31 Borel metric spaces and lines in the plane

We give two applications of Harrington's technique of using Gandy forcing. First let us begin by isolating a principal which we call overflow. It is an easy conse quence of the Separation Theorem.

Lemma 31.1 *(Overflow)* Suppose $\theta(x_1, x_2, \ldots, x_n)$ is a Π_1^1 formula and A is a Σ^1_1 set such that

 $\forall x_1, \ldots, x_n \in A \; \theta(x_1, \ldots, x_n).$

Then there exists a Δ_1^1 *set D* \supseteq *A such that*

$$
\forall x_1,\ldots,x_n\in D \ \theta(x_1,\ldots,x_n).
$$

proof:

For $n = 1$ this is just the Separation Theorem 27.5. For $n=2$ define

$$
B = \{x : \forall y(y \in A \rightarrow \theta(x, y))\}.
$$

Then *B* is Π_1^1 set which contains *A*. Hence by separation there exists a Δ_1^1 set *E* with $A \subseteq E \subseteq B$. Now define

$$
C = \{x : \forall y(y \in E \rightarrow \theta(x, y)\}.
$$

Then *C* is a Π_1^1 set which also contains *A*. By applying separation again we get a Δ_1^1 set *F* with $A \subseteq F \subseteq C$. Letting $D = E \cap F$ does the job. The proof for $n > 2$ is similar.

$$
\qquad \qquad \blacksquare
$$

We say that (B, δ) is a *Borel metric space* iff B is Borel, δ is a metric on B, and for every $\epsilon \in \mathbb{Q}$ the set

$$
\{(x,y)\in B^2: \delta(x,y)\leq \epsilon\}
$$

is Borel.

Theorem 31.2 *(Harrington [39])* If (B, δ) is a Borel metric space, then either (B, δ) *is separable (i.e., contains a countable dense set) or for some* $\epsilon > 0$ *there exists a perfect set* $P \subseteq B$ *such that* $\delta(x,y) > \epsilon$ for every distinct $x,y \in P$.

proof:

By relativizing the proof to an arbitrary parameter we may assume that *B* and the sets $\{(x,y)\in B^2: \delta(x,y)\leq \epsilon\}$ are Δ^1_1 .

Lemma 31.3 *For any* $\epsilon \in \mathbb{Q}^+$ *if* $A \subseteq B$ *is* Σ^1_1 *and the diameter of* A *is less than* ϵ , then there exists a Δ_1^1 set D with diameter less than ϵ and $A \subseteq D \subseteq B$. **proof:**

This follows from Lemma 31.1, since

$$
\theta(x,y) \quad \text{iff} \quad \delta(x,y) < \epsilon \text{ and } x,y \in B
$$

is a Π_1^1 formula.

For any $\epsilon \in \mathbb{Q}^+$ look at

$$
Q_{\epsilon} = \bigcup \{ D \in \Delta_1^1 : D \subseteq B \text{ and } \text{diam}(D) < \epsilon \}.
$$

Note that Q is a Π_1^1 set. If for every $\epsilon \in \mathbb{Q}^+$ $Q_{\epsilon} = B$, then since there are only countably many Δ_1^1 sets, (B, δ) is separable and we are done. On the other hand $\text{suppose for some } \epsilon \in \mathbb{Q}^+ \text{ we have that }$

$$
P_{\epsilon}=B\setminus Q_{\epsilon}\neq \emptyset.
$$

Lemma 31.4 For every $c \in V \cap B$

$$
P_{\epsilon} \Vdash \delta(a, \check{c}) > \epsilon/3
$$

where $\vert \vdash$ *is Gandy forcing and* $\overset{\circ}{a}$ *<i>is a name for the generic real (see Lemma 30.2).*

proof:

Suppose not. Then there exists $P \leq P_{\epsilon}$ such that

$$
P \mid \vdash \delta(a,c) \leq \epsilon/3.
$$

Since *P* is disjoint from Q_{ϵ} by Lemma 31.3 we know that the diameter of *P* is $\geq \epsilon$. Let

$$
R = \{(a_0, a_1) : a_0, a_1 \in P \text{ and } \delta(a_0, a_1) > (2/3)\epsilon\}.
$$

Then *R* is in $\mathbb P$ and by Lemma 30.3, if *a* is $\mathbb P$ -generic over *V* with $a \in R$, then a_0 and a_1 are each separately \mathbb{P} -generic over *V*. But $a_0 \in R$ and $a_1 \in R$ means that $\delta(a_0, c) \leq \epsilon/3$ and $\delta(a_1, c) \leq \epsilon/3$. But by absoluteness $\delta(a_0, a_1) > (2/3)\epsilon$. **This contradicts the fact that** *δ* **must remain a metric by absoluteness. •**

Using this lemma and Lemma 30.6 is now easy to get a perfect set $P \subseteq B$ such that $\delta(x,y) > \epsilon/3$ for each distinct $x, y \in P$. This proves Theorem 31.2.

Theorem 31.5 (van Engelen, Kunen, Miller [20]) For any Σ_1^1 set A in the *plane, either A can be covered by countably many lines or there exists a perfect* set $P \subseteq A$ such that no three points of P are collinear.

proof:

This existence of this proof was pointed out to me by Dougherty, Jackson, and Kechris. The proof in [20] is more elementary.

