
The finite stages of inductive definitions *

Robert F. Stark**

Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA 19104

Summary. In general, the least fixed point of a positive elementary inductive
definition over the Herbrand universe is Π\ and has no computational meaning.
The finite stages, however, are computable, since validity of equality formulas in the
Herbrand universe is decidable. We set up a formal system BID for the finite stages
of positive elementary inductive definitions over the Herbrand universe and show
that the provably total functions of the system are exactly that of Peano arithmetic.
The formal system BID contains the so-called inductive extension of a logic program
as a special case. This first-order theory can be used to prove termination and
correctness properties of pure Prolog programs, since notions like negation-as-failure
and left-termination can be turned into positive inductive definitions.

1. Why inductive definitions over the Herbrand
universe?

In traditional logic programming, the semantics of a program is always given
by the least fixed point of a monotonic operator over the Herbrand universe.
The first example is the well-known van Emden-Kowalski operator for definite
Horn clause programs in [25]. This operator is defined by a purely existential
formula and is therefore continuous. The least fixed point of the operator is
recursively enumerable. Moreover, the finite stages of the inductive definition
are exactly what is computed by SLD-resolution.

In [11], Fitting has generalized the van Emden-Kowalski operator using
three-valued logic to programs which may also contain negation in the bodies
of the clauses. Although Fitting's operator is still monotonic it is no longer
continuous. It follows from Blair [2] and Kunen [14] that the least fixed point
of this operator can be Π\ -complete and that the closure ordinal can be ωfκ

even for definite Horn clause programs.
The finite stages of Fitting's operator, however, are decidable and cor-

respond to what is computed by SLDNF-resolution. This has been shown
by Kunen in [15] for allowed logic programs and by the author in [21] for
mode-correct programs. The class of allowed programs is considered as too
restrictive in general. The class of mode-correct programs, however, contains
most programs of practical interest, since a programmer has always modes
in mind when he writes a program. Moreover, every allowed program is also
mode-correct.

* This paper is in its final form and no similar paper has been or is being submitted
elsewhere.

** Research supported by the Swiss National Science Foundation. This article has
been written at the Department of Mathematics, Stanford University.

268 Robert F. Stark

Even though the use of three-valued logic can be eliminated in Fitting's
operator (cf. eg. [13]), the completeness results of [15] and [21] cannot be
applied to existing implementations of logic programming like, for example,
Prolog. The reason is that these systems use special search-strategies which
depend on the order of clauses in the program and on the order of literals
in the bodies of clauses. Apt and Pedreschi, however, have observed in [1]
that only the order of literals in the bodies is important. They say that most
programs used in practice terminate independently of the order of clauses in
the program — at least for the intended inputs.

Based on this observation we assign in [22] to a predicate R of a logic
program three positive elementary inductive definitions for new relations Λs,
R{ and Rt. The relation Rs corresponds to Fitting's truth-value true; R{

corresponds to the truth-value false; Rt expresses left-termination in the sense
of Apt and Pedreschi. The corresponding formal system is called the inductive
extension of a logic programs and can be used for proving termination and
correctness properties of Prolog programs (see also [24]).

A natural question is then: What is the proof-theoretic strength of the
inductive extension? — We answer this problem below and show that the
provably total functions of the inductive extension are exactly those of Peano
Arithmetic. As a byproduct we obtain a proof-theoretic proof of a key lemma
used in the completeness proofs in [22] and [23]. Our proof-theoretical analysis
of the inductive extension in terms of provably total functions is similar to
Pohlers' treatment of IDi in [7] and [18].

The plan of this article is as follows. After recalling some well-known
facts on Clark's equality theory GET in Sect. 2, we present a framework for
inductive definitions over the Herbrand universe in Sect. 3 and set up a formal
system for such in Sect. 4. Using the number-theoretic ordinal functions of
Sect. 5 we embed the formal system into an infinitary sequent calculus in
Sect. 6. Partial cut-elimination allows then to consider the positive/negative
fragment of the calculus only and to perform an asymmetric interpretation
that yields the main results of the article. Sect. 7 finally provides some hints
how the general framework for inductive definitions relates to the so-called
inductive extension of a logic program and to notions like negation as failure
and left-termination.

2. Preliminaries

Let £ be a set of function symbols. Constants are considered as 0-ary function
symbols. We assume that £ contains at least one constant symbol. Function
symbols are denoted by / and g. The terms built up with symbols from £
are denoted by small letters α, &, s, t with and without subscripts. We write
s = t for a formal equations and use s = t to express that 5 and t are syn-
tactically equal. Clark's equality theory CET^ for the language £ comprises
the following axioms (cf. [10]):

The finite stages of inductive definitions 269

1. x = x
2. χ = y -+y = χ

3. χ = y/\y = z-ϊx = z

4. xl = t / ι Λ . . . Λ z m = ym -> /(zι,...,zm) = /(yi,... ,ym)
5.

6.
7. x ^ t [if x € FV(t) and x =έ t]

Axiom (5) is called decomposition axiom, (6) is called function clash axiom
and (7) is called occurs check axiom. Note that (7) is an axiom scheme. It
can not be replaced by finitely many axioms.

Example 2.1. Let £ = {0,s}, where 0 is a constant and s is a unary function
symbol. Then the decomposition, function clash and occurs check axioms
for £ are:

(a) s(x) = s(y) -> x = y,
(b) s(x) φ 0,
(c) sn(x) φ x for n > 0.

For £ = {nil, cons} we have in CET& among others the following axioms:

(a) cons(x,y) = cons(u,v) ->• x = u, cons(x,y) = cons(u,υ) -t y = v,
(b) cons(x,y) Φ nil,
(c) cons(x,y) φ x, cons(x,y) φ y, cons (cons (x , y) , z) φ x, etc.

The theory CET£ is strongly related to unification. In fact, an equivalent
axiomatization of CET£ consists of the following two schemata for arbitrary
terms α, b, Si,t{:

I 1 , si = tι Λ ... Λ sn = tn ->• α = b,
if σ = mgu{sι = tι,..., sn = tn} and ασ = bσ,

2'. -*(sι=tιΛ...Λ8n = tn),
if {si = tι,..., sn = tn} is not unifiable.

