8 Boolean algebras

In this section we consider the length of Borel hierarchies generated by a subset of a complete boolean algebra. We find that the generators of the complete boolean algebra associated with α -forcing generate it in exactly $\alpha + 1$ steps. We start by presenting some background information.

Let \mathbb{B} be a *cBa*, i.e., complete boolean algebra. This means that in addition to being a boolean algebra, infinite sums and products, also exist; i.e., for any $C \subseteq \mathbb{B}$ there exists *b* (denoted $\sum C$) such that

1. $c \leq b$ for every $c \in C$ and

2. for every $d \in \mathbb{B}$ if $c \leq d$ for every $c \in C$, then $b \leq d$.

Similarly we define $\prod C = -\sum_{c \in C} -c$ where -c denotes the complement of c in \mathbb{B} .

A partial order \mathbb{P} is *separative* iff for any $p, q \in \mathbb{P}$ we have

 $p \leq q$ iff $\forall r \in \mathbb{P}(r \leq p \text{ implies } q, r \text{ compatible}).$

Theorem 8.1 (Scott, Solovay see [43]) A partial order \mathbb{P} is separative iff there exists a cBa \mathbb{B} such that $\mathbb{P} \subseteq \mathbb{B}$ is dense in \mathbb{B} , i.e. for every $b \in \mathbb{B}$ if b > 0 then there exists $p \in \mathbb{P}$ with $p \leq b$.

It is easy to check that the α -forcing \mathbb{P} is separative (as long as \mathcal{B} is infinite): If $p \leq q$ then either

- 1. t_p does not extend t_q , so there exists s such that $t_q(s) = B$ and either s not in the domain of t_p or $t_p(s) = C$ where $C \neq B$ and so in either case we can find $r \leq p$ with r, q incompatible, or
- 2. F_p does not contain F_q , so there exists $(s, x) \in (F_q \setminus F_p)$ and we can either add $(s \cap n, x)$ for sufficiently large n or add $t_r(s \cap n) = B$ for some sufficiently large n and some $B \in \mathcal{B}$ with $x \in B$ and get $r \leq p$ which is incompatible with q.

The elegant (but as far as I am concerned mysterious) approach to forcing using complete boolean algebras contains the following facts:

1. for any sentence θ in the forcing language

$$[\theta] = \sum \{b \in \mathbb{B} : b \models \theta\} = \sum \{p \in \mathbb{P} : p \models \theta\}$$

where \mathbb{P} is any dense subset of \mathbb{B} ,

2. $p \models \theta$ iff $p \leq [\theta]$,

3.
$$\left[\neg \theta \right] = - \left[\theta \right] ,$$

4. $\left[\theta \land \psi \right] = \left[\theta \right] \land \left[\psi \right],$

5. $\left[\theta \lor \psi \right] = \left[\theta \right] \lor \left[\psi \right],$

6. for any set X in the ground model,

$$[\forall x \in \check{X} \ \theta(x)] = \prod_{x \in X} [\theta(\check{x}]].$$

Definitions. For \mathbb{B} a cBa and $C \subseteq \mathbb{B}$ define:

$$\begin{split} & \Pi_0^0(C) = C \text{ and} \\ & \Pi_\alpha^0(C) = \{ \prod \ \Gamma : \Gamma \subseteq \{ -c : c \in \bigcup_{\beta < \alpha} \Pi_\beta^0(C) \} \} \text{ for } \alpha > 0. \\ & \text{ord}(\mathbb{B}) = \min\{ \alpha : \exists C \subseteq \mathbb{B} \text{ countable with } \Pi_\alpha^0(C) = \mathbb{B} \}. \end{split}$$

Theorem 8.2 (Miller [73]) For every $\alpha \leq \omega_1$ there exists a countably generated $ccc \ cBa \ \mathbb{B} \ with \ ord(\mathbb{B}) = \alpha$.

proof:

Let \mathbb{P} be α -forcing and \mathbb{B} be the cBa given by the Scott-Solovay Theorem 8.1. We will show that $\operatorname{ord}(\mathbb{B}) = \alpha + 1$.

