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31 Borel metric spaces and lines in the plane

We give two applications of Harrington's technique of using Gandy forcing. First
let us begin by isolating a principal which we call overflow. It is an easy conse-
quence of the Separation Theorem.

Lemma 31.1 (Overflow) Suppose θ{xλ,x2)..., xn) ts a U{ formula and A is a
Έ\ set such that

Then there exists a A\ set D D A such that

Vxi,...,xn GD

proof:
For n = 1 this is just the Separation Theorem 27.5.
For n = 2 define

B = {x:Vy(yeA->θ(x,y))}.

Then B is Π{ set which contains A. Hence by separation there exists aΔ{ set
E with A C E C B. Now define

Then C is a Π j set which also contains A. By applying separation again we get
a A\ set F with ACFCC. Letting D = EΠF does the job. The proof for
n > 2 is similar.

We say that (£, <5) is a jSore/ metric space iff 5 is Borel, δ is a metric on 5,
and for every e £ Q the set

is Borel.

T h e o r e m 3 1 . 2 (Harrington [39]) If(B,6) is a Borel metric space, then either

[B,δ) is separable (i.e., contains a countable dense set) or for some e > 0 there

exists a perfect set P C B such that δ(x,y) > e for every distinct xyy £ P.

proof:
By relativizing the proof to an arbitrary parameter we may assume that B

and the sets {(z, y) E B2 : 6(x, y) < e} are Δ}.

Lemma 31.3 For any c G Q + if A C B is Σ\ and the diameter of A is less
than e, then there exists a A\ set D with diameter less than e and A C D C B.
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proof:

This follows from Lemma 31.1, since

θ(x,y) iff 6(x,y) < e and z,t/G 5

is a Πj formula.

•
For any e G Q + look at

Q€ = \J{D EA\:DCB and diam(D) < e}.

Note that Q is a Πj set. If for every e G Q + Q f = B, then since there are only
countably many Δ* sets, (B, δ) is separable and we are done. On the other hand
suppose for some e G Q + we have that

L e m m a 3 1 . 4 For every ceV ΠB

where |h is Gandy forcing and a is a name for the generic real (see Lemma 30.2).

proof:
Suppose not. Then there exists P < Pe such that

P\hδ(a1c)<€/3.

Since P is disjoint from Q€ by Lemma 31.3 we know that the diameter of P is
> e. Let

Λ = {(α o,αi) :α o ,αi G P and β(αo,αi) > (2/3)e}

Then Λ is in F and by Lemma 30.3, if α is F-generic over V with a G Λ, then
αo and αi are each separately F-generic over V. But a$ G Λ and αi G Λ means
that 5(αo,c) < e/3 and δ(auc) < e/3. But by absoluteness ί(α o ,αi ) > (2/3)e.
This contradicts the fact that δ must remain a metric by absoluteness.
•

Using this lemma and Lemma 30.6 is now easy to get a perfect set P C B
such that δ(x,y) > e/3 for each distinct x,y G -P. This proves Theorem 31.2.

Theorem 31.5 (van Engelenf Kunen, Miller [20]) For any JJ| set A in the
plane, either A can be covered by countably many lines or there exists a perfect
set P C A such that no three points of P are collinear.

proof:
This existence of this proof was pointed out to me by Dougherty, Jackson,

and Kechris. The proof in [20] is more elementary.
By relativizing the proof we may as well assume that A is Σ}.
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Lemma 31.6 Suppose B is α Σ\ set lying on α line in the plane. Then there
exists a A\ set D with BCD such that all points of D are collinear.

proof:
This follows from Lemma 31.1 since

θ(xy t/, z) iff x, y, and z are collinear

is n{ (even Πj).
•

Define

~ P = \J{D C I 2 : D G Δ} and all points of D are collinear}.

It is clear that ~ P is Π{ and therefore P is Σ}. If P Π A = 0, then A can be
covered by count ably many lines.

So assume that

For any two distinct points in the plane, p and q, let line(p, q) be the unique line
on which they lie.

Lemma 31.7 For any two distinct points in the plane, p and q, with p,q £ V

Q\\-a£line(p,q).

proof:
Suppose for contradiction that there exists R <Q such that

Since R is disjoint from

[J{D C 1 2 : D G Δ } and all points of D are collinear}

it follows from Lemma 31.6 that not all triples of points from R are collinear.
Define the nonempty Σ,\ set

S = {a : αo,αi,ct2 E R and αo,αi,α2 are not collinear}

where a = (00,01,02) via some standard tripling function. Then 5 G P and by
the obvious generalization of Lemma 30.3 each of the α, is P-generic if a is. But
this is a contradiction since all α, G line(p, g) which makes them collinear.
•

The following Lemma is an easy generalization of Lemma 30.6 so we leave
the proof to the reader.

L e m m a 31.8 Suppose M is a countable transitive model of ZFC* and P is a
partially ordered set in M. Then there exists {Gx : x G 2ω}, a 'perfect" set
ofψ-filters, such that for every x,y,z distinct, we have that (GXiGy,Gz) is
P x P x Ψ-geneήc over M.
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Using Lemma 31.7 and 31.8 it is easy to get (just as in the proof of Theorem
30.1) a perfect set of triply generic points in the plane, hence no three of which
are collinear. This proves Theorem 31.5.
•

Obvious generalizations of Theorem 31.5 are:

1. Any Σ} subset of Mn which cannot be covered by countably many lines
contains a perfect set all of whose points are collinear.

2. Any Σ} subset of R2 which cannot be covered by countably many circles
contains a perfect set which does not contain four points on the same circle.

3. Any Σj subset of M2 which cannot be covered by countably many parabolas
contains a perfect set which does not contain four points on the same
parabola.

4. For any n any Σ} subset of 1R2 which cannot be covered by countably many
polynomials of degree < n contains a perfect set which does not contain
n + 1 points on the same polynomial of degree < n.

5. Higher dimensional version of the above involving spheres or other surfaces.

A very general statement of this type is due to Solecki [100]. Given any
Polish space X, family of closed sets Q in X, and analytic A C X; either A can
be covered by countably many elements of Q or there exists a Gs set B C A such
that B cannot be covered by countably many elements of Q. Solecki deduces
Theorem 31.5 from this.

Another result of this type is known as the Borel-Dilworth Theorem. It is
due to Harrington [39]. It says that if ψ is a Borel partially ordered set, then
either IP is the union of countably many chains or there exist a perfect set P
of pair wise incomparable elements. One of the early Lemmas from [39] is the
following:

Lemma 31.9 Suppose A is a Σ{ chain in a A\ poset P. Then there exists a
A\ superset D D A which is a chain.

proof:
Suppose Ψ = (F, <) where P and < are A\. Then

θ(x,y) iff x,yeP and (x < y or y < x)

is Π} and so the result follows by Lemma 31.1.
•

For more on Borel linear orders, see Louveau [65]. Louveau [66] is a survey
paper on Borel equivalence relations, linear orders, and partial orders.

Q.Feng [22] has shown that given an open partition of the two element subsets
of ωω, that either ωω is the union of countably many 0—homogenous sets or there
exists a perfect 1—homogeneous set. Todorcevic [109] has given an example
showing that this is false for Borel partitions (even replacing open by closed).