That (I7) and (2') follow from (l)-(7) is shown in [10]. Conversely, it is easy
to see that any of the axioms (l)-(7) is an instance of (!') or (27). Thus the
two axiomatizations are equivalent.

We denote by i/e be the set of all closed terms built up with symbols
from £. The set C/c is called the Herbrand universe of £. By U£ we denote
the algebraic structure with domain [/£ and the free interpretation of the
function symbols, i.e. ίl£(/)(tι,..., tm) = /(ti,..., tm) for all function sym-
bols / G £ and all terms ti,..., tm G t/£. Equality is interpreted as identity.
The structure H£ is a model of CET£ and, moreover, every model of CET£
contains an isomorphic copy of ίl£. Sometimes, U£ is called the standard
model of CET£.

Term models of CET£ which are non-standard can be obtained by the
following construction of [3]. Let Term^ be the set of all terms of £ (with
variables). Let Φ be a directed set of substitutions. This means that for all

270 Robert F. Stark

substitutions σ,τ G Ψ there exists a substitution θ G Φ such that σ < θ
and r < θ, where σ < θ is defined as 3σ'(σ o σ1 = θ). Define on Terras the
congruence relation ~# by

5 ̂ ^ £ :<=>> 3σ £ # (sσ = to).

Then the term structure {Terras, ~<p) is a model of CETs, if equality is
interpreted by the relation ~#. Moreover, every term model of CETs can be
obtained in this way.

Models of CETs are also called locally free algebras. In [16], MaΓcev gives
an algorithm that transforms an arbitrary first-order formula containing the
equality symbol only into a normal form over locally free algebras. A slightly
more general algorithm with a different normal form is investigated by Shep-
herdson in [20]. Prom both normal form algorithms the following proposition
can be derived.

Proposition 2.1 (MaΓcev [16], Shepherdson [20]).

1. Two models o/CETs are elementary equivalent if, and only if, they have
the same number of indecomposable elements.

2. CETc is decidable.
3. CETs is complete provided that £ is infinite.
4. The first-order theory of U£ is decidable.

In this proposition, an element is called indecomposable if it is not in the
range of any function. For example, the Herbrand structure H£ has no inde-
composable elements. Same number of indecomposable elements means that
either both models have the same finite number of indecomposable elements
or both models have infinitely many.

If £ is finite, then CET£ is not always complete. Take £ = {c}. Then the
formula Vx (x = c) is true in some models but false in other models. Though
the assumption of an infinite language £ is technically very useful because it
makes CET£ a complete theory, it can be an absurd assumption in practice.
Therefore we do not make any assumption on whether £ is finite or infinite
in the following.

3. Inductive definitions over the Herbrand universe

We consider simultaneous positive elementary inductive definitions over the
Herbrand universe. Our interest in such definitions comes from the declara-
tive analysis of negation-as-failure and left-termination in logic programming
(cf. Sect. 7). Both notions can be turned into positive inductive definitions
of the kind we investigate in the following.

Let RI ,..., Rk be k relation symbols each of a given arity. An opera-
tor form is a formula in the language £(fiι,...,Rk, =) which is positive in

The finite stages of inductive definitions 271

ΛI, . . . , Λfc. More formally, we define Pos to be the set of formulas of the
following form:

Ύ \ ±\ 8 = t\ s ϊt\Rά(t)\AΛB \AvB\VxA\3x A.

An operator form .4[R,x] is then an element of Pos. By writing .4[R,x]
we indicate that all the relation symbols of the formula different from the
equality symbol are among the list R = Rι,...,Rk and that all the free
variables are among the list x.

Let -4j[R, Xj] be operator forms such that the length of Xj is equal to the
arity of Rj for j = 1, . . . , fc. Associated to these operator forms are monotonic
operators

) -> P(U?), for j = 1, . . . , fc,

where rij is the arity of Rj. The operator Γj is defined by

:={ (y) € U? : U£ |= Λ[Xly . . .,Xk,y] }.

The stages /? of the simultaneous inductive definitions are defined as usual
for j = !,...,*(<*. [17]):

roc — r.(τ<a τ<a\ τ<a — I I τ@ τ°° — I I τa

Lj — 1 j (2 l > • • • » - * *)-> 1j — U^'' 2J '~ U 13'
β<a aeOn

It is clear that the relations IJ° are the least fixed points of the operators Γj .
By 3α we denote the structure {t/£,/f , . . . ,/j^) and by 3°° the structure
{[/£, Jf°, . . . , 7J°). In the following we will mainly be interested in the finite
stages 3n for n < ω, since these structures are decidable. This can be seen as
follows. By induction on the natural number n we define equality formulas

Rj lχj] which characterize the nth stage /j1 in the inductive generation of
Rj. For j = 1, . . . , k and n G N we define

1 J?(°)Γιr 1 — I1. Kj [XjJ .= -L,

o p(n+1)rv.i — j.rτ?(n) τ?(n) v lΔ. rij [XjJ .= s\.j[n.ι , . . . ,/tfc ,XjJ .

As usual this notion means that in Aj[R\^. . . , Rkι*j] all subformulas of the

form Ri(t) are replaced by the formula R\n '[t] for i = 1, . . . , fc. Note, that the

size of the formulas Λ^ [xj] grows exponentially in n. For arbitrary formulas
A[Rι , . . . , Rk] we define

The formulas A^ can also be constructed in a more explicit way. We define
by main induction on n and side induction on the size of a formula A equality
formulas En A. Since we later use it only for positive formulas, we restrict
the definition to this class of formulas.

272 Robert F. Stark

EO Rj(t) := -L, En(A Λ B) := En A Λ En β,
E(n+i) Λj(t) := En A, [R,t], En(A VB):=EnAV EnB,
En(s = t) :=(* = «), E n V x A :=VzE n A,

^t) s(s^t), En3xA :=3xEnA.

Since Λ(n) is the same as En A, we are free to use both notions in the following
interchangeably. A^ is used for expressing that A is true at the nth stage
of the inductive definition and En A is used if we want to point out that it is
an equality formula.

Lemma 3.1. il£ (= A^ <=ϊ 3n |= A.

Prom this lemma it follows immediately that the finite stages Jj1 are decidable.
To test whether (a) belongs to /j1 one just has to compute the equality

formula Λj [a] and then to apply the decision procedure of Proposition 2.1
for il£.