Let

$$C = \{ p \in \mathbb{P} : F_p = \emptyset \}.$$

C is countable and we claim that $\mathbb{P} \subseteq \prod_{\alpha=0}^{0} \mathbb{P}(C)$. Since $\mathbb{B} = \sum_{\alpha=0}^{0} \mathbb{P}(\mathbb{P})$ this will imply that $\mathbb{B} = \sum_{\alpha=1}^{0} \mathbb{P}(C)$ and so $\operatorname{ord}(\mathbb{B}) \leq \alpha + 1$.

First note that for any $s \in T$ with r(s) = 0 and $x \in X$,

$$[x \in U_s] = \sum \{p \in C : \exists B \in \mathcal{B} \ t_p(s) = B \text{ and } x \in B\}.$$

By Lemma 7.3 we know for generic filters G that for every $x \in X$ and $s \in T^{>0}$

$$x \in U_s \iff \exists p \in G \ (s, x) \in F_p$$

Hence $[x \in U_s] = \langle \emptyset, \{(s, x)\} \rangle$ since if they are not equal, then

$$b = [x \in U_s] \Delta \langle \emptyset, \{(s, x)\} \rangle > 0,$$

but letting G be a generic ultrafilter with b in it would lead to a contradiction. We get that for r(s) > 0:

$$\langle \emptyset, \{(s,x)\} \rangle = [x \in U_s] = [x \in \bigcap_{n \in \omega} \sim U_{s^n}] = \prod_{n \in \omega} -[x \in U_{s^n}].$$

Remembering that for r(s n) = 0 we have $[x \in U_{s n}] \in \Sigma_1^0(C)$, we see by induction that for every $s \in T^{>0}$ if $r(s) = \beta$ then

$$\langle \emptyset, \{(s, x)\}
angle \in \mathbf{\Pi}^0_{\beta}(C).$$

For any $p \in \mathbb{P}$

$$p = \langle t_p, \emptyset \rangle \wedge \prod_{(s,x) \in F_p} \langle \emptyset, \{(s,x)\} \rangle.$$

So we have that $p \in \mathbf{\Pi}^0_{\alpha}(C)$.

Now we will see that $\operatorname{ord}(\mathbb{B}) > \alpha$. We use the following Lemmas.

 \mathbb{B}^+ are the nonzero elements of \mathbb{B} .

Lemma 8.3 If $r : \mathbb{P} \to OR$ is a rank function, i.e. it satisfies the Rank Lemma 7.4 and in addition $p \leq q$ implies $r(p) \leq r(q)$, then if \mathbb{P} is dense in the cBa \mathbb{B} then r extends to r^* on \mathbb{B}^+ :

$$r^*(b) = \min\{\beta \in \mathrm{OR} : \exists C \subseteq \mathbb{P} : b = \sum C \text{ and } \forall p \in C r(p) \leq \beta\}$$

and still satisfies the Rank Lemma.

proof:

Easy induction.

Lemma 8.4 If $r : \mathbb{B}^+ \to \text{ord}$ is a rank function and $E \subseteq \mathbb{B}$ is a countable collection of rank zero elements, then for any $a \in \Pi^0_{\gamma}(E)$ and $a \neq 0$ there exists $b \leq a$ with $r(b) \leq \gamma$.

proof:

To see this let $E = \{e_n : n \in \omega\}$ and let $\stackrel{\circ}{Y}$ be a name for the set in the generic extension

$$Y = \{ n \in \omega : e_n \in G \}.$$

Note that $e_n = [n \in \stackrel{\circ}{Y}]$. For elements b of \mathbb{B} in the complete subalgebra generated by E let us associate sentences θ_b of the infinitary propositional logic $L_{\infty}(P_n : n \in \omega)$ as follows:

$$\theta_{e_n} = P_n$$

$$\theta_{-b} = \neg \theta_b$$

$$\theta_{\prod R} = \bigwedge_{r \in R} \theta_r$$

Note that $[Y \models \theta_b] = b$ and if $b \in \Pi^0_{\gamma}(E)$ then θ_b is a Π_{γ} -sentence. The Rank and Forcing Lemma 7.5 gives us (by translating $p \Vdash Y \models \theta_b$ into $p \leq [Y \models \theta_b] = b$) that:

For any $\gamma \geq 1$ and $p \leq b \in \Pi^0_{\gamma}(E)$ there exists a \hat{p} compatible with p such that $\hat{p} \leq b$ and $r(\hat{p}) \leq \gamma$.

