12 Boolean algebra of order ω_{1}

Now we use the Martin-Solovay technique to produce a countably generated ccc cBa with order ω_{1}. Before doing so we introduce a countable version of α-forcing which will be useful for other results also. It is similar to one used in Miller [74] to give a simple proof about generating sets in the category algebra.

Let T be a nice tree of rank $\alpha\left(2 \leq \alpha<\omega_{1}\right)$. Define

$$
\mathbb{P}_{\alpha}=\left\{p: D \rightarrow \omega: D \in[\omega]^{<\omega}, \forall s, s^{\wedge} n \in D \quad p(s) \neq p\left(s^{\wedge} n\right)\right\}
$$

This is ordered by $p \leq q$ iff $p \supseteq q$. For $p \in \mathbb{P}_{\alpha}$ define

$$
\operatorname{rank}(p)=\max \left\{r_{T}(s): s \in \operatorname{domain}(p)\right\}
$$

where r_{T} is the rank function on T.
Lemma 12.1 rank : $\mathbb{P}_{\alpha} \rightarrow \alpha+1$ satisfies the Rank Lemma 7.4, i.e, for every $p \in \mathbb{P}_{\alpha}$ and $\beta \geq 1$ there exists $\hat{p} \in \mathbb{P}_{\alpha}$ such that

1. \hat{p} is compatible with p,
2. $\operatorname{rank}(\hat{p}) \leq \beta$, and
3. for any $q \in \mathbb{P}_{\alpha}$ if $\operatorname{rank}(q)<\beta$ and \hat{p} and q are compatible, then p and q are compatible.
proof:
First let $p_{0} \leq p$ be such that for every $s \in \operatorname{domain}(p)$ and $n \in \omega$ if

$$
r_{T}\left(s^{\wedge} n\right)<\beta<\lambda=r_{T}(s)
$$

then there exists $m \in \omega$ with $p_{0}\left(s^{\wedge} n^{\wedge} m\right)=p(s)$. Note that

$$
r_{T}\left(s^{\wedge} n\right)<\beta<\lambda=r_{T}(s)
$$

can happen only when λ is a limit ordinal and for any such s there can be at most finitely many n (because T is a nice tree).

Now let

$$
E=\left\{s \in \operatorname{domain}\left(p_{0}\right): r_{T}(s) \leq \beta\right\}
$$

and define $\hat{p}=p_{0} \upharpoonright E$. It is compatible with p since p_{0} is stronger than both. From its definition it has rank $\leq \beta$. So let $q \in \mathbb{P}_{\alpha}$ have $\operatorname{rank}(q)<\beta$ and be incompatible with p. We need to show it is incompatible with \hat{p}. There are only three ways for q and p to be incompatible:

1. $\exists s \in \operatorname{domain}(p) \cap \operatorname{domain}(q) p(s) \neq q(s)$,
2. $\exists s \in \operatorname{domain}(q) \exists s^{\wedge} n \in \operatorname{domain}(p) q(s)=p\left(s^{\wedge} n\right)$, or
3. $\exists s \in \operatorname{domain}(p) \exists s^{\wedge} n \in \operatorname{domain}(q) p(s)=q\left(s^{\wedge} n\right)$.

For (1) since $\operatorname{rank}(q)<\beta$ we know $r_{T}(s)<\beta$ and hence by construction s is in the domain of \hat{p} and so q and \hat{p} are incompatible. For (2) since

$$
r_{T}\left(s^{\wedge} n\right)<r_{T}(s)<\beta
$$

we get the same conclusion. For (3) since $s^{\wedge} n \in$ domain (q) we know

$$
r_{T}\left(s^{\wedge} n\right)<\beta
$$

If $r_{T}(s)=\beta$, then $s \in \operatorname{domain}(\hat{p})$ and so q and \hat{p} are incompatible. Otherwise since T is a nice tree,

$$
r_{T}\left(s^{\wedge} n\right)<\beta<r_{T}(s)=\lambda
$$

a limit ordinal. In this case we have arranged \hat{p} so that there exists m with $p(s)=\hat{p}\left(s^{\wedge} n^{\wedge} m\right)$ and so again q and \hat{p} are incompatible.