Lemma 3.2. En A implies En+ι A for all n € N.

The proofs of both lemmas are standard.

4. The formal system BID

Given a list of relation symbols R = RI , . . . , Rk and operator forms Λj [R, Xj]
for j = 1, . . . , k we define a first-order theory BID(Λι, A\\Rfc, Ak).
The word BID stands for basic inductive definitions. Sometimes we also
write BID(Λι,...,Λfc) or just BID for short. The theory BID comprises
the axioms of CET^ and the following two principles for arbitrary formu-
las BI(XI), . . . , Bfc(xfc) of the language £(Λι, . . . , /?*,=):

Vx^^pR.x^^Λ^x,.)) forj = l , . : . , fc , (CLS)

(MIN)
J=l 3=1

We write BID h A if the formula A is derivable from CET£, CLS and MIN
in classical predicate logic. The principle CLS expresses that the operator
forms are closed under the relations Rj and the principle MIN expresses that
the relations Rj are minimal with respect to this property. It is well-known
that from CLS and MIN one can derive that the relations Rj are fixed points
of the operator forms. Choosing BJ(XJ) := A/[R,Xj] one derives from CLS
using the monotonicity property of positive formulas

3=1

The finite stages of inductive definitions 273

By an application of MIN one obtains

Vx, (Rjfa) -* A j l R t X j]) for j = !,...,*. (FIX)

Not only these fixed point principles are derivable but also the following
equality axioms for relations. These axioms are usually considered as part of
predicate logic:

xι = 2/ι Λ . . . Λ xn. = ynj Λ RJ(XI,. ..,xnj)-> R j (y ι > . . . ,yn,). (EQ)

To see that these formulas are derivable in BID, define for j = 1, . . . , k the
formulas

Bj[xι,...,xn.] :=Vyι, . . . ,y n . (*ι = y ι Λ . . . Λ x n . = yn . -> Λj(yι,. . . ,yn,.)).

Then it is easy to verify that for any positive formula A[R,zι, . . . ,zn] we
have

4[B,zι,...,zn] -*Vyι,...,yn(sι = yi Λ . . . Λ:rn = yn -» <A[R,yι,...,yn]).

Using CLS we obtain

k

Now we can apply MIN and obtain the equality axioms (EQ).
The question is now, what is the theory BID? How does it compare to

other systems? What is the proof theoretic strength of BID? What are the
provably total functions of BID? What is the definition of provably total
function in BID at all?

Note that unlike other formal theories for inductive definitions like IDi
or IDi the theory BID does not automatically include Peano Arithmetic.
Therefore, in a first step, we show how one can embed PA into a theory
BΪD(nat,add,mulJeq) for suitable predicates nat, add, mul and leg. We
assume that the language £ contains at least the constant 0 and the successor
function s. Instead of writing an operator form explicitly as

A[nat, x] := (x = 0) V 3y (x = s(y) Λ nat (y))

we use Prolog-like notation and assume that it is implicitly given by the
following clauses:

nat(ϋ).
nat(s(x)) 4- nat(x).

The operator forms for add, mul and leq are given by the following clauses:

274 Robert F. Stark

add(s(x),y,s(z}} <- add(x,y,z).
rau/(0,2/,0).
mul(s(x),y,z) 4- mul(x,y,u) Λ add(u,y,z).

leq(s(x),s(y)) <- leq(x,y).

It is easy to see that the theory BID(nα£, add, ran/, /eg) proves the induction
axiom for natural numbers as a special case of MIN:

A(0) Λ MX (nat(x) Λ A(x) -> A(s(x))) -> MX (nαt(x) -* A(x)) . (4.1)

Using (4.1) one can then derive that the relations add and mul are the graphs
of functions, eg.

Vx, y (nat(x) Λ nat(y) -> 3!z (nα£(z) Λ αdd(x, y, z)) .

Therefore one can embed PA into BID(πα£, add, raw/, /eg) by interpreting uni-
versal quantifiers MX A by Mx(nat(x) -> A) and existential quantifiers 3xA
by 3x(nαί(x) Λ-A).

But can we prove more in BID than in PA? — Is it, for example, possible
to extend BID(nα£,αdd,rau/,/eg) by a truth predicate for the structure of
natural numbers? Can we inductively define a relation tr(α, e) expressing
that the formula α is true in N under the assignment el The truth definition
could then be used to prove the consistency of PA.

We show that this is not possible, at least not in the obvious way, since a
truth definition typically has the following property:

£r(/orα//(x,α),e) Ή My (nat(y) ->• £r(α, cons (sub (x,y),e))). (4.2)

The relation nat occurs negatively on the right-hand side of (4.2). So we
cannot obtain (4.2) directly from an inductive definition.

In an attempt to save the truth definition we define the complement of
natural numbers by

notnat(x) «- x φ 0 Λ My (x = s(y) -» notnat(y))

and write (4.2) as

£r(/orα//(x,α),e) «-» My (notnat(y) V £r(α, cons (sub (x,y),e))). (4.3)

This equivalence can be obtained from an inductive definition, since the right-
hand side is positive. But there is no way to obtain (4.2) from (4.3), since
although BID proves

Vx-*(nat(x) Λ notnat(x)} , (UNIQ)

it does not prove
Vx (nat(x) V notnat(x)) . (TOT)

The finite stages of inductive definitions 275

And for the applications we have in mind it is essential that TOT is not
provable in BID (see Sect. 7).

One of the important features of BID is that if it proves a positive for-
mula A then there exists a natural number n € N such that GET h En A
(see Theorem 6.2). Thus if TOT would be provable in GET then there would
exist an n € N such that TOT would already be true at the finite stage 3n.
This, however, is not the case.

What about the provably total functions of BΪD(nat , add, mul, leg)? What
about the provably total functions of BID in general? — First we have to
define what we mean by provably total functions of BID. We assume that the
language £ contains the constant 0 and the successor function s. Moreover,
we assume that we have a unary predicate nat defining the natural numbers
and a distinguished binary relation symbol R. We indicate this by writing
BID(nαί, Λ, . . .). For n £ N we denote by ΰ the term

n times

Definition 4.1. A function /: N — ϊ N is called provably total in
BID(nαί, #,...), if

1. BID h R(m,n) for all m,n € N such that /(m) = n,
2. BID h Vz (nat(x) ->• 3\y (nat(y) Λ R(x,y))).

This definition can be justified as follows. Let /: N ->• N be provably total in
BΪD(nat,RΊ . . .). Then Theorem 6.3 below says that there exists an ordinal
α < εo and a function F: N -> N which is α-recursive such that

GET h Vx (Em nat(x) -> 3y (EF(m) nat(y) Λ EF(m) R(x, y))) for all ra E N.

