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31 Borel metric spaces and lines in the plane

We give two applications of Harrington’s technique of using Gandy forcing. First
let us begin by isolating a principal which we call overflow. It is an easy conse-
quence of the Separation Theorem.

Lemma 31.1 (Overflow) Suppose 0(z1,z2,...,2n) 1s a I} formula and A is a
Y1 set such that
Vei,...,zn €A 0(.’1,‘1,‘..,1‘,,).

Then there exists a Al set D D A such that
Vei,...,2n €D O(z1,...,2,).

proof:
For n =1 this is just the Separation Theorem 27.5.
For n = 2 define

B = {:c:Vy(y €A -—)0(-’8,1]))}-

Then B is I1} set which contains A. Hence by separation there exists a Al set
E with A C E C B. Now define

C={z:VYy(y € E — 0(z,y)}.

Then C is a II} set which also contains A. By applying separation again we get
a Al set F with A C F C C. Letting D = E N F does the job. The proof for
n > 2 is similar.
|

We say that (B, 6) is a Borel metric space iff B is Borel, § is a metric on B,
and for every ¢ € Q the set

{(z,y) € B* : 6(z,y) < ¢}

is Borel.

Theorem 31.2 (Harrington [39]) If (B, 6) is a Borel metric space, then either
(B, 8) is separable (i.c., contains a countable dense set) or for some € > 0 there
ezists a perfect set P C B such that §(z,y) > € for every distinct x,y € P.

proof:
By relativizing the proof to an arbitrary parameter we may assume that B

and the sets {(z,y) € B? : §(z,y) < €} are A}.

Lemma 31.3 For any ¢ € Qt if A C B is X} and the diameter of A is less
than €, then there exists a Al set D with diameter less than € and AC D C B.
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proof:
This follows from Lemma 31.1, since

O(z,y) iff é6(z,y)<eandz,y€B

is a I} formula.
|
For any ¢ € Q% look at

Qe = U{D € A} : D C B and diam(D) < €}.

Note that Q is a I} set. If for every ¢ € Q* Q. = B, then since there are only
countably many A} sets, (B, §) is separable and we are done. On the other hand

suppose for some € € Q* we have that
P, =B\Q:#0.
Lemma 31.4 For everyce VNB
P |- §(a,&) > ¢/3
where | is Gandy forcing and a is a name for the generic real (see Lemma 30.2).

proof:
Suppose not. Then there exists P < P, such that

P |- 6(a,c) < €/3.

Since P is disjoint from @, by Lemma 31.3 we know that the diameter of P is

> €. Let
R = {(ao,a1) : ap,a1 € P and §(ap,a1) > (2/3)e}.

Then R is in P and by Lemma 30.3, if a is IP-generic over V with a € R, then
ao and a; are each separately P-generic over V. But ag € R and a; € R means
that §(ao,c) < €/3 and 6(ay,c) < ¢/3. But by absoluteness §(ao, a1) > (2/3)e.
This contradicts the fact that § must remain a metric by absoluteness.
]

Using this lemma and Lemma 30.6 is now easy to get a perfect set P C B
such that 6(z,y) > €¢/3 for each distinct z,y € P. This proves Theorem 31.2.
|

Theorem 31.5 (van Engelen, Kunen, Miller [20]) For any ¥} set A in the
plane, either A can be covered by countably many lines or there ezists a perfect
set P C A such that no three points of P are collinear.

proof:
This existence of this proof was pointed out to me by Dougherty, Jackson,

and Kechris. The proof in [20] is more elementary.
By relativizing the proof we may as well assume that A is I}.
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Lemma 31.6 Suppose B is a X} set lying on a line in the plane. Then there
ezists a A} set D with B C D such that all points of D are collinear-.

proof:
This follows from Lemma 31.1 since

0(z,y,2) iff z,y, and z are collinear

is II{ (even IIY).
n
Define

~P= U{D CR?:D e A} and all points of D are collinear}.

It is clear that ~ P is II{ and therefore P is £}. If PN A = 0, then A can be
covered by countably many lines.
So assume that

Q=PNA#0.

For any two distinct points in the plane, p and g, let line(p, ¢) be the unique line
on which they lie.

Lemma 31.7 For any two distinct points in the plane, p and q, with p,qe V

Q |Fa¢ line(p, §).

proof:
Suppose for contradiction that there exists R < @ such that

R |Fa€ line(p, §).
Since R is disjoint from
U{D CR?: D€ Al and all points of D are collinear}

it follows from Lemma 31.6 that not all triples of points from R are collinear.
Define the nonempty £} set

S = {a: ag,a1,a2 € R and ag, a1, a2 are not collinear}

where a = (ag, @1, a2) via some standard tripling function. Then S € PP and by
the obvious generalization of Lemma 30.3 each of the a; is P-generic if a is. But
this is a contradiction since all a; € line(p, ¢) which makes them collinear.
|

The following Lemma is an easy generalization of Lemma 30.6 so we leave
the proof to the reader.

Lemma 31.8 Suppose M is a countable transitive model of ZFC* and P is a
partially ordered set in M. Then there ezists {G; : ¢ € 2°}, a “perfect” set
of P-filters, such that for every z,y,z distinct, we have that (Gz,Gy,G.) s
P x P x P-generic over M. '
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Using Lemma 31.7 and 31.8 it is easy to get (just as in the proof of Theorem
30.1) a perfect set of triply generic points in the plane, hence no three of which
are collinear. This proves Theorem 31.5.

u
Obvious generalizations of Theorem 31.5 are:

1. Any X1 subset of R” which cannot be covered by countably many lines
contains a perfect set all of whose points are collinear.

2. Any 3} subset of R? which cannot be covered by countably many circles
contains a perfect set which does not contain four points on the same circle.

3. Any X! subset of RZ which cannot be covered by countably many parabolas
contains a perfect set which does not contain four points on the same
parabola.

4. For any n any X1 subset of R? which cannot be covered by countably many
polynomials of degree < n contains a perfect set which does not contain
n + 1 points on the same polynomial of degree < n.

5. Higher dimensional version of the above involving spheres or other surfaces.

A very general statement of this type is due to Solecki [100]. Given any
Polish space X, family of closed sets @ in X, and analytic A C X; either A can
be covered by countably many elements of ) or there exists a G5 set B C A such
that B cannot be covered by countably many elements of ). Solecki deduces
Theorem 31.5 from this.

Another result of this type is known as the Borel-Dilworth Theorem. It is
due to Harrington [39]. It says that if P is a Borel partially ordered set, then
either [P is the union of countably many chains or there exist a perfect set P
of pairwise incomparable elements. One of the early Lemmas from [39] is the
following;:

Lemma 31.9 Suppose A is a £ chain in a Al poset P. Then there erists a
Al superset D D A which is a chain.

proof:
Suppose P = (P, <) where P and < are A}l. Then

0(z,y) iff z,yePand (z<yory<z)

is II} and so the result follows by Lemma 31.1.
| |

For more on Borel linear orders, see Louveau [65]. Louveau [66] is a survey
paper on Borel equivalence relations, linear orders, and partial orders.

Q.Feng [22] has shown that given an open partition of the two element subsets
of w*, that either w” is the union of countably many 0—homogenous sets or there
exists a perfect 1—homogeneous set. Todorcevic [109] has given an example
showing that this is false for Borel partitions (even replacing open by closed).





