12 Boolean algebra of order ω_1

Now we use the Martin-Solovay technique to produce a countably generated ccc cBa with order ω_1 . Before doing so we introduce a countable version of α -forcing which will be useful for other results also. It is similar to one used in Miller [74] to give a simple proof about generating sets in the category algebra.

Let T be a nice tree of rank α $(2 \le \alpha < \omega_1)$. Define

$$\mathbb{P}_{\alpha} = \{ p: D \to \omega : D \in [\omega]^{<\omega}, \forall s, s \, \hat{n} \in D \ p(s) \neq p(s \, \hat{n}) \}.$$

This is ordered by $p \leq q$ iff $p \supseteq q$. For $p \in \mathbb{P}_{\alpha}$ define

 $\operatorname{rank}(p) = \max\{r_T(s) : s \in \operatorname{domain}(p)\}$

where r_T is the rank function on T.

Lemma 12.1 rank : $\mathbb{P}_{\alpha} \to \alpha + 1$ satisfies the Rank Lemma 7.4, i.e., for every $p \in \mathbb{P}_{\alpha}$ and $\beta \geq 1$ there exists $\hat{p} \in \mathbb{P}_{\alpha}$ such that

- 1. \hat{p} is compatible with p,
- 2. $\operatorname{rank}(\hat{p}) \leq \beta$, and
- 3. for any $q \in \mathbb{P}_{\alpha}$ if rank $(q) < \beta$ and \hat{p} and q are compatible, then p and q are compatible.

proof:

First let $p_0 \leq p$ be such that for every $s \in \text{domain}(p)$ and $n \in \omega$ if

$$r_T(s n) < \beta < \lambda = r_T(s)$$

then there exists $m \in \omega$ with $p_0(s \hat{n} m) = p(s)$. Note that

 $r_T(s n) < \beta < \lambda = r_T(s)$

can happen only when λ is a limit ordinal and for any such s there can be at most finitely many n (because T is a nice tree).

Now let

 $E = \{s \in \operatorname{domain}(p_0) : r_T(s) \le \beta\}$

and define $\hat{p} = p_0 \upharpoonright E$. It is compatible with p since p_0 is stronger than both. From its definition it has rank $\leq \beta$. So let $q \in \mathbb{P}_{\alpha}$ have rank $(q) < \beta$ and be incompatible with p. We need to show it is incompatible with \hat{p} . There are only three ways for q and p to be incompatible:

1. $\exists s \in \text{domain}(p) \cap \text{domain}(q) \ p(s) \neq q(s)$,

- 2. $\exists s \in \text{domain}(q) \ \exists s \ n \in \text{domain}(p) \ q(s) = p(s \ n), \text{ or }$
- 3. $\exists s \in \text{domain}(p) \exists s \ n \in \text{domain}(q) \ p(s) = q(s \ n).$

For (1) since rank(q) < β we know $r_T(s) < \beta$ and hence by construction s is in the domain of \hat{p} and so q and \hat{p} are incompatible. For (2) since

$$r_T(s \hat{\ } n) < r_T(s) < eta$$

we get the same conclusion. For (3) since $s n \in \text{domain}(q)$ we know

$$r_T(\hat{s}n) < \beta.$$

If $r_T(s) = \beta$, then $s \in \text{domain}(\hat{p})$ and so q and \hat{p} are incompatible. Otherwise since T is a nice tree,

$$r_T(s \,\hat{}\, n) < eta < r_T(s) = \lambda$$

a limit ordinal. In this case we have arranged \hat{p} so that there exists m with $p(s) = \hat{p}(s \ n \ m)$ and so again q and \hat{p} are incompatible.

Lemma 12.2 There exists a countable family \mathcal{D} of dense subsets of \mathbb{P}_{α} such that for every G a \mathbb{P}_{α} -filter which meets each dense set in \mathcal{D} the filter G determines a map $x: T \to \omega$ by $p \in G$ iff $p \subseteq x$. This map has the property that for every $s \in T^{>0}$ the value of x(s) is the unique element of ω not in $\{x(s \cap n) : n \in \omega\}$.

proof:

For each $s \in T$ the set

$$D_s = \{p : s \in \operatorname{domain}(p)\}$$

is dense. Also for each $s \in T^{>0}$ and $k \in \omega$ the set

$$E_s^k = \{p : p(s) = k \text{ or } \exists n \ p(s \cap n) = k\}$$

is dense.

The poset \mathbb{P}_{α} is separative, since if $p \not\leq q$ then either p and q are incompatible or there exists $s \in \text{domain}(q) \setminus \text{domain}(p)$ in which case we can find $\hat{p} \leq p$ with $\hat{p}(s) \neq q(s)$.

Now if $\mathbb{P}_{\alpha} \subseteq \mathbb{B}$ is dense in the cBa \mathbb{B} , it follows that for each $p \in \mathbb{P}_{\alpha}$

$$p = [p \subseteq x]$$

and for any $s \in T^{>0}$ and k

$$[x(s) = k] = \prod_{m \in \omega} [x(\hat{s} m) \neq k].$$

Consequently if

$$C = \{ p \in \mathbb{P}_{\alpha} : \operatorname{domain}(p) \subseteq T^0 \}$$

then $C \subseteq \mathbb{B}$ has the property that $\operatorname{ord}(C) = \alpha + 1$.