Let m G N. Then GET h Em nat(m) and thus

GET h By (EF(m) nαt(y) Λ EF(τn) R(m, y)) .

Since U£ is a model of GET, there exists a closed term t such that

i*£ \= EF(m) nat(t) and il£ |= EF(m) Λ(m, t).

This implies that nat(t) is true at stage 3F(m) and therefore there exists an
n < F(m) such that t = n. Thus we have

il£ (= EF(m) Λ(m, n) and 3F(m) \= R(m, n) .

Since 3°° \= Λ(m,n) and 3°° is a model of BID it follows that /(m) = n.
Thus we have /(m) < F(m) for all m € N. Moreover, given m 6 N we can
compute the value /(m) in the following way. It is the least n < F(πι) such
that

276 Robert F. Stark

Since the truth of equality formulas in the Herbrand universe is primitive
recursively decidable (cf. Proposition 2.1), if follows that the function / is
α-recursive. Thus the provably total functions of BID(nα£, R,...) are exactly
those computable functions which are provably total in Peano Arithmetic.
What remains to show is the above mentioned Theorem 6.3.

5. Some remarks on ordinals less than βo

The reader familiar with the relations <n of Weiermann [26] can skip this
section. The purpose of this section is to introduce number-theoretic functions
n »->> θa(n) which will later be used in an asymmetric interpretation.

Let εo := min{£ : ω^ = ξ}. Ordinals less than ε0 are denoted by α, /?, 7.
Finite ordinals are denoted by i, j, ra, n. The natural sum of α and β is
denoted by α#/3. The norm of an ordinal α < εo is the number of occurrences
of ω in its Cantor normal form. The norm N: εo —»• N is defined by

1. N(0) := 0,
2. N(ωαι + ... + ωan) := n + N(OI) + ... 4- N(αn), if αi > ... > αn.

We write Nα for N(α). The norm N has the following properties:

1. Nω = 2,
2. Nu>α = l + Nα,
3. N (α # / 3) = N α + N/J.
4. N(a + n) = N a + n and N n = n.

For each n E N there are only finitely many ordinals α < εo with N a < n.
In the definition of the relations <n Weiermann uses (in a more general

context) a recursive function Φ: N -> N which is a variant of the Ackermann
function. For our purposes, however, it is sufficient to require the following:

Φ(n) -f- Φ(n) + 2 < Φ(n + 1) for all n G N. (*)

For example, take Φ(ri) := 3n+l. If Φ satisfies (*), then it also has the following
properties:

1. Φ(n) < Φ(n + 1) and n < Φ(n),
2. m -f Φ(ri) < Φ(m -f n),
3. m n < Φ(πι + n).

Definition 5.1 (Weiermann [26]).

1. a<l

nβ :*=> α < / ? a n d N α < Φ (N ^ - h n) .
2. Let <n be the transitive closure of < .̂

On the interval [α,α -f ω) the relations <n agree with <. If i < j then
α + i <n α -f j. Note, that a <m /? implies a <n β for all n with m < n.
Moreover, the usual operations on ordinals are monotonic with respect to the
relations <n.

The finite stages of inductive definitions 277

Lemma 5.1 (Weiermann [26]).

1. a <n β =» ωa <n ω
β,

2. a<nβ => α#7< n /?#7,
3. a <n 7 and β<nΊ => ωa #ω^ <n uΛ,
4. a<nβ =>> α + n + l < o / 3 + n + l,
5. m n <n ω + m.

Proof. We prove assertions (l)-(5) first for the one step relations <^. The
versions with <n follow then immediately, since <n is the transitive closure
of <J,. For (1), assume α <J, β. By definition, we have Nα < Φ(N β + n).
Thus,

For (2), assume a <\ β. Then we have

N(α#7) = Nα+N7 < Φ(N/3+n)+N7

For (3), assume α <^ 7 and /? <^ 7. Then we have

For (4), assume α <l

n β. By definition, we have Nα < Φ(N β H- n). Thus,

N(α + n -f 1) < Φ(N /? + n) 4- n + 1 < Φ(N β + n + 1) = Φ(N(/3 -f n + 1)).

In (5), we have N(ra n) = ra n < Φ(m+ n) < Φ(2+m+n) = Φ(N(u;+ra)+n).
D

Since the set {β : β <\ a] is finite for each α < ε0, one can define the
following functions θa: N -> N for α < ε0

Definition 5.2. θa(n) := max({n + 1} \J{θβ(θΊ(n)) \ β <l

n α, 7 <n «})•

Similar definitions can be found in [4] and [6].

Lemma 5.2. The functions θa have the following properties:

1. n <θa(ri),
2. θa(n)<θa(n + l),
3. a<mβ => ^α(m-hn) <θβ(m + ri),
4. a <o 7 and β <0 7 ==> θa(θβ(n)) < θΊ(ri).

Proof. (1) is trivial. (2) is proved by induction on α. If 0α(n) = n + 1 then
the inequality is obvious. Otherwise there exist β <l

n a and 7 <^ α such that
0α(n) = θβ(θΊ(n)). By the induction hypothesis, we obtain 07(n) < 07(n + 1)
and θβ(θΊ(ri)} < θβ(θΊ(n + 1)). Thus 0α(n) < 0α(n H- 1), since β <l

n+l a and

7 <n+ι α

278 Robert F. Stark

Assertion (3) is first shown for the one step relation <Jn. Assume that
a <l

m β. By (1), θa(m+n) < θa(θa(m + n)) and thus 0α(ra + n) < 0/3(ra + n),
since α <Jn+n /?. The generatlization to <m now follows by transitivity.

