27 Kleene Separation Theorem

We begin by defining the hyperarithmetic subsets of ω^{ω} . We continue with our view of Borel sets as well-founded trees with little dohickey's (basic clopen sets) attached to its terminal nodes.

A code for a hyperarithmetic set is a triple (T, p, q) where T is a recursive well-founded subtree of $\omega^{<\omega}$, $p: T^{>0} \to 2$ is recursive, and $q: T^0 \to \mathcal{B}$ is a recursive map, where \mathcal{B} is the set of basic clopen subsets of ω^{ω} including the empty set. Given a code (T, p, q) we define $\langle C_s : s \in T \rangle$ as follows.

• if s is a terminal node of T, then

$$C_s = q(s)$$

• if s is a not a terminal node and p(s) = 0, then

$$C_s = \bigcup \{ C_s \cdot_n : s \cdot n \in T \},\$$

and

• if s is a not a terminal node and p(s) = 1, then

$$C_s = \bigcap \{ C_s \cdot_n : s \cdot n \in T \}.$$

Here we are being a little more flexible by allowing unions and intersections at various nodes.

Finally, the set C coded by (T, p, q) is the set $C_{\langle \rangle}$. A set $C \subseteq \omega^{\omega}$ is hyperarithmetic iff it is coded by some recursive (T, p, q).

Theorem 27.1 (Kleene [53]) Suppose A and B are disjoint Σ_1^1 subsets of ω^{ω} . Then there exists a hyperarithmetic set C which separates them, i.e., $A \subseteq C$ and $C \cap B = \emptyset$.

proof:

This amounts basically to a constructive proof of the classical Separation Theorem 26.1.

Let $A = p[T_A]$ and $B = p[T_B]$ where T_A and T_B are recursive subtrees of $\bigcup_{n \in \omega} (\omega^n \times \omega^n)$, and

$$p[T_A] = \{ y : \exists x \forall n \ (x \upharpoonright n, y \upharpoonright n) \in T_A \}$$

and similarly for $p[T_B]$. Now define the tree

$$T = \{(u, v, t) : (u, t) \in T_A \text{ and } (v, t) \in T_B\}.$$

Notice that T is recursive tree which is well-founded. Any infinite branch thru T would give a point in the intersection of A and B which would contradict the fact that they are disjoint.

Let T^+ be the tree of all nodes which are either "in" or "just out" of T, i.e., $(u, v, t) \in T^+$ iff $(u \upharpoonright n, v \upharpoonright n, t \upharpoonright n) \in T$ where |u| = |v| = |t| = n + 1. Now we define the family of sets

$$\langle C_{(u,v,t)} : (u,v,t) \in T^+ \rangle$$

as follows.

Suppose $(u, v, t) \in T^+$ is a terminal node of T^+ . Then since $(u, v, t) \notin T$ either $(u, t) \notin T_A$ in which case we define $C_{(u,v,t)} = \emptyset$ or $(u, t) \in T_A$ and $(v, t) \notin T_B$ in which case we define $C_{(u,v,t)} = [t]$. Note that in either case $C_{(u,v,t)} \subseteq [t]$ separates $p[T_A^{u,t}]$ from $p[T_B^{v,t}]$.

Lemma 27.2 Suppose $\langle A_n : n < \omega \rangle$, $\langle B_m : m < \omega \rangle$, $\langle C_{nm} : n, m < \omega \rangle$ are such that for every n and m C_{nm} separates A_n from B_m . Then both $\bigcup_{n < \omega} \bigcap_{m < \omega} C_{nm}$ and $\bigcap_{m < \omega} \bigcup_{n < \omega} C_{nm}$ separate $\bigcup_{n < \omega} A_n$ from $\bigcup_{m < \omega} B_m$.

proof:

Left to reader.

It follows from the Lemma that if we let

$$C_{(u,v,t)} = \bigcup_{k < \omega} \bigcap_{m < \omega} \bigcup_{n < \omega} C_{(u^{\hat{n}}, v^{\hat{m}}, t^{\hat{k}})}$$

(or any other permutation¹² of \bigcap and \bigcup), then by induction on rank of (u, v, t)in T^+ that $C_{(u,v,t)} \subseteq [t]$ separates $p[T_A^{u,t}]$ from $p[T_B^{v,t}]$. Hence, $C = C_{(\langle \rangle, \langle \rangle, \langle \rangle)}$ separates $A = p[T_A]$ from $B = p[T_B]$.

To get a hyperarithmetic code use the tree consisting of all subsequences of sequences of the form,

$$\langle t(0), v(0), u(0), \ldots, t(n), v(n), u(n) \rangle$$

where $(u, v, t) \in T^+$. Details are left to the reader.

The theorem also holds for A and B disjoint Σ_1^1 subsets of ω . One way to see this is to identify ω with the constant functions in ω^{ω} . The definition of hyperarithmetic code (T, p, q) is changed only by letting q map into the finite subsets of ω .

Theorem 27.3 If C is a hyperarithmetic set, then C is Δ_1^1 .

proof:

This is true whether C is a subset of ω^{ω} or ω . We just do the case $C \subseteq \omega^{\omega}$. Let (T, p, q) be a hyperarithmetic code for C. Then $x \in C$ iff there exists a function $in: T \to \{0, 1\}$ such that

 $^{^{12}}$ Algebraic symbols are used when you do not know what you are talking about (Philippe Schnoebelen).

- 1. if s a terminal node of T, then in(s) = 1 iff $x \in q(s)$,
- 2. if $s \in T$ and not terminal and p(s) = 0, then in(s) = 1 iff there exists n with $s n \in T$ and in(s n) = 1,
- 3. if $s \in T$ and not terminal and p(s) = 1, then in(s) = 1 iff for all n with $s n \in T$ we have in(s n) = 1, and finally,
- 4. $in(\langle \rangle) = 1$.

Note that (1) thru (4) are all Δ_1^1 (being a terminal node in a recursive tree is Π_1^0 , etc). It is clear that *in* is just coding up whether or not $x \in C_s$ for $s \in T$. Consequently, C is Σ_1^1 . To see that $\sim C$ is Σ_1^1 note that $x \notin C$ iff there exists $in: T \to \{0, 1\}$ such that (1), (2), (3), and (4)' where

4' $in(\langle \rangle) = 0.$

Corollary 27.4 A set is Δ_1^1 iff it is hyperarithmetic.

Corollary 27.5 If A and B are disjoint Σ_1^1 sets, then there exists a Δ_1^1 set which separates them.

For more on the effective Borel hierarchy, see Hinman [40]. See Barwise [10] for a model theoretic or admissible sets approach to the hyperarithmetic hierarchy.