Now we use the lemmas to see that $\operatorname{ord}(\mathbb{B}) > \alpha$.

Given any countable $E \subseteq \mathbb{B}$, let $Q \subseteq X$ be countable so that for any $e \in E$ there exists $H \subseteq \mathbb{P}$ countable so that $e = \sum H$ and for every $p \in H$ we have rank(p, Q) = 0. Let $x \in X \setminus Q$ be arbitrary; then we claim:

$$[x \in U_{\langle \rangle}] \notin \Sigma^0_{\alpha}(E).$$

We have chosen Q so that $r(p) = \operatorname{rank}(p, Q) = 0$ for any $p \in E$ so the hypothesis of Lemma 8.4 is satisfied. Suppose for contradiction that $[x \in U_{\langle \rangle}] = b \in \sum_{\alpha \in U}^{0}(E)$. Let $b = \sum_{n \in \omega} b_n$ where each b_n is $\prod_{\gamma_n}^{0}(C)$ for some $\gamma_n < \alpha$. For some n and $p \in \mathbb{P}$ we would have $p \leq b_n$. By Lemma 8.4 we have that there exists \hat{p} with $\hat{p} \leq b_n \leq b = [x \in U_{\langle \rangle}]$ and $\operatorname{rank}(\hat{p}, Q) \leq \gamma_n$. But by the definition of $\operatorname{rank}(\hat{p}, Q)$ the pair $(\langle \rangle, x)$ is not in $F_{\hat{p}}$, but this contradicts $\hat{p} \leq b_n \leq b = [x \in U_{\langle \rangle}] = \langle \emptyset, \{(\langle \rangle, x)\} \rangle$.

This takes care of all countable successor ordinals. (We leave the case of $\alpha = 0, 1$ for the reader to contemplate.) For λ a limit ordinal take α_n increasing to λ and let $\mathbb{P} = \sum_{n < \omega} \mathbb{P}_{\alpha_n}$ be the direct sum, where \mathbb{P}_{α_n} is α_n -forcing. Another way to describe essentially the same thing is as follows: Let \mathbb{P}_{λ} be λ -forcing. Then take \mathbb{P} to be the subposet of \mathbb{P}_{λ} such that $\langle \rangle$ doesn't occur, i.e.,

$$\mathbb{P} = \{ p \in \mathbb{P}_{\lambda} : \neg \exists x \in X \ (\langle \rangle, x) \in F_p \}.$$

Now if \mathbb{P} is dense in the cBa \mathbb{B} , then $\operatorname{ord}(\mathbb{B}) = \lambda$. This is easy to see, because for each $p \in \mathbb{P}$ there exists $\beta < \lambda$ with $p \in \prod_{\beta}^{0}(C)$. Consequently, $\mathbb{P} \subseteq \bigcup_{\beta < \lambda} \prod_{\beta}^{0}(C)$ and so since $\mathbb{B} = \sum_{1}^{0}(\mathbb{P})$ we get $\mathbb{B} = \sum_{\lambda}^{0}(C)$. Similarly to the other argument we see that for any countable E we can choose a countable $Q \subseteq X$ such for any $s \in T$ with $2 \leq r(s) = \beta < \lambda$ (so $s \neq \langle \rangle$) we have that $[x \in U_s]$ is not $\sum_{\beta}^{0}(E)$. Hence $\operatorname{ord}(\mathbb{B}) = \lambda$.

For $\operatorname{ord}(\mathbb{B}) = \omega_1$ we postpone until section 12.