In (4), assume that a <Q 7 and β <Q 7. Then there exist a1 and β1 such
that α <0 a' <J 7 and β <0 β' <J 7 Since a1 <l

n 7 and β' <\ 7, it follows
by (2), (3) and the definition of ΘΊ that θa(θβ(n)) < θa (θβ>(n)) < θΊ(n). D

6. The infinitary system

The idea is to replace the induction scheme MIN of BID by the following
infinitary rules for j = 1, . . . , k. Every rule has countably many hypotheses:

Λ<.Λ)[t]->A for a l ine N

Similar rules are used by Cantini in [9] in a different context. Note that the
nth premise grows exponentially in the size of n. The formula A is arbitrary.

How can we prove the induction scheme MIN with this rule? — Assume
that BJ(XJ) are given formulas, B = B\, . . . , Bk and that we have

^-ίB^x,-)) for j = l , . . . , f c . (6.1)

We have to show

Vx, (Rjfrj) -> B j f r j)) for j = 1, . . . , k. (6.2)

In order that we can apply (ω) for proving (6.2) we show, by induction on n,
that

VXj (Λ<n)[Xj] -4 BJ^J)) for j = 1, . . . , k (6.3)

is derivable from (6.1). For n = 0 this is trivial, since RJ[XJ] is the

constant J_. Under assumption of (6.3), since β^ ^[xj] is the formula

Aj[R(n\ . . . , R^, Xj] and positive formulas are monotonic, we obtain

Now we can apply (6.1) and obtain

for j =

This is (6.3) for n + 1. Hence MIN is proved using rule (ω). We will treat
this informal argument below in more detail taking care of the exact length
of the derivations.

The infinitary system BIDoo is formulated in a Tait calculus. Sequents
Γ and Δ are finite sets of formulas. As usual Γ, Δ stands for Γ U Δ and Γ, A
for Γ U {A}. Negation is defined by DeMorgan's laws. This requires that we

The finite stages of inductive definitions 279

have also complementary relation symbols 7^, ΛI, ..., Rk Implication A ->• B
is defined as -»A V B. We define Neg to be the set of formulas of the following
form:

Ύ \ L\ s = t \ s ί t \ H j (i } \ A/\B \A\fB\VxA\1x A.

The length of a formula A is the number of Λ, V, V and 3 occurring in A. It
is denoted by \A\. The rank of a formula is defined in such a way that that
the rank of purely positive or purely negative formulas is zero. The rank is
used to measure cut formulas.

1. τί(A) := 0, if A G Pos U Neg,
2. τk(A*B) :=max(rk(A),rk(B)) + l,if (A*B) $ Pos U Neg and * € {Λ,V},
3. τk(Qx A) := τί(A) + 1, if A i Pos U Neg and Q G {V, 3}.

The system BIDoo is given by the derivation relation [~ Γ. This relation
means that the sequent Γ is derivable with length a and cut rank r. The
assignment of ordinals to proofs, however, is with respect to the relations <n

and not with respect to the usual ordering relation < for ordinal numbers.
This assignment is due to Weiermann [26] and based on the principle of local
predicativity of Pohlers [19] and Buchholz [5]. The axiom sequents of the
infinitary system are:

1. T
2. βl / * ! , . . . , 5n 7* *n,α = 6

if σ = mgu{sι = t\,..., sn = tn} and aσ = 6σ,
3. Si φ £ ι , . . . ,Sn φ tn

i£{sι = ίi, , s n — tn} is not unifiable,
4. S^t), Rj(t)

The relation BIDoo ̂ Γ (or |̂ - Γ for short) is defined by induction on the
ordinal a < εo

Definition 6.1. £ Γ, if

(A) Δ C Γ and A is an axiom sequent; or
(Λ) (A Λ B} G Γ and |̂ r Γ, A and [22. Γ, B and αi <0 α and α2 <o «; or
(V) (AvB)€Γand(|^Γ,Aandαι < 0 α) or ([52. Γ,B and α2 <0 α); or

(V) Vz A(x) E Γ and ff Γ, A(u) and β <0 α and u <£ FV(Γ); or

(3) 3αr ̂ (x) € Γ and [f Γ, ̂ (ί) and ^9 <0 α; or

(β) ^(t) € Γ and |f Γ, A, [R,t] and β <0 α; or

(Λ) ^-(t) G Γ and Vn G N([^- Γ^R(n)[t] and αn <n α); or
(C) [̂ Γ, A and ̂ Γ, -î and αi <0 α and 0:2 <o α and rk(Λ) < r.

Note, that the ordinal of a premise must bejess in the sense of <o than the
the ordinal of the conclusion except in rule (R). There, the ordinal of the nth
premise must be less in the sense of <n.

Lemma 6.1. 1. Substitution: If £ Γ(u) then £ Γ(t).

280 Robert F. Stark

2. Weakening: If \^ Γ and a <0 ot! and r<r' then [—• Γ, Δ.
3. Inversion o/Λ: // \~ Γ,A/\B then}^ Γ,A and [f Γ,B.
4. Inversion of V: // [f Γ, Vz A(x) then £ Γ, A(t) for all terms t.
5. Inversion of V: // [f Γ, A V B then -̂ Γ, A, 5.

Pro0/. By induction on a. D

Lemma 6.2. (Reduction) If f~ Γ, A and -̂ A ~^A and 1 < rk(A) < r

Proo/. Since α#/J = /?#αwe can assume that A is either a disjunction or
an existentially quantified formula. A cannot be atomic, since atomic formu-
las are in Pos U Neg and therefore have rank 0. The formula -\A is then a
conjunction or a universally quantified formula and we can apply inversion
to it. The lemma is proved by induction on a. D

Lemma 6.3. (Partial cut- elimination) If [^^ Γ then f^- Γ.

Proof. By induction on a. D

For a sequent Γ C Pos U Neg which consists of positive or negative formulas
only and ra, n G N we define Γ[m, n] to be the equality formula

Λ€ΓΠNeg

Similar asymmetric interpretations are used in [8] and [12]. Note, that the
interpretation has the following monotonicity property. If ra' < ra and n < n'
then Γ[m,n] implies Γ[m',n']. Thus jΓ[ra,n] is monotonically decreasing in
its first argument and monotonically increasing in its second argument.

Theorem 6.1. If ^ Γ and Γ C Pos U Neg then GET h Γ[m,θa(m)} for all
m € N.

