18 6 GENERIC G_{δ}

6 Generic G_{δ}

It is natural⁴ to ask

"What are the possibly lengths of Borel hierarchies?"

In this section we present a way of forcing a generic G_{δ} .

Let X be a Hausdorff space with a countable base \mathcal{B} . Consider the following forcing notion.

 $p \in \mathbb{P}$ iff it is a finite consistent set of sentences of the form:

- 1. " $B \subseteq \overset{\circ}{U}_n$ " where $B \in \mathcal{B}$ and $n \in \omega$, or
- 2. " $x \notin \overset{\circ}{U}_n$ " where $x \in X$ and $n \in \omega$, or
- 3. " $x \in \bigcap_{n < \omega} \stackrel{\circ}{U}_n$ " where $x \in X$.

Consistency means that we cannot say that both " $B \subseteq \mathring{U}_n$ " and " $x \notin \mathring{U}_n$ " if it happens that $x \in B$ and we cannot say both " $x \notin \mathring{U}_n$ " and " $x \in \bigcap_{n < \omega} \mathring{U}_n$ ". The ordering is reverse inclusion. A \mathbb{P} filter G determines a G_δ set U as follows: Let

$$U_n = \bigcup \{ B \in \mathcal{B} : "B \subseteq \mathring{U}_n " \in G \}.$$

Let $U = \bigcap_n U_n$. If G is P-generic over V, a density argument shows that for every $x \in X$ we have that

$$x \in U \text{ iff } "x \in \bigcap_{n < \omega} \mathring{U}_n " \in G.$$

Note that U is not in V (as long as X is infinite). For suppose $p \in \mathbb{P}$ and $A \subseteq X$ is in V is such that

$$p \Vdash \overset{\circ}{U} = \check{A}.$$

Since X is infinite there exist $x \in X$ which is not mentioned in p. Note that $p_0 = p \cup \{ "x \in \bigcap_{n < \omega} \mathring{U}_n " \}$ is consistent and also $p_1 = p \cup \{ "x \notin \mathring{U}_n " \}$ is consistent for all sufficiently large n (i.e. certainly for U_n not mentioned in p.) But $p_0 \models x \in \mathring{U}$ and $p_1 \models x \notin \mathring{U}$, and since x is either in A or not in A we arrive at a contradiction.

In fact, U is not F_{σ} in the extension (assuming X is uncountable). To see this we will first need to prove that \mathbb{P} has ccc.

Lemma 6.1 P has ccc.

proof:

Note that p and q are compatible iff $(p \cup q) \in \mathbb{P}$ iff $(p \cup q)$ is a consistent set of sentences. Recall that there are three types of sentences:

⁴ 'Gentlemen, the great thing about this, like most of the demonstrations of the higher mathematics, is that it can be of no earthly use to anybody.' -Baron Kelvin

- 1. $B \subseteq \overset{\circ}{U}_n$
- 2. $x \notin \overset{\circ}{U}_n$
- 3. $x \in \bigcap_{n < \omega} \mathring{U}_n$

where $B \in \mathcal{B}$, $n \in \omega$, and $x \in X$. Now if for contradiction A were an uncountable antichain, then since there are only countably many sentences of type 1 above we may assume that all $p \in A$ have the same set of type 1 sentences. Consequently for each distinct pair $p, q \in A$ there must be an $x \in X$ and n such that either " $x \notin U_n$ " $\in p$ and " $x \in \bigcap_{n < \omega} U_n$ " $\in q$ or vice-versa. For each $p \in A$ let D_p be the finitely many elements of X mentioned by p and let $s_p : D_p \to \omega$ be defined by

$$s_p(x) = \begin{cases} 0 & \text{if } "x \in \bigcap_{n < \omega} \stackrel{\circ}{U}_n " \in p \\ n+1 & \text{if } "x \notin \stackrel{\circ}{U}_n " \in p \end{cases}$$

But now $\{s_p : p \in A\}$ is an uncountable family of pairwise incompatible finite partial functions from X into ω which is impossible. (FIN (X, ω) has the ccc, see Kunen [54].)

If V[G] is a generic extension of a model V which contains a topological space X, then we let X also refer to the space in V[G] whose topology is generated by the open subsets of X which are in V.

Theorem 6.2 (Miller [73]) Suppose X in V is an uncountable Hausdorff space with countable base \mathcal{B} and G is \mathbb{P} -generic over V. Then in V[G] the G_{δ} set U is not F_{σ} .

proof:

We call this argument the old switcheroo. Suppose for contradiction

$$p \Vdash \bigcap_{n \in \omega} \mathring{U}_n = \bigcup_{n \in \omega} \mathring{C}_n$$
 where \mathring{C}_n are closed in X .

For $Y \subseteq X$ let $\mathbb{P}(Y)$ be the elements of \mathbb{P} which only mention $y \in Y$ in type 2 or 3 statements. Let $Y \subseteq X$ be countable such that

- 1. $p \in \mathbb{P}(Y)$ and
- 2. for every n and $B \in \mathcal{B}$ there exists a maximal antichain $A \subseteq \mathbb{P}(Y)$ which decides the statement " $B \cap \mathring{C}_n = \emptyset$ ".

Since X is uncountable there exists $x \in X \setminus Y$. Let

$$q = p \cup \{ \text{``}x \in \bigcap_{n \in \omega} \overset{\circ}{U}_n \text{''} \}.$$

20 6 GENERIC G_{δ}

Since q extends p, clearly

$$q \hspace{0.2em}\models\hspace{0.2em} x \in \bigcup_{n \in \omega} \hspace{0.2em} \mathring{C}_n$$

so there exists $r \leq q$ and $n \in \omega$ so that

$$r \Vdash x \in \stackrel{\circ}{C}_n$$
.

Let

$$r = r_0 \cup \{ ``x \in \bigcap_{n \in \omega} \stackrel{\mathtt{o}}{U}_n " \}$$

where r_0 does not mention x. Now we do the switch. Let

$$t = r_0 \cup \{ (x \notin \overset{\circ}{U}_m) \}$$

where m is chosen sufficiently large so that t is a consistent condition. Since

$$t \Vdash x \notin \bigcap_{n \in \omega} \stackrel{\circ}{U}_n$$

we know that

$$t \Vdash x \notin \stackrel{\circ}{C}_n$$
.

Consequently there exist $s \in \mathbb{P}(Y)$ and $B \in \mathcal{B}$ such that

- 1. s and t are compatible,
- 2. $s \Vdash B \cap \stackrel{\circ}{C}_n = \emptyset$, and
- 3. $x \in B$.

But s and r are compatible, because s does not mention x. This is a contradiction since $s \cup r \models x \in \stackrel{\circ}{C}_n$ and $s \cup r \models x \notin \stackrel{\circ}{C}_n$.