31 Borel metric spaces and lines in the plane

We give two applications of Harrington's technique of using Gandy forcing. First let us begin by isolating a principal which we call overflow. It is an easy consequence of the Separation Theorem.

Lemma 31.1 (Overflow) Suppose $\theta(x_1, x_2, \ldots, x_n)$ is a Π_1^1 formula and A is a Σ_1^1 set such that

 $\forall x_1,\ldots,x_n\in A \ \theta(x_1,\ldots,x_n).$

Then there exists a Δ_1^1 set $D \supseteq A$ such that

$$\forall x_1,\ldots,x_n\in D \ \theta(x_1,\ldots,x_n).$$

proof:

For n = 1 this is just the Separation Theorem 27.5. For n = 2 define

$$B = \{x : \forall y (y \in A \to \theta(x, y))\}.$$

Then B is Π_1^1 set which contains A. Hence by separation there exists a Δ_1^1 set E with $A \subseteq E \subseteq B$. Now define

$$C = \{ x : \forall y (y \in E \to \theta(x, y) \}.$$

Then C is a Π_1^1 set which also contains A. By applying separation again we get a Δ_1^1 set F with $A \subseteq F \subseteq C$. Letting $D = E \cap F$ does the job. The proof for n > 2 is similar.

We say that (B, δ) is a *Borel metric space* iff B is Borel, δ is a metric on B, and for every $\epsilon \in \mathbb{Q}$ the set

$$\{(x,y)\in B^2:\delta(x,y)\leq\epsilon\}$$

is Borel.

Theorem 31.2 (Harrington [39]) If (B, δ) is a Borel metric space, then either (B, δ) is separable (i.e., contains a countable dense set) or for some $\epsilon > 0$ there exists a perfect set $P \subseteq B$ such that $\delta(x, y) > \epsilon$ for every distinct $x, y \in P$.

proof:

By relativizing the proof to an arbitrary parameter we may assume that B and the sets $\{(x, y) \in B^2 : \delta(x, y) \le \epsilon\}$ are Δ_1^1 .

Lemma 31.3 For any $\epsilon \in \mathbb{Q}^+$ if $A \subseteq B$ is Σ_1^1 and the diameter of A is less than ϵ , then there exists a Δ_1^1 set D with diameter less than ϵ and $A \subseteq D \subseteq B$.

proof:

This follows from Lemma 31.1, since

$$\theta(x,y)$$
 iff $\delta(x,y) < \epsilon$ and $x,y \in B$

is a Π_1^1 formula.

For any $\epsilon \in \mathbb{Q}^+$ look at

$$Q_{\epsilon} = \bigcup \{ D \in \Delta_1^1 : D \subseteq B \text{ and } \operatorname{diam}(D) < \epsilon \}.$$

Note that Q is a Π_1^1 set. If for every $\epsilon \in \mathbb{Q}^+$ $Q_{\epsilon} = B$, then since there are only countably many Δ_1^1 sets, (B, δ) is separable and we are done. On the other hand suppose for some $\epsilon \in \mathbb{Q}^+$ we have that

$$P_{\epsilon} = B \setminus Q_{\epsilon} \neq \emptyset.$$

Lemma 31.4 For every $c \in V \cap B$

$$P_{\epsilon} \Vdash \delta(a, \check{c}) > \epsilon/3$$

where |⊢ is Gandy forcing and a is a name for the generic real (see Lemma 30.2).

proof:

Suppose not. Then there exists $P \leq P_{\epsilon}$ such that

$$P \Vdash \delta(a,c) \leq \epsilon/3.$$

Since P is disjoint from Q_{ϵ} by Lemma 31.3 we know that the diameter of P is $\geq \epsilon$. Let

$$R = \{(a_0, a_1) : a_0, a_1 \in P \text{ and } \delta(a_0, a_1) > (2/3)\epsilon\}.$$

Then R is in \mathbb{P} and by Lemma 30.3, if a is \mathbb{P} -generic over V with $a \in R$, then a_0 and a_1 are each separately \mathbb{P} -generic over V. But $a_0 \in R$ and $a_1 \in R$ means that $\delta(a_0, c) \leq \epsilon/3$ and $\delta(a_1, c) \leq \epsilon/3$. But by absoluteness $\delta(a_0, a_1) > (2/3)\epsilon$. This contradicts the fact that δ must remain a metric by absoluteness.

Using this lemma and Lemma 30.6 is now easy to get a perfect set $P \subseteq B$ such that $\delta(x, y) > \epsilon/3$ for each distinct $x, y \in P$. This proves Theorem 31.2.

Theorem 31.5 (van Engelen, Kunen, Miller [20]) For any Σ_1^1 set A in the plane, either A can be covered by countably many lines or there exists a perfect set $P \subseteq A$ such that no three points of P are collinear.

proof:

This existence of this proof was pointed out to me by Dougherty, Jackson, and Kechris. The proof in [20] is more elementary.

By relativizing the proof we may as well assume that A is Σ_1^1 .