By relativizing the proof we may as well assume that *A* is Σ_1^1 .

Lemma 31.6 Suppose B is a Σ_1^1 set lying on a line in the plane. Then there *exists a* Δ_1^1 *set D with* $B \subseteq D$ *such that all points of D are collinear.*

proof:

This follows from Lemma 31.1 since

$$
\theta(x, y, z)
$$
 iff x, y , and z are collinear

is Π_1^1 (even Π_1^0).

Define

 $\sim P = \int \int \{ D \subseteq \mathbb{R}^2 : D \in \Delta_1^1 \text{ and all points of } D \text{ are collinear} \}.$

It is clear that $\sim P$ is Π_1^1 and therefore *P* is Σ_1^1 . If $P \cap A = \emptyset$, then *A* can be covered by countably many lines.

So assume that

$$
Q = P \cap A \neq \emptyset.
$$

For any two distinct points in the plane, p and q, let line(p, q) be the unique line on which they lie.

Lemma 31.7 For any two distinct points in the plane, p and q, with $p,q \in V$

 $Q \Vdash^{\circ} \phi \text{ line}(\check{p},\check{q}).$

proof:

Suppose for contradiction that there exists $R \leq Q$ such that

 $R \Vdash^{\circ}_{\alpha} \in \text{line}(\check{\nu}, \check{\alpha}).$

Since *R* is disjoint from

 $\left\{\n \int \{D \subseteq \mathbb{R}^2 : D \in \Delta_1^1 \text{ and all points of } D \text{ are collinear}\}\n\right\}$

it follows from Lemma 31.6 that not all triples of points from *R* are collinear. Define the nonempty Σ_1^1 set

 $S = \{a : a_0, a_1, a_2 \in R \text{ and } a_0, a_1, a_2 \text{ are not collinear}\}\$

where $a = (a_0, a_1, a_2)$ via some standard tripling function. Then $S \in \mathbb{P}$ and by the obvious generalization of Lemma 30.3 each of the α, is P-generic if *a* is. But this is a contradiction since all $a_i \in \text{line}(p, q)$ which makes them collinear. **•**

The following Lemma is an easy generalization of Lemma 30.6 so we leave the proof to the reader.

Lemma 31.8 *Suppose M is a countable transitive model of ZFC* and* P *is a partially ordered set in M. Then there exists* $\{G_x : x \in 2^\omega\}$ *, a "perfect" set of* $\mathbb{P}\text{-}filters, such that for every x,y,z distinct, we have that (G_x,G_y,G_z) is$ $\mathbb{P} \times \mathbb{P} \times \mathbb{P}$ -generic over M.

Using Lemma 31.7 and 31.8 it is easy to get (just as in the proof of Theorem 30.1) a perfect set of triply generic points in the plane, hence no three of which are collinear. This proves Theorem 31.5.

Obvious generalizations of Theorem 31.5 are:

- 1. Any Σ_1^1 subset of \mathbb{R}^n which cannot be covered by countably many lines contains a perfect set all of whose points are collinear.
- 2. Any Σ_1^1 subset of \mathbb{R}^2 which cannot be covered by countably many circles contains a perfect set which does not contain four points on the same circle.
- 3. Any $\mathbf{\Sigma}_1^1$ subset of \mathbb{R}^2 which cannot be covered by countably many parabolas contains a perfect set which does not contain four points on the same parabola.
- 4. For any n any $\mathbf{\Sigma}_1^1$ subset of \mathbb{R}^2 which cannot be covered by countably many polynomials of degree $\langle n \rangle$ contains a perfect set which does not contain $n+1$ points on the same polynomial of degree $\lt n$.
- 5. Higher dimensional version of the above involving spheres or other surfaces.

A very general statement of this type is due to Solecki [100]. Given any Polish space X, family of closed sets Q in X, and analytic $A \subseteq X$; either A can be covered by countably many elements of Q or there exists a G_{δ} set $B \subseteq A$ such that *B* cannot be covered by countably many elements of *Q.* Solecki deduces Theorem 31.5 from this.

Another result of this type is known as the Borel-Dilworth Theorem. It is due to Harrington [39]. It says that if *ψ* is a Borel partially ordered set, then either IP is the union of countably many chains or there exist a perfect set *P* of pair wise incomparable elements. One of the early Lemmas from [39] is the following:

Lemma 31.9 Suppose A is a Σ_1^1 chain in a Δ_1^1 poset $\mathbb P$. Then there exists a Δ_1^1 superset $D \supseteq A$ which is a chain.

proof:

Suppose $\mathbb{P} = (P, \leq)$ where *P* and \leq are Δ_1^1 . Then

θ(*x*, *y*) iff $x, y \in P$ and ($x \leq y$ or $y \leq x$)

is Π_1^1 and so the result follows by Lemma 31.1.

•

For more on Borel linear orders, see Louveau [65]. Louveau [66] is a survey paper on Borel equivalence relations, linear orders, and partial orders.

Q.Feng [22] has shown that given an open partition of the two element subsets of ω^{ω} , that either ω^{ω} is the union of countably many 0—homogenous sets or there exists a perfect 1—homogeneous set. Todorcevic [109] has given an example showing that this is false for Borel partitions (even replacing open by closed).

•