18 Constructible well-orderings

Gödel proved the axiom of choice relatively consistent with ZF by producing a definable well-order of the constructible universe. He announced in Gödel [32] that if V=L, then there exists an uncountable Π_1^1 set without perfect subsets. Kuratowski wrote down a proof of the theorem below but the manuscript was lost during World War II (see Addison [2]).

A set is Σ_2^1 iff it is the projection of a Π_1^1 set.

Theorem 18.1 [V=L] There exists a Δ_2^1 well-ordering of ω^{ω} .

proof:

Recall the definition of Gödel's Constructible sets L. $L_0 = \emptyset$, $L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}$ for λ a limit ordinal, and $L_{\alpha+1}$ is the definable subsets of L_{α} . Definable means with parameters from L_{α} . $L = \bigcup_{\alpha \in OR} L_{\alpha}$.

The set x is constructed before y, $(x <_c y)$ iff the least α such that $x \in L_\alpha$ is less than the least β such that $y \in L_\beta$, or $\alpha = \beta$ and the "least" defining formula for x is less than the one for y. Here "least" basically boils down to lexicographical order. Whatever the exact formulation of $x <_c y$ is it satisfies:

$$x <_c y$$
 iff $L_{\alpha} \models x <_c y$

where $x, y \in L_{\alpha}$ and $L_{\alpha} \models \text{ZFC}^*$ where ZFC* is a sufficiently large finite fragment of ZFC. (Actually, it is probably enough for α to be a limit ordinal.) Assuming V = L, for $x, y \in \omega^{\omega}$ we have that $x <_c y$ iff there exists $E \subseteq \omega \times \omega$ and $\hat{x}, \hat{y} \in \omega$ such that letting $M = (\omega, E)$ then

- 1. E is extensional and well-founded,
- 2. $M \models ZFC^* + V = L$
- 3. $M \models \mathring{x} <_c \mathring{y}$,
- 4. for all $n, m \in \omega$ $(x(n) = m \text{ iff } M \models \mathring{x}(\mathring{n}) = \mathring{m})$, and
- 5. for all $n, m \in \omega$ $(y(n) = m \text{ iff } M \models \mathring{y}(\mathring{n}) = \mathring{m}).$

The first clause guarantees (by the Mostowski collapsing lemma) that M is isomorphic to a transitive set. The second, that this transitive set will be of the form L_{α} . The last two clauses guarantee that the image under the collapse of \hat{x} is x and \hat{y} is y.

Well-foundedness of E is Π_1^1 . The remaining clauses are all Π_n^0 for some $n \in \omega$. Hence, we have given a Σ_2^1 definition of $<_c$. But a total ordering < which is Σ_n^1 is Δ_n^1 , since $x \not< y$ iff y = x or y < x. It follows that $<_c$ is also Π_2^1 and hence Δ_2^1 .