
26 8 BOOLEAN ALGEBRAS

8 Boolean algebras

In this section we consider the length of Borel hierarchies generated by a subset
of a complete boolean algebra. We find that the generators of the complete
boolean algebra associated with α-forcing generate it in exactly a + 1 steps. We
start by presenting some background information.

Let i b e a cBa, i.e, complete boolean algebra. This means that in addition
to being a boolean algebra, infinite sums and products, also exist; i.e., for any
C C IB there exists 6 (denoted £ C) such that

1. c < b for every c G C and

2. for every d G IB if c < d for every ceC, then b < d.

Similarly we define \\C = — ΣceC ~c w n e r e —c denotes the complement of c
in IB.

A partial order F is separative iff for any p,gGPwe have

p < q iff W G F(r < p implies g, r compatible).

Theorem 8.1 (Scott, Solovay see [43]) A partial order F is separative iff there
exists a cBa IB such that F C 1 is dense in IB, i.e. for every b G I ifb > 0 then
there exists p G F with p <b.

It is easy to check that the α-forcing F is separative (as long as B is infinite):

If p £ q then either

1. tp does not extend tq) so there exists s such that tq(s) = B and either s
not in the domain of tp or tp(s) = C where C φ B and so in either case
we can find r < p with r, q incompatible, or

2. Fp does not contain Fq, so there exists (s, x) G (Fq \FP) and we can either
add (s~n, x) for sufficiently large n or add tr(s"n) = B for some sufficiently
large n and some B £ B with x £ B and get r < p which is incompatible
with q.

The elegant (but as far as I am concerned mysterious) approach to forcing
using complete boolean algebras contains the following facts:

1. for any sentence θ in the forcing language

I 9 I = Σ { b € I : b |h θ} = Σ i P € F : p \ \ - θ }

where F is any dense subset of 1,

2. p|h0iffp<|H

3. MI =-in
4.
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5.

6. for any set X in the ground model,

IV* € * *(*)

Definitions. For I a cBa and C C 1 define:
Πg(C) = C and
D Ϊ ( C ) = { Π Γ : Γ C { - c : c G \Jβ<α Π°(C)}} for α > 0.

ord(B) = min{α : 5C C I countable with Π°(C) = IB}.

Theorem 8.2 (Miller [73]) For every α <ω\ there exists α countαbly generated
ccc cBa M with ord(B) = a.

proof:
Let F be α-forcing and M be the cBa given by the Scott-Solovay Theorem 8.1.

We will show that ord(l) = a + 1.
Let

C={peΨ:Fp = H}.

C is countable and we claim that F C Π° (C). Since IB = Σ?(F) this will imply
that 1 = Σ £ + 1 (C) and so ord(I) < a + 1.

First note that for any s E T with r(«) = 0 and i G X ,

[ x e Us I = ]T{j> eC:3BeB tp(s) = B and x G 5 } .

By Lemma 7.3 we know for generic filters G that for every a : G ^ and s G T > 0

a? G 17, <ί=> 3p G G («, a?) G F p .

Hence [ « G ί7s J = (0, {(«, x)}) since if they are not equal, then

but letting G be a generic ultrafilter with 6 in it would lead to a contradiction.
We get that for r(s) > 0:

(0, { ( * , * ) } ) = [ x G C / β ] = [ x G f | - ^ . - » 1 = Π " I x e U>'» l

Remembering that for r(s"n) = 0 we have | x G i75-n 1 € Σj(C), we see by
induction that for every s G T>0 if r(s) = ^ then

For any p G
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So we have that p G Π° (C).

Now we will see that ord(IB) > a. We use the following Lemmas.
IB+ are the nonzero elements of IB.

L e m m a 8.3 // r : F —• OR is a rank function, i.e. it satisfies the Rank
Lemma 7.4 and in addition p < q implies r(p) < r(q), then if Ψ is dense in
the cBa M then r extends to r* on IB*":

r*(6) = min{/? G OR : 3C C Ψ : b = ] Γ c and Vp G C r(p) < β}

and still satisfies the Rank Lemma.

proof:
Easy induction.

L e m m a 8.4 If r : W*~ —> ord is a rank function and E C IB is a countable
collection of rank zero elements, then for any a G JJy(E) and aφQ there exists
b < a with r(b) < 7.

proof:
0

To see this let E = {en : n G ω} and let Y be a name for the set in the
generic extension

Y = {neω:eneG}.

0

Note that e n = [ n £Y ]. For elements 6 of IB in the complete subalgebra
generated by E let us associate sentences 0& of the infinitary propositional logic

Loo(Pn : n G ω) as follows:

θen = Pn

Note that [ Y |= Θb ] = 6 and if 6 G U^(E) then θb is a Π7-sentence. The Rank
and Forcing Lemma 7.5 gives us (by translating p \\- Y \=z θb into p < [ Y \=
θb j = 6) that:

For any 7 > 1 and p < b G JJ®(E) there exists a p compatible with
p such that p < 6 and r(p) < 7.

•
Now we use the lemmas to see that ord(IB) > α.
Given any countable E C IB, let Q C X be countable so that for any e G £

there exists if C IP countable so that e = Σ H and for every p E H we have
rank(p,Q) = 0. Let x e X\Q be arbitrary; then we claim:
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We have chosen Q so that r(p) = rank(p, Q) = 0 for any p G E so the
hypothesis of Lemma 8.4 is satisfied. Suppose for contradiction that [ x E
U{) 1 = b e Σ° (£). Let b = Σn€ω bn where each bn is Π°n(C) for some Ίn < α.
For some n and p G F w e would have p < bn. By Lemma 8.4 we have that
there exists p with p < bn < b = [ x G UQ J and rank(p, Q) < yn. But by
the definition of rank(p,Q) the pair ((),#) is not in Fp, but this contradicts

p<bn<b = \xeu{) I = (0,{((>.«)}>•

This takes care of all countable successor ordinals. (We leave the case of
α = 0,1 for the reader to contemplate.) For λ a limit ordinal take ctn increasing
to λ and let F = Σn<ω Fαn be the direct sum, where F Λ R is αn-forcing. Another
way to describe essentially the same thing is as follows: Let Ψ\ be λ-forcing.
Then take F to be the subposet of Fλ such that () doesn't occur, i.e.,

Now if F is dense in the cBa B, then ord(B) = λ. This is easy to see, because for
each p G F there exists β < λ with p G Πj}(C). Consequently, F C (jβ<x Π$(C)
and so since IB = Σj(F) we get I = Σj(C). Similarly to the other argument
we see that for any countable E we can choose a countable Q Q X such for any
s £T with 2 < r(s) = β < λ (so s ψ ()) we have that [ x G Us \ is not J
Hence ord(B) = λ.

For ord(!) = ω i w e postpone until section 12.




