second assertion it is convenient to use the master code structures. Let $\mathcal{N} = \text{Ult}_n(\mathcal{M}, E)$ and fix q such that $\mathcal{M} = \mathcal{H}_n^{\mathcal{M}}(\rho_n^{\mathcal{M}} \cup \{q\})$. Set

$$\begin{split} A^{\mathcal{M}} &= \operatorname{Th}_{n}^{\mathcal{M}}(\rho_{n}^{\mathcal{M}} \cup \{q\}), \text{ coded as a subset of } \rho_{n}^{\mathcal{M}}, \\ A^{\mathcal{N}} &= \operatorname{Th}_{n}^{\mathcal{M}}(\rho_{n}^{\mathcal{N}}(\rho_{n}^{\mathcal{N}} \cup \{\pi(q)\}), \text{ coded as a subset of } \rho_{n}^{\mathcal{N}}, \\ \mathcal{P} &= (J_{\rho_{\mathcal{M}}^{\pm}}^{\dot{E}^{\mathcal{M}}}, \in, \dot{E}^{\mathcal{M}} \upharpoonright \rho_{n}^{\mathcal{M}}, A^{\mathcal{M}}), \\ Q &= (J_{\rho_{\mathcal{M}}^{\mathcal{L}}}^{\dot{E}^{\mathcal{N}}}, \in, \dot{E}^{\mathcal{N}} \upharpoonright \rho_{n}^{\mathcal{N}}, A^{\mathcal{N}}), \end{split}$$

so that $Q = \text{Ult}_0(\mathcal{P}, E)$ with canonical embedding π , which is cofinal and Σ_1 elementary. If n = 0 then we take $\mathcal{P} = \mathcal{M}$ and $Q = \mathcal{N}$.

By Lemmas 2.10 and 2.11, $\rho_{n+1}^{\mathcal{M}}$ is the least α such that some Σ_1 over \mathcal{P} set $B \subseteq \alpha$ is such that $B \notin |\mathcal{P}|$, and similarly for $\rho_{n+1}^{\mathcal{N}}$ and Q.

To see that $\rho_{n+1}^{\mathcal{N}} \leq \rho_{n+1}^{\mathcal{M}}$, let $B \subseteq \rho_{n+1}^{\mathcal{M}}$ be Σ_1 over \mathcal{P} and $B \notin |\mathcal{P}|$. Since $\rho_{n+1}^{\mathcal{M}} \leq \kappa$ and π is Σ_1 elementary, B is Σ_1 over Q. But $P(\kappa) = P(\kappa)^{\mathcal{M}} = P(\kappa)^{\mathcal{N}} = P(\kappa)^{\mathcal{Q}}$ using the first assertion of 4.5 and strong acceptability. Thus $B \notin |Q|$.

To see that $\rho_{n+1}^{\mathcal{M}} \leq \rho_{n+1}^{\mathcal{N}}$, let $\alpha \leq \rho_{n+1}^{\mathcal{M}}$ and $B \subseteq \alpha$ be Σ_1 over Q. It is enough to show that B is Σ_1 over \mathcal{P} . Let

$$\eta \in B \Leftrightarrow Q \models \psi[\eta, [a, f]]$$

where ψ is Σ_1 in the language of Q. For $\delta < OR^Q$ let

$$Q_{\delta} = (J_{\delta}^{\dot{E}^{\mathcal{N}}}, \in, \dot{E}^{\mathcal{N}} \upharpoonright \omega \delta, A^{\mathcal{N}} \cap \omega \delta)$$

and similarly define \mathcal{P}_{δ} for $\delta < OR^{\mathcal{P}}$. So

$$\eta \in B \Leftrightarrow \exists \delta < \mathrm{OR}^{\boldsymbol{Q}} \quad Q_{\delta} \models \psi[\eta, [a, f]]$$

so

$$\eta \in B \Leftrightarrow \exists \delta < \mathrm{OR}^{\mathcal{P}} \ Q_{\pi(\delta)} \models \psi[\eta, [a, f]]$$
$$\Leftrightarrow \exists \delta < \mathrm{OR}^{\mathcal{P}} \exists X \in E_a \ \forall \bar{u} \in X \mathcal{P}_\delta \models \psi[\eta, f(\bar{u})].$$

Now as E is close to \mathcal{M} , the E_a is an $r\Sigma_1^{\mathcal{M}}$ subset of $|\mathcal{P}|$. By Lemma 2.11, E_a is Σ_1 over \mathcal{P} . Thus B is Σ_1 over \mathcal{P} , as desired.