Lemma 12.2 There exists a countable family \mathcal{D} of dense subsets of \mathbb{P}_{α} such that for every $G a \mathbb{P}_{\alpha}$-filter which meets each dense set in \mathcal{D} the filter G determines a map $x: T \rightarrow \omega$ by $p \in G$ iff $p \subseteq x$. This map has the property that for every $s \in T^{>0}$ the value of $x(s)$ is the unique element of ω not in $\left\{x\left(s^{\wedge} n\right): n \in \omega\right\}$.
proof:
For each $s \in T$ the set

$$
D_{s}=\{p: s \in \operatorname{domain}(p)\}
$$

is dense. Also for each $s \in T^{>0}$ and $k \in \omega$ the set

$$
E_{s}^{k}=\left\{p: p(s)=k \text { or } \exists n p\left(s^{\wedge} n\right)=k\right\}
$$

is dense.
The poset \mathbb{P}_{α} is separative, since if $p \not \leq q$ then either p and q are incompatible or there exists $s \in$ domain $(q) \backslash$ domain (p) in which case we can find $\hat{p} \leq p$ with $\hat{p}(s) \neq q(s)$.

Now if $\mathbb{P}_{\alpha} \subseteq \mathbb{B}$ is dense in the $\mathrm{cBa} \mathbb{B}$, it follows that for each $p \in \mathbb{P}_{\alpha}$

$$
p=\lceil p \subseteq x\rceil
$$

and for any $s \in T^{>0}$ and k

$$
\lceil x(s)=k\rceil=\prod_{m \in \omega}\left[x\left(s^{\wedge} m\right) \neq k\right] .
$$

Consequently if

$$
C=\left\{p \in \mathbb{P}_{\alpha}: \operatorname{domain}(p) \subseteq T^{0}\right\}
$$

then $C \subseteq \mathbb{B}$ has the property that $\operatorname{ord}(C)=\alpha+1$.

Now let $\sum_{\alpha<\omega_{1}} \mathbb{P}_{\alpha}$ be the direct sum, i.e., $p=\left\langle p_{\alpha}: \alpha<\omega_{1}\right\rangle$ with $p_{\alpha} \in \mathbb{P}_{\alpha}$ and $p_{\alpha}=\mathbf{1}_{\alpha}=\emptyset$ for all but finitely many α. This forcing is equivalent to adding ω_{1} Cohen reals, so the usual delta-lemma argument shows that it is ccc. Let

$$
X=\left\{x_{\alpha, s, n} \in 2^{\omega}: \alpha<\omega_{1}, s \in T_{\alpha}^{0}, n \in \omega\right\}
$$

be distinct elements of 2^{ω}. For $G=\left\langle G_{\alpha}: \alpha<\omega_{1}\right\rangle$ which is $\sum_{\alpha<\omega_{1}} \mathbb{P}_{\alpha}$-generic over V, use X and Silver forcing to code the rank zero parts of each G_{α}, i.e., $\underset{\text { define }}{ }\left(\sum_{\alpha<\omega_{1}} \mathbb{P}_{\alpha}\right) * \stackrel{\circ}{\mathbb{Q}}$ by $(p, q) \in\left(\sum_{\alpha<\omega_{1}} \mathbb{P}_{\alpha}\right) * \stackrel{\circ}{\mathbb{Q}}$
iff
$p \in \sum_{\alpha<\omega_{1}} \mathbb{P}_{\alpha}$ and q is a finite set of consistent sentences of the form:

1. " $x \notin \stackrel{\circ}{U}_{n}$ " where $x \in X$ or
2. " $B \subseteq \stackrel{0}{U}_{n}$ " where B is clopen and $n \in \omega$.
with the additional proviso that whenever " $x_{\alpha, s, n} \notin \stackrel{0}{U}_{n} " \in q$ then s is in the domain of p_{α} and $p_{\alpha}(s) \neq n$. This is a little stronger than saying $p \Vdash \check{q} \in \mathbb{Q}$, but would be true for a dense set of conditions.