Proof. Case (A). If {~Rj(t)yRj(t)} C Γ then Γ[m,0α(m)j is provable in
GET, since m is less than θa(m) and hence Em Rj(t) implies E0α(m) Rj(t)
If ΔC Γ and Δ is an axiom sequent corresponding to an axiom of GET then
Δ[m,θa(m)] is equivalent to^/ Δ and thus Γ[m,θa(m)} is provable in GET.

Case (Λ). Assume that (A Λ B) 6 Γ, a\ <o α, #2 <o <*»

GET h Γ, Λ[m, θaι (m)} and GET h Γ, B[m, Θa2 (m)] for all m 6 N.

Since 0αi (m) < θa(πι) for t = 1, 2 we also have

GET h Γ, A[m, θa(m)] and GET h Γ, B[m, θa(m)].

If (A Λ B) € Pos then A G Pos, £ E Pos and Eθa(m)(A Λ B) is the for-
mula EMm) A Λ E0α(m) B. If (A Λ B) G Neg then A E Neg, β E Neg and

The finite stages of inductive definitions 281

Em(-ι(AΛ£)) is Em(- A) VEm(-.J5). In both cases we obtain that Γ[m, θa(m)]
is provable in GET for all ra G N.

Case (V). This case goes similar to the previous one.
Case (V). In this case one needs that FV(Γ[ra,n]) C FV(Γ).
Case (3). In this case one needs that (Em A)u[t] is the same as Em(Au[φ.
Case (R). Assume that Rj(t) G Γ, β <0 α and

GET h (Γ,^[R,t])[m,^(m)] for all m € N.

The formula A, [R,t] is positive, and since Eθβ(m) Aj[R,t] is the same as
E00(m)+i Rj(t) and θβ(πι) + 1 < θa(m), we obtain that Γ[m,θa(m)] is prov-
able in GET. __

Case (R). Assume that -Rj(t) G Γ, αn <n a for all n G N and

GET h Γ, -. En Rj (t) [m, θan (ra)] for all m, n G N.

In the special case m = n we have

GET h Γ, - Em Λ, (t)[ro, θam (m)].

Since #αm(^) £ #α(m)> we obtain that

GET h ^-.Em

and thus GET h Γ[m,ία(m)].
Case (C). Assume that τk(A) < 1, αi <o α, α2 <o « and

GET h Γ, ̂ [m, θaι (m)] and GET h Γ, -ιA[m, ̂ αa (m)] for all m 6 N.

Since rk(A) = 0, we obtain that A € Pos U Neg. Without loss of generality
we can assume that A G Pos. Let m G N. Then we have

CEThΓ,A[m,0αι(m)] and GET h Γ,-.A[ββl(m),ββa(ββl(m))].

Prom this we obtain GET h Γ[m,0βl(m)] V Γ[0αι(m),0α2(0αι(m))]. Since
m < θaι(m), θaι(m) < θa(m) and Θa2(θaι(m)) < θa(m), by the monotonic-
ity property of the asymmetric interpretation we obtain that Γ"[m70α(m)] is
provable in GET. D

In the context of finitary systems Jager proves in [12] a similar theorem with
/"[m, ra+2α]. Cantini uses in [8] an asymmetric interpretation Γ[m, F(D, m)]
where F is an effective function and Ί> is the code of an infinitary derivation.
Also Pohlers Collapsing Lemma 43 in [19] has to be mentioned here.

Corollary 6.1. // ff A and A G Pos then GET h Eθa(0) A.

Corollary 6.2. // [f Vx (R(x) -» 3yS(x,y)) then

GET h Vx (Em R(x) -> 3y EMm) S(x,y))

/or α// m G N.

282 Robert F. Stark

Proof. Assume that [γ- Vx (R(x) -» 3y S (x , y)) . By inversion of V and V, we
obtain that ff- R(u),3y S(u,y). Since #(u) e Neg and 3yS(u,y) G Pos we
can apply the asymmetric interpretation and obtain that the formula

is provable in GET. D

What remains to show is that BID can be embedded into the infinitary system
BID oo In a first step we show that every instance of MIN is cut-free provable
in BIDoo with length ω + ra for some ra £ N (cf. Generalized Induction
Theorem 28.10 in [18]).

Lemma 6.4. // A is an instance of MIN then there exists an m € N such
that A.

Proof. Let BJ(XJ) be formulas for j = 1, . . . , k and B = J?ι, . . . , Bk Let
c/(B) be the formula

We claim that there exists a constant c 6 N such that for all n G N and all
terms t

^-^clW^R^B^t) far ,' = !,...,*. (6.4)

Let c := 2cι + 2c2 + c3 + k + 1, where

, |, c2 := ax \B5\, c3 := ax arity(Rj).

We show (6.4) by induction on n. If n = 0 then (6.4) holds, since -^Λ^[t] is
the constant T. In the induction step we obtain from (6.4), since .Aj[R,t] is
positive in R,

Since ĵ2- -τBj (t), Bj(t), we obtain

|c.n+2cH-2c2+l ^^^ ̂ R^^

After several applications of (3) we obtain

c.n+2cH-2c2+l ^^^ ̂ R^^ β j (t) , A^B, t] Λ

and finally after several applications of (V)

Thus we have (6.4) for n + 1. Since c n <n ω + c, we can apply (Λ) and
obtain

Applications of (V), (V) and (Λ) give the desired result.

The finite stages of inductive definitions 283

In a second step we show that if a formula is provable in BID then it is
provable in the infinitary system BIDoo with length ω + m and cut-rank r for
appropriate m, r £ N.

Lemma 6.5. //BID h A then there exist m,r £ N such that BID^ ^±HL A.

Proof. By induction on the length of the proof. Remember that on the inter-
val [ω,ω + ω) the relation < is the same as <Q. D

Putting everything together we obtain the following two main theorems.

Theorem 6.2. // BID h A and A is positive, then there exists an a < SQ
such that GET h EMO) A and hence 3M°> |= V(Λ).

This theorem is used in the completeness proof of LDNF-resolution (cf. [22,
23]). The bound 0α(0) is not that much important. What is important is
that if a positive formula is provable in BID then it is already true at a finite
stage. However, the bounds are important for the proof-theoretic strength of
BID namely for characterizing the provable total functions of BID.