We now consider preservation of the n + 1st standard parameter.

Lemma 4.6. Let \mathcal{M} be a ppm or sppm, $n \geq 0$, and $\mathcal{M} = \mathcal{H}_n^{\mathcal{M}}(\rho_n^{\mathcal{M}} \cup \{q\})$ if $n \geq 1$. Let E be an extender close to \mathcal{M} such that $\rho_{n+1}^{\mathcal{M}} \leq \operatorname{crit} E < \rho_n^{\mathcal{M}}$. Let

$$\pi: \mathcal{M} \to \mathrm{Ult}_n(\mathcal{M}, E) = \mathcal{N}$$

be the canonical embedding. Suppose that r is the n + 1st standard parameter of (\mathcal{M}, q) and that r is n + 1-solid over (\mathcal{M}, q) .

Then $\pi(r)$ is the n+1st standard parameter of $(\mathcal{N}, \pi(q))$, and $\pi(r)$ is n+1-solid over $(\mathcal{N}, \pi(q))$.

PROOF. We will give the proof for the case n = 0 with a passive premouse of limit length. The general proof is the same as this, using the fact that $r\Sigma_{n+1}$ is equivalent to Σ_1 over the appropriate master code structure. See lemma 2.11 for the case of n > 0 and the remark following corollary 2.2 for the case of n = 0 with an active premouse. For successor ordinals $\lambda = \gamma + 1$ write $\mathcal{M}_{\lambda} = \bigcup_{n \in \omega} S_{\omega \gamma + n}^{\mathcal{M}_{\lambda}}$, where $(S_{\nu}^{\mathcal{M}_{\lambda}} : \nu < \omega \lambda)$ is Jensen's S sequence, and use the same proof as below.

Let us consider first the case n = 0, \mathcal{M} is passive, and

$$\mathcal{M} = (J_{\lambda}^{E^{\mathcal{M}}}, \in, \dot{E}^{\mathcal{M}}) \quad (\lambda \text{ limit}).$$

• • •

Now by 4.5, $\rho_1^{\mathcal{M}} = \rho_1^{\mathcal{N}}$ and

$$\mathrm{Th}_{1}^{\mathcal{N}}(\rho_{1}^{\mathcal{N}}\cup\{\pi(\sigma),\,\pi(q)\})=\mathrm{Th}_{1}^{\mathcal{M}}(\rho_{1}^{\mathcal{M}}\cup\{r,q\})\notin|\mathcal{N}|\,,$$

so it is enough to show that $\pi(r)$ is 1-solid over $(\mathcal{N}, \pi(q))$. Let

$$r = \langle \alpha_0 \cdots \alpha_\ell \rangle$$

$$b_i = \operatorname{Th}_1^{\mathcal{M}}(\alpha_i \cup \{\alpha_0 \cdots \alpha_{i-1}, q\}) \cap \{(\varphi, \bar{c}) \mid \varphi \text{ is pure } r\Sigma_1\}$$

$$c_i = \operatorname{Th}_1^{\mathcal{N}}(\pi(\alpha_i) \cup \{\pi(\alpha_0) \cdots \pi(\alpha_{i-1}), \pi(q)\}) \cap \{(\varphi, \bar{c}) \mid \varphi \text{ is pure } r\Sigma_1\}$$

for $0 \leq i \leq \ell$. By 2.10, it will be enough to show $c_i \in |\mathcal{N}|$ for $0 \leq i \leq \ell$. So fix *i* such that $0 \leq i \leq \ell$.