The rank function

$$
\text { rank }:\left(\sum_{\alpha<\omega_{1}} \mathbb{P}_{\alpha}\right) * \stackrel{\circ}{\mathbb{Q}}: \rightarrow \omega_{1}
$$

is defined by

$$
\operatorname{rank}\left(\left\langle p_{\alpha}: \alpha<\omega_{1}\right\rangle, q\right)=\max \left\{\operatorname{rank}\left(p_{\alpha}\right): \alpha<\omega_{1}\right\}
$$

which means we ignore q entirely.
Lemma 12.3 For every $p \in\left(\sum_{\alpha<\omega_{1}} \mathbb{P}_{\alpha}\right) * \stackrel{\circ}{\mathbb{Q}}$ and $\beta \geq 1$ there exists \hat{p} in the poset $\left(\sum_{\alpha<\omega_{1}} \mathbb{P}_{\alpha}\right) * \stackrel{\circ}{\mathbb{Q}}$ such that

1. \hat{p} is compatible with p,
2. $\operatorname{rank}(\hat{p}) \leq \beta$, and
3. for any $q \in\left(\sum_{\alpha<\omega_{1}} \mathbb{P}_{\alpha}\right) * \stackrel{\circ}{\mathbb{Q}}$ if $\operatorname{rank}(q)<\beta$ and \hat{p} and q are compatible, then p and q are compatible.
proof:
Apply Lemma 12.1 to each p_{α} to obtain $\hat{p_{\alpha}}$ and then let

$$
\hat{p}=\left(\left\langle\hat{p_{\alpha}}: \alpha<\omega_{1}\right\rangle, q\right)
$$

This is still a condition because $\hat{p_{\alpha}}$ retains all the rank zero part of p_{α} which is needed to force $q \in \stackrel{\circ}{\mathbb{Q}}$.

Let $\left(\sum_{\alpha<\omega_{1}} \mathbb{P}_{\alpha}\right) * \stackrel{\circ}{\mathbb{Q}} \subseteq \mathbb{B}$ be a dense subset of the ccc cBa \mathbb{B}. We show that \mathbb{B} is countably generated and $\operatorname{ord}(\mathbb{B})=\omega_{1}$. A strange thing about ω_{1} is that if one
countable set of generators has order ω_{1}, then all countable sets of generators have order ω_{1}. This is because any countable set will be generated by a countable stage.

One set of generators for \mathbb{B} is

$$
\left.C=\left\{\mid \check{B} \subseteq \check{U}_{n}^{\circ}\right]: B \text { clopen }, n \in \omega\right\} .
$$

Note that

$$
\left\lfloor x \in \cap_{n \in \omega} U_{n}\right\rceil=\prod_{n \in \omega}\left[x \in U_{n}\right\rceil=\prod_{n \in \omega} \sum\left\{\left[\check{B} \subseteq \stackrel{0}{U}_{n}\right\rceil: x \in B\right\}
$$

and also each \mathbb{P}_{α} is generated by

$$
\left\{p \in \mathbb{P}_{\alpha}: \operatorname{domain}(p) \subseteq T_{\alpha}^{0}\right\}
$$

We know that for each $\alpha<\omega_{1}, s \in T_{\alpha}^{0}$ and $n \in \omega$ if $p=\left(\left\langle p_{\alpha}: \alpha<\omega_{1}\right\rangle, q\right)$ is the condition for which p_{α} is the function with domain $\{s\}$, and $p_{\alpha}(s)=n$, and the rest of p is the trivial condition, then

$$
\left.p=\llbracket \check{x}_{\alpha, s, n} \in \bigcap_{n \in \omega} \stackrel{\circ}{U}_{n}\right\rceil .
$$

From these facts it follows that C generates \mathbb{B}.
It follows from Lemma 8.4 that the order of C is ω_{1}. For any $\beta<\omega_{1}$ let $b=\left(\left\langle p_{\alpha}: \alpha<\omega_{1}\right\rangle, q\right)$ be the condition all of whose components are trivial except for p_{β}, and p_{β} any the function with domain $\left\rangle\right.$. Then $b \notin \boldsymbol{\Sigma}_{\beta}^{0}(C)$. Otherwise by Lemma 8.4, there would be some $a \leq b$ with $\operatorname{rank}(a, C)<\beta$, but then p_{β}^{a} would not have 〈 \rangle in its domain.

This proves the ω_{1} case of Theorem 8.2.