Lemma 31.6 Suppose B is a Σ_1^1 set lying on a line in the plane. Then there exists a Δ_1^1 set D with $B \subseteq D$ such that all points of D are collinear.

proof:

This follows from Lemma 31.1 since

 $\theta(x, y, z)$ iff x, y, and z are collinear

is Π_1^1 (even Π_1^0).

Define

~ $P = \bigcup \{ D \subseteq \mathbb{R}^2 : D \in \Delta_1^1 \text{ and all points of } D \text{ are collinear} \}.$

It is clear that $\sim P$ is Π_1^1 and therefore P is Σ_1^1 . If $P \cap A = \emptyset$, then A can be covered by countably many lines.

So assume that

$$Q = P \cap A \neq \emptyset.$$

For any two distinct points in the plane, p and q, let line(p,q) be the unique line on which they lie.

Lemma 31.7 For any two distinct points in the plane, p and q, with $p, q \in V$

 $Q \models a \notin \operatorname{line}(\check{p},\check{q}).$

proof:

Suppose for contradiction that there exists $R \leq Q$ such that

 $R \models \stackrel{\circ}{a} \in \operatorname{line}(\check{p},\check{q}).$

Since R is disjoint from

 $\bigcup \{D \subseteq \mathbb{R}^2 : D \in \Delta^1_1 \text{ and all points of } D \text{ are collinear} \}$

it follows from Lemma 31.6 that not all triples of points from R are collinear. Define the nonempty Σ_1^1 set

 $S = \{a: a_0, a_1, a_2 \in R \text{ and } a_0, a_1, a_2 \text{ are not collinear}\}$

where $a = (a_0, a_1, a_2)$ via some standard tripling function. Then $S \in \mathbb{P}$ and by the obvious generalization of Lemma 30.3 each of the a_i is \mathbb{P} -generic if a is. But this is a contradiction since all $a_i \in \text{line}(p, q)$ which makes them collinear.

The following Lemma is an easy generalization of Lemma 30.6 so we leave the proof to the reader.

Lemma 31.8 Suppose M is a countable transitive model of ZFC^{*} and \mathbb{P} is a partially ordered set in M. Then there exists $\{G_x : x \in 2^{\omega}\}$, a "perfect" set of \mathbb{P} -filters, such that for every x, y, z distinct, we have that (G_x, G_y, G_z) is $\mathbb{P} \times \mathbb{P} \times \mathbb{P}$ -generic over M.

Using Lemma 31.7 and 31.8 it is easy to get (just as in the proof of Theorem 30.1) a perfect set of triply generic points in the plane, hence no three of which are collinear. This proves Theorem 31.5.

Obvious generalizations of Theorem 31.5 are:

- 1. Any Σ_1^1 subset of \mathbb{R}^n which cannot be covered by countably many lines contains a perfect set all of whose points are collinear.
- 2. Any Σ_1^1 subset of \mathbb{R}^2 which cannot be covered by countably many circles contains a perfect set which does not contain four points on the same circle.
- 3. Any Σ_1^1 subset of \mathbb{R}^2 which cannot be covered by countably many parabolas contains a perfect set which does not contain four points on the same parabola.
- 4. For any n any Σ_1^1 subset of \mathbb{R}^2 which cannot be covered by countably many polynomials of degree < n contains a perfect set which does not contain n+1 points on the same polynomial of degree < n.
- 5. Higher dimensional version of the above involving spheres or other surfaces.

A very general statement of this type is due to Solecki [100]. Given any Polish space X, family of closed sets Q in X, and analytic $A \subseteq X$; either A can be covered by countably many elements of Q or there exists a G_{δ} set $B \subseteq A$ such that B cannot be covered by countably many elements of Q. Solecki deduces Theorem 31.5 from this.

Another result of this type is known as the Borel-Dilworth Theorem. It is due to Harrington [39]. It says that if \mathbb{P} is a Borel partially ordered set, then either \mathbb{P} is the union of countably many chains or there exist a perfect set Pof pairwise incomparable elements. One of the early Lemmas from [39] is the following:

Lemma 31.9 Suppose A is a Σ_1^1 chain in a Δ_1^1 poset \mathbb{P} . Then there exists a Δ_1^1 superset $D \supseteq A$ which is a chain.

proof:

Suppose $\mathbb{P} = (P, \leq)$ where P and \leq are Δ_1^1 . Then

 $\theta(x, y)$ iff $x, y \in P$ and $(x \leq y \text{ or } y \leq x)$

is Π_1^1 and so the result follows by Lemma 31.1.

For more on Borel linear orders, see Louveau [65]. Louveau [66] is a survey paper on Borel equivalence relations, linear orders, and partial orders.

Q.Feng [22] has shown that given an open partition of the two element subsets of ω^{ω} , that either ω^{ω} is the union of countably many 0-homogenous sets or there exists a perfect 1-homogeneous set. Todorcevic [109] has given an example showing that this is false for Borel partitions (even replacing open by closed).