For $\gamma < \lambda$ let

$$R_{\gamma} = b_i \cap \{(\varphi, \bar{c}) \mid \mathcal{M}_{\gamma} \models \varphi[\bar{c}]\}$$

so that $b_i = \bigcup_{\gamma < \lambda} R_{\gamma}$. Similarly, let

$$S_{\gamma} = c_i \cap \{(\varphi, \bar{c}) \mid \mathcal{N}_{\gamma} \models \varphi[\bar{c}]\}$$

so that $c_i = \bigcup_{\omega \gamma < OR^M} S_{\gamma}$. It is easy to see that $\pi(R_{\gamma}) = S_{\pi(\gamma)}$, and thus

$$c_i = \bigcup_{\gamma < \lambda} \pi(R_{\gamma}) \, .$$

Case 1. $\exists \gamma < \lambda(b_i = R_{\gamma})$; i.e. R_{γ} is eventually constant as $\gamma \to \lambda$.

PROOF. Let $b_i = R_{\gamma} = \bigcup_{\eta < \lambda} R_{\eta}$. Then $c_i = \bigcup_{\eta < \lambda} \pi(R_{\eta}) = \pi(R_{\gamma}) = \pi(b_i)$. Thus $c_i \in |\eta|$.

Case 2. Otherwise.

PROOF. For $x \in b_i$, let $\gamma_x = \text{least } \gamma$ such that $x \in R_{\gamma}$ and if $y \in b_i$, $x \leq y$ iff $\gamma_x \leq \gamma_y$. Thus \leq is a prewellorder of b_i of limit order type. Notice \leq is computable within \mathcal{M} from b_i , so that our solidity hypothesis on r means $b_i \in |\mathcal{M}|$ and $\leq \in |\mathcal{M}|$. Now clearly, for $x \in b_i$

$$R_{\gamma_x} = \{ y \in b_i \mid y \le x \}$$

so

$$\pi(R_{\gamma_x}) = \{y \in \pi(b_i) \mid y \leq^* \pi(x)\}$$

where $\leq^* = \pi(\leq)$. By case hypothesis

$$c_i = \{y \in \pi(b_i) \mid \exists x \in b_i (y \leq^* \pi(x))\},\$$

so that c_i is an \leq^* initial segment of $\pi(b_i)$.

Subcase 2A. $\operatorname{cof}^{\mathcal{M}}(\leq) \neq \operatorname{crit}(E)$. In this case, ran π is \leq^* cofinal in $\pi(b_i)$, so that $c_i = \pi(b_i)$, and $c_i \in |\mathcal{N}|$.

Subcase 2B. $\operatorname{cof}^{\mathcal{M}}(\leq) = \operatorname{crit}(E)$. Let $\kappa = \operatorname{crit}(E)$, $f \in |\mathcal{M}|$, $f : \kappa \to b_i$ such that ran f is \leq -cofinal. Then

$$\begin{aligned} y \in c_i \Leftrightarrow \exists \alpha < \kappa(y \leq^* \pi(f(\alpha))) \\ \Leftrightarrow \exists \alpha < \kappa(y \leq^* \pi(f)(\alpha)) \end{aligned}$$

so that $c_i \in |\mathcal{N}|$, as desired.

Of course, we shall need to know that fine structure "up to level n" is preserved not just under passage to Ult_n , but under iteration of this process. The following lemma summarizes the important facts.

Lemma 4.7. Let $\mathcal{M} = \mathcal{M}_0$ be n-sound, where $n \leq \omega$. Suppose that for $\alpha < \theta$,

$$\mathcal{M}_{\alpha+1} = \mathrm{Ult}_n(\mathcal{M}_\alpha, E_\alpha),$$

where E_{α} is close to \mathcal{M}_{α} , and

$$\mathcal{M}_{\lambda} = \operatorname{dir} \lim_{\beta < \lambda} \, \mathcal{M}_{\beta}$$

for $\lambda \leq \theta$ a limit. (We assume each \mathcal{M}_{α} is wellfounded.) Let $\pi_{0\theta} : \mathcal{M} \to \mathcal{M}_{\theta}$ be the canonical embedding. Then

(a) $\pi_{0\theta}$ is an *n*-embedding.

