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Note to the readers

Departing from the usual author's statement-I would like to say that I am
not responsible for any of the mistakes in this document. Any mistakes here are
the responsibility of the reader. If anybody wants to point out a mistake to me,
I promise to respond by saying "but you know what I meant to say, don't you?"

These are lecture notes from a course I gave at the University of Wisconsin
during the Spring semester of 1993. Some knowledge of forcing is assumed as well
as a modicum of elementary Mathematical Logic, for example, the Lowenheim-
Skolem Theorem. The students in my class had a one semester course, introduc-
tion to mathematical logic covering the completeness theorem and incomplete-
ness theorem, a set theory course using Kunen [54], and a model theory course
using Chang and Keisler [17]. Another good reference for set theory is Jech [43].
Oxtoby [88] is a good reference for the basic material concerning measure and
category on the real line. Kuratowski [57] and Kuratowski and Mostowski [58]
are excellent references for classical descriptive set theory. Moschovakis [87] and
Kechris [52] are more modern treatments of descriptive set theory.

The first part is devoted to the general area of Borel hierarchies, a subject
which has always interested me. The results in section 14 and 15 are new and
answer questions from my thesis. I have also included (without permission) an
unpublished result of Fremlin (Theorem 13.4).

Part II is devoted to results concerning the low projective hierarchy. It ends
with a theorem of Harrington from his thesis that is consistent to have IJ2 sets
of arbitrary size.

The general aim of part III and IV is to get to Louveau's theorem. Along
the way many of the classical theorems of descriptive set theory are presented
"just-in-time" for when they are needed. This technology allows the reader to
keep from overfilling his or her memory storage device. I think the proof given
of Louveau's Theorem 33.1 is also a little different. *

Questions like "Who proved what?" always interest mς, so I have included
my best guess here. Hopefully, I have managed to offend a large number of
mathematicians.

1In a randomly infinite Universe, any event occurring here and now with finite probability
must be occurring simultaneously at an infinite number of other sites in the Universe. It is
hard to evaluate this idea any further, but one thing is certain: if it is true then it is certainly
not original!- The Anthropic Cosmological Principle, by John Barrow and Frank Tipler.
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