Theorem 6.3. // BID h Vx (nat(x) -> 3y(nat(y) ΛΛ(x,y))) then there
exists an a <SQ such that

GET h Vx (Em nat(x) -> By (EMm) nat(y) Λ E,β(m) Λ(x,y)))

for all m E N.

The second theorem can be expressed in a more general form as well. If A and
B are positive formulas such that A -»> B is provable in BID then there exists
an α < εo such that Em A -> E0α(m) B is provable in GET for all m G N.
Since U£ is a model of GET, it follows that if A is true a stage 3m then B is
true astage3βα(m).

7. Negation-as-failure and left-termination

In this section we show how negation-as-failure and left-termination can be
expressed by inductive definitions. What does this mean? — Consider a pred-
icate Λ in a logic program P. From the clauses that define R we construct
operator forms for three new relation symbols R* (success), R{ (finite fail-
ure) and Ri (left-termination). Even though in most cases the operator forms
for Rs are purely existential formulas, the operator forms for R{ and Ri are
more complicated. They are universal formulas in general.

It can be shown that Rt(ά) is derivable in the corresponding system BID
if, and only if, the goal R(ά) is left-terminating in the sense of Apt and
Pedreschi [1]. Moreover, the formula R*(a) Λ Ri(a) is derivable in BID if,
and only if, the goal R(a) succeeds and is left-terminating; Rf(a) Λ ^(α)

284 Robert F. Stark

is derivable in BID if, and only if, the goal R(a) fails finitely and is left-
terminating. These results are proved in [23]. What remains to show in this
paper is that the system used in [23] can be embedded into BID. In order to
do this we need some terminology of logic programming. For a more detailed
presentation we refer the reader to [23].

The syntactic objects in logic programming that correspond to formu-
las are called goals. We use different connectives for negation, conjunction
and disjunction of goals to point out that they have a different meaning
in logic programming. Negation means negation-as-failure; conjunction is a
non-commutative operation; disjunction means alternatives in the sense of
Prolog. Goals (denoted by G, H) are expressions of the following form:

true I fail \ s = t\ R(t) \ notG \ G & H \ G or H \ 3xG.

A goal of the form GI & . . . & Gn & true is called a query and we abbreviate
it by [GI, . . . , Gn]. A program clause is an expression of the form R(t) 4- G,
where G is a goal. R(t) is called the head of the clause and G its body. For a
clause C of the form

R(tι\y],...,tn\y])*-G\y]
we define its definition form £>c[x] to be the goal

DC[XI, ,sn] •= 3y(«ι = <ι[y] & . . . & x« = inly] & G\y]),

where y are new variables. A logic program P is a finite list of program
clauses. For every relation symbol R and logic program P we define a goal
D^[x] called the definition form of R with respect to P.

Let CΊ , . . . , Cm be the list of program clauses in P the head of which is
of the form R(. . .). Then we set

One could as well define a logic program to be a function that assigns to
every relation symbol R a goal £>#[x] with distinguished variables x.

Given a logic program P the user can ask queries. In the following we
describe a simple query evaluation procedure which directly reflects the stack
based memory management of most implementations of logic programming
systems.

An environment is a finite set of bindings {tι/xι,. . . ,tn/xn} such that
the z 's are pairwise different variables. It is not required that ti φ X{. A
frame consists of a query G and an idempotent environment η. Idempotent
means that if ti =£ X{ then X{ does not occur in £ι, . . . ,ίn Remember that
a query is a list of goals. A frame stack consists of a (possibly empty) se-
quence (Gi , 771 . . . Gn, ηn) of frames. The query Gn together with the envi-
ronment ηn is called the topmost frame of the stack. Capital greek letters Φ, Φ
and θ denote finite, possibly empty, sequences of the form GI , ηι . . . Gn, ηn>
Thus (Φ\G,η) denotes a stack with topmost frame G,η. A state of a com-
putation is a finite sequence (Φi) ... (Φn) of frame stacks. (Φn) is called

The finite stages of inductive definitions 285

the topmost stack of the state. States are denoted by the capital greek let-
ter Σ. For a query G with free variables xι,...,xn let init(G) be the state
(G, {XI/TI,... ,xn/xn}) There are three kinds of final states: yes(η), no and
error.

Definition 7.1. The transition rules of the query evaluation procedure are:

1. Σ (Φ; true & G, 17) —> Σ (Φ; G, η)
2. Σ (Φ'Jail&εG,η) —> Σ (Φ)
3. Σ (Φ; 5 = t & G, 77) —> 27 (Φ; G, tyr) [if r = mgu(sτ7, £77)]
4. Γ (Φ; 5 = t & G, 77} —> 27 (Φ) [if 577 and try are not unifiable]
5. 27 (Φ; Λ(t) & G, 77) —> 27 (Φ; D%[t] & G, 77)
6. 27 (Φ; (E & F) & G,τ?} —> 27 (Φ;£ & (F & G),ιj)
7. 17 (Φ; (E or F) & G,τ?) —> 27 (Φ F & G,τ?;E & G,r;)
8. Σ1 (Φ; (E or F) & G,ty) —+ Σ (Φ E & G,77;F & G,η)
9. 17 (Φ; (3x F) & G, 77} —> 27 (Φ; F{2//a:} & G, η U {y/y}} [where y is new]

10. 27 (Φ; (not F) & G, 17} —> 27 (Φ; (noί F) & G, 77) {[F], 77) [if FT? is
ground]

11. 27 (Φ; (not F) & G, 77) —> error [if FT? is not ground]
12. Σ (Φ; (noί F) & G, 77) {̂ ^rne, r) —+ 27 (Φ)
13. 27 (Φ; (noί F) & G, 77) () —* 27 (Φ; G, 77}
14. (Φ',true,η) —> yes(η)
15. () —> no

Without Rule (8) this definition describes the operational model of pure
Prolog with occurs check. We say that

1. a query G succeeds with answer σ, if there exists a computation with
initial state init(G) and final state yes(ή) such that σ is the restriction
of 77 to the variables of G;

2. a query G succeeds with answer including σ, if there exist substitutions
r and θ such that G succeeds with answer r and Grθ = Gσ;

3. a query G fails, if there exists a computation with initial state init(G)
and final state no;

4. a query G is left-terminating, if all computations with initial state init(G)
are finite and do not end in eττor.

