
Part I

On the length of Borel
hierarchies

2 Borel Hierarchy

Definitions. For X a topological space define Σj to be the open subsets of X.
For a > 1 define A G Σ° iff there exists a sequence {Bn : n € ω)

with each Bn € Σ ^ for some βn < a such that

A = (J ~ Bn

where ~ 5 is the complement of 5 in X, i.e., ~ B = X \B. Define Π° =
{ - β : 5 G Σ ° α } a n d Δ ^ = Σ o

α Π Π j . The Borel subsets of X are defined by
Borel(X) = Uα<u> 5α(^0 ft i s dearly the smallest family of sets containing
the open subsets of X and closed under countable unions and complementation.

Theorem 2.1 Σ° is closed under countable unions and finite intersections, Π°
is closed under countable intersections and finite unions, and Δ^ is closed under
finite intersections, finite unions, and complements.

proof:
That Σ° is closed under countable unions is clear from its definition. It

follows from DeMorgan's laws by taking complements that Π° is closed under
countable intersections. Since

( U P " ) n ( U C ? ' ) = U (P^Qrn)

Σ° is closed under finite intersections. It follows by DeMorgan's laws that Π° is
closed under finite unions. Δ^ is closed under finite intersections, finite unions,
and complements since it is the intersection of the two classes.

Theorem 2.2 Iff:X-+Y is continuous and A G Σ°(Y), then f~x(A) is in

This is an easy induction since it is true for open sets (Σj) and f~ι passes over
complements and unions.
•

Theorem 2.2 is also, of course, true for Π° or Δ£ in place of Σ° .

Theorem 2.3 Suppose X is a subspace ofY, then
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proof:
For Σj it follows from the definition of subspace. For a > 1 it is an easy

induction.
•

The class of sets Σί] is also referred to as Fσ and the class Πi] as Gs.
Theorem 2.3 is true for Π° in place of Σ^, but not in general for Δ ° . For

example, let X be the rationale in [0,1] and Y be [0,1] Then since X is countable
every subset of X is Σί] in X and hence Δί] in X. If Z contained in X is dense
and codense then Z is Δ*] in X (every subset of X is), but there is no Δί] set Q
in Y — [0,1] whose intersection with X is Z. (If Q is Gs and Fσ and contains Z
then its comeager, but a comeager Fσ in [0,1] contains an interval.)

Theorem 2.4 For X a topological space

2. Σ » ( X ) C 0 ° + 1 ( 4 and

3. ifUΪ(X) C II§(X) (i.e., closed sets are Gδ), then

(a)Πo

a(X)CΏ°a+ι(X),

(b) Σ°(X)CΣ° + 1 (X), and hence

proof:
Induction on α.

•
In metric spaces closed sets are Gs, since

C= f]{x:3yeC d{x,y) < ^-^}

for C a closed set.
The assumption that closed sets are Gs is necessary since if

X = ωι + 1

with the order topology, then the closed set consisting of the singleton point
{ωi} is not Gs] in fact, it is not in the σ-ring generated by the open sets (the
smallest family containing the open sets and closed under countable intersections
and countable unions).

Williard [110] gives an example which is a second countable Hausdorff space.
Let X C 2ω be any nonBorel set. Let 2£ be the space 2ω with the smallest
topology containing the usual topology and X as an open set. The family of all
sets of the form (B Π X) U C where J5, C are (ordinary) Borel subsets of 2ω is
the σ-ring generated by the open subsets of 2%, because:



Note that ~ X is not in this σ-ring.

T h e o r e m 2.5 (Lebesgue [61]) For every a with 1 < a < ωx Σ° (2ω) φ Π ° ( 2 " ) .

The proof of this is a diagonalization argument applied to a universal set.
We will need the following two lemmas.

L e m m a 2.6 Suppose X is second countable (i.e. has a countable base), then
for every a with 1 < a < ω\ there exists a universal' Σ° set U C 2ω x X, i.e., a
set U which is Έ°a(2ω x X) such that for every A G Σ° (X) there exists x G 2ω

such that A — JJX where Ux = {y G X : (#, y) G U}.

proof:

The proof is by induction on α. Let {Bn : n G ω} be a countable base for
X. For a = 1 let

U = {(*, 2/) : 3n (a:(n) = 1 Λ y G 5 n ) } = \J({x : x(n) = 1} x £ „ ) .
n

For a > 1 let /?n be a sequence which sups up to a if α a limit, or equals a — 1
if α is a successor. Let Un be a universal Σ ^ n set. Let

(π,m) = 2 n ( 2 m + l ) - l

be the usual pairing function which gives a recursive bijection between ω2 and
α;. For any n the map yn : 2ω x X —»• 2^ x X is defined by (x, y) H-̂  (x n , t/) where
a?n(m) = a;((n,m)). This map is continuous so if we define U* = ^ 1 ( ί 7 n ) > then
U* is Σ« , and because the map x *—> xn is onto it is also a universal Σ j ^ set.
Now define U by:

{/ is universal for Σ° because given any sequence Bn G Σ ^ n for n E w there
exists x G 2ω such that for every n G ω w e have that Bn = (U*)x = (Un)Xrt (this
is because the map x *-+ (xn : n < ω) takes 2ω onto (2ω)ω.) But then

% = (U ~ ̂ n). = U ^ (̂ »)- = U ~ (hi-

Theorem 2.5:
Let U C 2ω x 2ω be a universal Σ° set. Let

D is the continuous preimage of U under the map x H-+ (X,X), SO it is Σ ° , but
it cannot be Π° because if it were, then there would be x G 2ω with ~ D = Ux

and then x e~D iff (s, a:) G f/ iff ar G Ux iff x G-
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Define ord(X) to be the least a such that Borel(X) = Σ° (X). Lebesgue's
theorem says that oτd(X) = ω\. Note that ord(X) = 1 if X is a discrete space
and that ord(Q) = 2.

Corollary 2.7 For any space X which contains a homeomorphic copy of 2ω

(i.e., a perfect set) we have that ord(X) = ω\, consequently ωω, R, and any
uncountable complete separable metric space have ord = ω\.

proof:
If the Borel hierarchy on X collapses, then by Theorem 2.3 it also collapses on

all subspaces of X. Every uncountable complete separable metric space contains
a perfect set (homeomorphic copy of 2ω). To see this suppose X is an uncountable
complete separable metric space. Construct a family of open sets (Us : s G 2<ω)
such that

1. Us is uncountable,

2. d(CVo)ncl(CVi) = 0,

3. cl(£Vt ) C Us for i=0,l, and

4. diameter of Us less than l/|s|

Then the map / : 2ω -• X defined so that

{/(*)} = Π U*\"

gives an embedding of 2ω into X.
•

Lebesgue [61] used universal functions instead of sets, but the proof is much
the same. Corollary 33.5 of Louveau's Theorem shows that there can be no
Borel set which is universal for all Δ^ sets. Miller [80] contains examples from
model theory of Borel sets of arbitrary high rank.

The notation Σ^J, Π^ was first popularized by Addison [1]. I don't know if the
"bold face" and "light face" notation is such a good idea, some copy machines
wipe it out. Consequently, I use

if a

which is blackboard boldface.