If, in addition, \mathcal{M} is n + 1-sound (so $n < \omega$) and $\rho_{n+1}^{\mathcal{M}} \leq \operatorname{crit} \pi_{0\theta}$, then

(b) $\rho_{n+1}^{\mathcal{M}} = \rho_{n+1}^{\mathcal{M}_{\theta}}$.

(c) $\pi_{0\theta}(p_{n+1}(\mathcal{M})) = p_{n+1}(\mathcal{M}_{\theta})$

(d) \mathcal{M}_{θ} is n + 1-solid, and in fact $\mathfrak{C}_{n+1}(\mathcal{M}_{\theta}) = \mathcal{M}$, and letting

 $\sigma:\mathfrak{C}_{n+1}(\mathcal{M}_{\theta})\to\mathfrak{C}_n(\mathcal{M}_{\theta})=\mathcal{M}_{\theta}$

be the inverse of the collapse, $\sigma = \pi_{0\theta}$.

PROOF. This is a fairly routine induction on θ , using Lemmas 4.4, 4.5, and 4.6. The successor case is immediate from these lemmas, so let θ be a limit. Then (a), (b) are obvious, and (d) follows easily from (c). We sketch a proof of (c): let $p_{n+1}(\mathcal{M}) = \langle \bar{r}, \bar{u} \rangle$, where $\bar{r} = \langle \alpha_0 \cdots \alpha_\ell \rangle$. For $\gamma < \theta$ let

$$b_i^{\gamma} = \operatorname{Th}_{n+1}^{\mathcal{M}_{\gamma}}(\pi_{0\gamma}(\alpha_i) \cup \{\pi_{0\gamma}(\alpha_1), \ldots, \pi_{0\gamma}(\alpha_{i-1}), \pi_{0\gamma}(\bar{u})\})$$

Part of our induction hypothesis should be that $b_i^{\gamma} \in |\mathcal{M}_{\gamma}|$ for $0 \leq i \leq \ell$. This follows from 4.6 for successor θ , and for limit θ , our current case, from the proof of 4.6. For that proof shows that for each fixed *i* there are most finitely many

 $\gamma < \theta$ such that $\pi_{\gamma+1}(b_i^{\gamma}) \neq b_i^{\gamma+1}$, since this can occur only when the ordering \leq_i^{γ} of that proof has \mathcal{M}_{γ} -cofinality equal to crit E_{γ} , but when that happens $\leq_i^{\gamma+1}$ also has $\mathcal{M}_{\gamma+1}$ -cofinality crit $E_{\gamma} < \operatorname{crit} E_{\gamma+1}$. Thus we can find $\gamma < \theta$ such that for all *i*, and all η such that $\gamma < \eta < \theta$, $\pi_{\gamma\eta}(b_i^{\gamma}) = b_i^{\eta}$.

One can now easily check that $b_i^{\theta} = \pi_{\gamma\theta}(b_i^{\gamma})$ for all *i*. This in turn implies that $\pi_{0\theta}(\bar{r})$ is the n + 1st standard parameter of $(\mathcal{M}_{\theta}, \pi_{0\theta}(\bar{u}))$. The rest of (c) is easy. \Box

REMARK. Under the hypotheses of 4.7 (including that \mathcal{M} is n + 1-sound and $\rho_{n+1}^{\mathcal{M}} \leq \operatorname{crit}(\pi_{0\theta})$), we see that \mathcal{M}_{θ} is not n + 1-sound. If $\operatorname{crit}(i_{0\theta}) \neq \tau^{\mathcal{M}_0}[\bar{\alpha}, \pi_{0\theta}(p_{n+1}(\mathcal{M}))]$ then $\forall \bar{\alpha} \in [\rho_{n+1}^{\mathcal{M}}]^{<\omega}$ and $\tau \in \operatorname{Sk}_{n+1}$.