27 Kleene Separation Theorem

We begin by defining the hyperarithmetic subsets of ω^{ω}. We continue with our view of Borel sets as well-founded trees with little dohickey's (basic clopen sets) attached to its terminal nodes.

A code for a hyperarithmetic set is a triple (T, p, q) where T is a recursive well-founded subtree of $\omega^{<\omega}, p: T^{>0} \rightarrow 2$ is recursive, and $q: T^{0} \rightarrow \mathcal{B}$ is a recursive map, where \mathcal{B} is the set of basic clopen subsets of ω^{ω} including the empty set. Given a code (T, p, q) we define $\left\langle C_{s}: s \in T\right\rangle$ as follows.

- if s is a terminal node of T, then

$$
C_{s}=q(s)
$$

- if s is a not a terminal node and $p(s)=0$, then

$$
C_{s}=\bigcup\left\{C_{s} \wedge_{n}: s^{\wedge} n \in T\right\}
$$

and

- if s is a not a terminal node and $p(s)=1$, then

$$
C_{s}=\bigcap\left\{C_{s^{\wedge} n}: s^{\wedge} n \in T\right\} .
$$

Here we are being a little more flexible by allowing unions and intersections at various nodes.

Finally, the set C coded by (T, p, q) is the set $C_{(\rangle}$. A set $C \subseteq \omega^{\omega}$ is hyperarithmetic iff it is coded by some recursive (T, p, q).

Theorem 27.1 (Kleene [53]) Suppose A and B are disjoint Σ_{1}^{1} subsets of ω^{ω}. Then there exists a hyperarithmetıc set C which separates them, i.e., $A \subseteq C$ and $C \cap B=\emptyset$.
proof:
This amounts basically to a constructive proof of the classical Separation Theorem 26.1.

Let $A=p\left[T_{A}\right]$ and $B=p\left[T_{B}\right]$ where T_{A} and T_{B} are recursive subtrees of $\bigcup_{n \in \omega}\left(\omega^{n} \times \omega^{n}\right)$, and

$$
p\left[T_{A}\right]=\left\{y: \exists x \forall n \quad(x \upharpoonright n, y \upharpoonright n) \in T_{A}\right\}
$$

and similarly for $p\left[T_{B}\right]$. Now define the tree

$$
T=\left\{(u, v, t):(u, t) \in T_{A} \text { and }(v, t) \in T_{B}\right\}
$$

Notice that T is recursive tree which is well-founded. Any infinite branch thru T would give a point in the intersection of A and B which would contradict the fact that they are disjoint.

Let T^{+}be the tree of all nodes which are either "in" or "just out" of T, i.e., $(u, v, t) \in T^{+}$iff $(u|n, v| n, t \mid n) \in T$ where $|u|=|v|=|t|=n+1$. Now we define the family of sets

$$
\left\langle C_{(u, v, t)}:(u, v, t) \in T^{+}\right\rangle
$$

as follows.
Suppose $(u, v, t) \in T^{+}$is a terminal node of T^{+}. Then since $(u, v, t) \notin T$ either $(u, t) \notin T_{A}$ in which case we define $C_{(u, v, t)}=\emptyset$ or $(u, t) \in T_{A}$ and $(v, t) \notin T_{B}$ in which case we define $C_{(u, v, t)}=[t]$. Note that in either case $C_{(u, v, t)} \subseteq[t]$ separates $p\left[T_{A}^{u, t}\right]$ from $p\left[T_{B}^{v, t}\right]$.

Lemma 27.2 Suppose $\left\langle A_{n}: n<\omega\right\rangle,\left\langle B_{m}: m<\omega\right\rangle\left\langle C_{n m}: n, m<\omega\right\rangle$ are such that for every n and $m C_{n m}$ separates A_{n} from B_{m}. Then both $\bigcup_{n<\omega} \bigcap_{m<\omega} C_{n m}$ and $\bigcap_{m<\omega} \bigcup_{n<\omega} C_{n m}$ separate $\bigcup_{n<\omega} A_{n}$ from $\bigcup_{m<\omega} B_{m}$.
proof:
Left to reader.
\square
It follows from the Lemma that if we let

$$
C_{(u, v, t)}=\bigcup_{k<\omega} \bigcap_{m<\omega} \bigcup_{n<\omega} C_{\left(u^{\wedge} n, v^{\wedge} m, t^{\wedge} k\right)}
$$

(or any other permutation ${ }^{12}$ of \bigcap and \bigcup), then by induction on rank of (u, v, t) in T^{+}that $C_{(u, v, t)} \subseteq[t]$ separates $p\left[T_{A}^{u, t}\right]$ from $p\left[T_{B}^{v, t}\right]$. Hence, $C=C_{((\rangle,(\rangle,())}$ separates $A=p\left[T_{A}\right]$ from $B=p\left[T_{B}\right]$.

To get a hyperarithmetic code use the tree consisting of all subsequences of sequences of the form,

$$
\langle t(0), v(0), u(0), \ldots, t(n), v(n), u(n)\rangle
$$

where $(u, v, t) \in T^{+}$. Details are left to the reader.
The theorem also holds for A and B disjoint Σ_{1}^{1} subsets of ω. One way to see this is to identify ω with the constant functions in ω^{ω}. The definition of hyperarithmetic code (T, p, q) is changed only by letting q map into the finite subsets of ω.

Theorem 27.3 If C is a hyperarithmetic set, then C is Δ_{1}^{1}.
proof:
This is true whether C is a subset of ω^{ω} or ω. We just do the case $C \subseteq \omega^{\omega}$. Let (T, p, q) be a hyperarithmetic code for C. Then $x \in C$ iff there exists a function in : $T \rightarrow\{0,1\}$ such that

[^0]1. if s a terminal node of T, then $\operatorname{in}(s)=1$ iff $x \in q(s)$,
2. if $s \in T$ and not terminal and $p(s)=0$, then $\operatorname{in}(s)=1$ iff there exists n with $s^{\wedge} n \in T$ and $i n\left(s^{\wedge} n\right)=1$,
3. if $s \in T$ and not terminal and $p(s)=1$, then $i n(s)=1$ iff for all n with $s^{\wedge} n \in T$ we have $i n\left(s^{\wedge} n\right)=1$, and finally,
4. $i n(\rangle)=1$.

Note that (1) thru (4) are all Δ_{1}^{1} (being a terminal node in a recursive tree is Π_{1}^{0}, etc). It is clear that in is just coding up whether or not $x \in C_{s}$ for $s \in T$. Consequently, C is Σ_{1}^{1}. To see that $\sim C$ is Σ_{1}^{1} note that $x \notin C$ iff there exists in : $T \rightarrow\{0,1\}$ such that (1), (2), (3), and (4)' where
$4^{\prime} \quad i n(\langle \rangle)=0$.

Corollary 27.4 A set is Δ_{1}^{1} iff it is hyperarithmetic.
Corollary 27.5 If A and B are disjoint Σ_{1}^{1} sets, then there exists a Δ_{1}^{1} set which separates them.

For more on the effective Borel hierarchy, see Hinman [40]. See Barwise [10] for a model theoretic or admissible sets approach to the hyperarithmetic hierarchy.

[^0]: ${ }^{12}$ Algebraic symbols are used when you do not know what you are talking about (Philippe Schnoebelen).