Now let $\sum_{\alpha \leq \omega_1} \mathbb{P}_{\alpha}$ be the *direct sum*, i.e., $p = \langle p_{\alpha} : \alpha < \omega_1 \rangle$ with $p_{\alpha} \in \mathbb{P}_{\alpha}$ and $p_{\alpha} = \mathbf{1}_{\alpha} = \emptyset$ for all but finitely many α . This forcing is equivalent to adding ω_1 Cohen reals, so the usual delta-lemma argument shows that it is ccc. Let

$$X = \{x_{lpha, s, n} \in 2^\omega : lpha < \omega_1, s \in T^0_lpha, n \in \omega\}$$

be distinct elements of 2^{ω} . For $G = \langle G_{\alpha} : \alpha < \omega_1 \rangle$ which is $\sum_{\alpha < \omega_1} \mathbb{P}_{\alpha}$ -generic over V, use X and Silver forcing to code the rank zero parts of each G_{α} , i.e., define $(\sum_{\alpha < \omega_1} \mathbb{P}_{\alpha}) * \overset{\circ}{\mathbb{Q}}$ by $(p, q) \in (\sum_{\alpha < \omega_1} \mathbb{P}_{\alpha}) * \overset{\circ}{\mathbb{Q}}$

 $p\in \sum_{\alpha<\omega_1}\mathbb{P}_\alpha$ and q is a finite set of consistent sentences of the form:

1. "
$$x \notin U_n$$
" where $x \in X$ or

2. " $B \subseteq \overset{\circ}{U}_n$ " where B is clopen and $n \in \omega$.

with the additional proviso that whenever $x_{\alpha,s,n} \notin \overset{\circ}{U}_n$ " $\in q$ then s is in the domain of p_{α} and $p_{\alpha}(s) \neq n$. This is a little stronger than saying $p \models \check{q} \in \mathbb{Q}$, but would be true for a dense set of conditions.

The rank function

$$\operatorname{rank}:(\sum_{\alpha<\omega_1}\mathbb{P}_{\alpha})\ast \overset{\circ}{\mathbb{Q}}:\to \omega_1$$

is defined by

$$\operatorname{rank}(\langle p_{\alpha} : \alpha < \omega_1 \rangle, q) = \max\{\operatorname{rank}(p_{\alpha}) : \alpha < \omega_1\}$$

which means we ignore q entirely.

Lemma 12.3 For every $p \in (\sum_{\alpha < \omega_1} \mathbb{P}_{\alpha}) * \overset{\circ}{\mathbb{Q}}$ and $\beta \ge 1$ there exists \hat{p} in the poset $(\sum_{\alpha < \omega_1} \mathbb{P}_{\alpha}) * \overset{\circ}{\mathbb{Q}}$ such that

- 1. \hat{p} is compatible with p,
- 2. $\operatorname{rank}(\hat{p}) \leq \beta$, and
- 3. for any $q \in (\sum_{\alpha < \omega_1} \mathbb{P}_{\alpha}) * \overset{\circ}{\mathbb{Q}}$ if rank $(q) < \beta$ and \hat{p} and q are compatible, then p and q are compatible.

proof:

Apply Lemma 12.1 to each p_{α} to obtain $\hat{p_{\alpha}}$ and then let

$$\hat{p} = (\langle \hat{p_{\alpha}} : \alpha < \omega_1 \rangle, q).$$

This is still a condition because \hat{p}_{α} retains all the rank zero part of p_{α} which is needed to force $q \in \overset{\circ}{\mathbb{Q}}$.

Let $(\sum_{\alpha < \omega_1} \mathbb{P}_{\alpha}) * \mathbb{Q} \subseteq \mathbb{B}$ be a dense subset of the ccc cBa \mathbb{B} . We show that \mathbb{B} is countably generated and $\operatorname{ord}(\mathbb{B}) = \omega_1$. A strange thing about ω_1 is that if one

countable set of generators has order ω_1 , then all countable sets of generators have order ω_1 . This is because any countable set will be generated by a countable stage.

One set of generators for \mathbb{B} is

$$C = \{ [\check{B} \subseteq \check{U_n}] : B \text{ clopen }, n \in \omega \}.$$

Note that

$$[x \in \cap_{n \in \omega} U_n] = \prod_{n \in \omega} [x \in U_n] = \prod_{n \in \omega} \sum \{ [\check{B} \subseteq \mathring{U_n}] : x \in B \}$$

and also each \mathbb{P}_{α} is generated by

$$\{p \in \mathbb{P}_{\alpha} : \operatorname{domain}(p) \subseteq T^{0}_{\alpha}\}.$$

We know that for each $\alpha < \omega_1$, $s \in T^0_{\alpha}$ and $n \in \omega$ if $p = (\langle p_{\alpha} : \alpha < \omega_1 \rangle, q)$ is the condition for which p_{α} is the function with domain $\{s\}$, and $p_{\alpha}(s) = n$, and the rest of p is the trivial condition, then

$$p = [\check{x}_{\alpha,s,n} \in \bigcap_{n \in \omega} \overset{\circ}{U}_n].$$

From these facts it follows that C generates \mathbb{B} .

It follows from Lemma 8.4 that the order of C is ω_1 . For any $\beta < \omega_1$ let $b = (\langle p_\alpha : \alpha < \omega_1 \rangle, q)$ be the condition all of whose components are trivial except for p_β , and p_β any the function with domain $\langle \rangle$. Then $b \notin \Sigma_\beta^0(C)$. Otherwise by Lemma 8.4, there would be some $a \leq b$ with rank $(a, C) < \beta$, but then p_β^a would not have $\langle \rangle$ in its domain.

This proves the ω_1 case of Theorem 8.2.