Note, that termination means universal termination. For Prolog-like systems
this means that one can hit the semicolon key a finite number of times until
one finally obtains the message no more solutions.

For defining operator forms for success, finite failure and left-termination
we need a language with new predicate symbols R3, Rf and Rt. We also need
a special unary predicate gr which is used to express that a term is ground.
The formulas A, B of the extended language are

T 111 s = 11 flr(t) I JZ (t) I Λf(t) I Λ*(t) I

->A\ A/\B\AVB I A-*B\ VxA\3xA.

286 Robert F. Stark

Three syntactic operators S, F and T are defined that transform goals into
formulas of the extended language. What is important in the definition is
that for every goal G the formulas SG, FG and TG are positive.

S true := T, F true := _L,
S/ofl:=l, F/αf l :=T,
Ss = t :=s = t, f s = t:=s^t,
SΛ(t):=Λ s(t), FR(t):=R{(t),
SnotG := FG, FnotG := SG,
S(G & H) := SG Λ SH, F(G & H) := FG V F #,
S(G orH):=SGvSH, F(G or H) :=FG Λ f H,
SBxG := IxSG, F3xG := VzFG,

Ύtrue :=T, TnoίG := T G Λ 0r(G),
T/oίί := T, T(G & #) := TG Λ (FG V Ttf),
T 5 = t :ΞΞ T, T(G or H) := T G Λ T if,
TΛ(t):= #(10, Ύ3xG:=VxΎG.

In the definition of ΎnotG the expression ^r(G) is an abbreviation for
gr(xι) Λ ... Λ gr(xn), where FV(G) = {xι,...,xn} In the definition of
T(G & if) it becomes clear the the operator T expresses left-termination.
The definition of T(G or H) shows that T means universal termination.
Note, that by defining Vx G as not 3x not G we can construct goals G such
that S G is any positive first-order formula.

We consider S-D^[x], F£)£[x] and T£)£[x] as operator forms defining
the relations Rs, Rf and Λ* and define IND(P) to be the theory

Note that SJ9^[x] and F£)^[x] contain the relation symbols Rs and R{ but
not the relations Λ*. The operator form T.D£[x], however, contains all three
kind of relations Λs, R{ and Λ*. Without the relations symbols JZ* and the
operator T, if we just consider S Dζ[x] and F Z?£[x] as inductive definitions
over the Herbrand universe for the relations Rs and R{ , then we obtain the
tree- valued semantics of Fitting [11] mentioned in Sect. 1.

The theory IND(P) is called the inductive extension of P. Of course, we
need also axioms for the predicate gr. The axioms are:

1. gr(c), [if c E £ is a constant symbol]
2 gr(f(xι,. . . ,Zn)) <+ gr(xι) Λ . . . Λ gr(xn). [if / € £ is n-ary]

These axioms can be added to CETs and the results of the previous sections
remain valid. Note, that it is not possible to prove Vx gr(x), since there is no
complete induction on the universe in IND(P).

What we call inductive extension in [23] differs from the definition here.
The additional axioms of [23], however, are derivable in IND(P) as is stated
in the following two lemmata. The first lemma is the fomal statement that it
is not possible for a goal to both, succeed and fail.

The finite stages of inductive definitions 287

Lemma 7.1. IND(P) h -.(SG Λ FG) for arbitrary goals G.

Proof. Let (A)+ be the result of replacing all subformulas of the form Λ8(a)
in A by -«Λf(a) and all subformulas of the form #f(a) by -«Λs(a) for each
predicate R. It is easy to see, by induction on the length of the goal G, that
the implications

and (FG)+-»--SG

are provable in pure logic. As a special case we thus have

(SZ?£[x])+ -> -F£>£[x] and (F£>£[x])+ -* -

By the contraposition of FIX (Sect. 4), we obtain that

and

are provable in IND(P). Since -\Rf(x) is the same as (Ra(x))+ and ->Λ8(x)
is the same as (Rf (x))"1" we can apply MIN and obtain that

Λ8(x) -» -ιflf(x) and Λf(x) -> -Λs(x)

are provable in IND(P). Prom this we obtain that -ι(SG Λ FG) is provable
for arbitrary goals G. D

The second lemma says that a goal succeeds or fails provided that it termi-
nates. Note, that without the condition of termination this statement is not
true in general, since a goal may loop.

Lemma 7,2. IND(P) h TG -> (SG V FG) for arbitrary goals G.

Proof. Let (A)* be the result of replacing all subformulas of the form βt(a)
in A by Λs(a) V R{ (a) for each predicate R. It is easy to see, by induction on
the length of the goal G, that

(TG)* - + S G V F G

is provable in pure logic. As a special case we thus have

By CLS we obtain that

is provable in IND(P). Since Λ8(x) V Pf(x) is the same as (^(x))*, we can
apply MIN and obtain that

is provable in IND(P) for each predicate R. Prom this we can derive the
formula T G - > S G v F G f o r arbitrary goals G. D

288 Robert F. Stark

An interesting consequence of the previous two lemmata is that IND(P)
proves the following equivalence:

T G Λ (F G V T #) < - > T G Λ (S G - > T #) (7.1)

For, assume that we have TG. Then the previous two lemmata yield that
S G is equivalent to -ι F G. Thus F G V T H is equivalent to S G -> T H. Note
that on the left-hand side of the equivalence (7.1) there is a positive formula
but the formula on the right-hand side can contain negative occurences of
predicate symbols. This means that the termination of a conjunctive goal,
T(G & H), can be expressed in a non-positive way.

A second consequense of the two lemmata is that the system of [23] can
be embedded into IND(P) and the following main theorem of [23] carries over
to IND(P).

Theorem 7.1. Let P be a logic program.

1. IND(P) h TG if, and only if, G is left-terminating.
2. If G succeeds with answer σ, then IND(P) h SGσ.
3. If G fails, then IND(P) h FG.
4 /f IND(P) h TG Λ SGσ, then G succeeds with answer including σ.
5. //IND(P) h TG Λ FG, then G fails.

We see that the framework for inductive definitions over the Herbrand uni-
verse developed in this paper can be used as a foundation of logic program-
ming.

As a last remark we want to point out that it is possible to obtain bounds
on the length of computations from the result of this paper. Assume that P
is a program and A is a ground atom such that T A is provable with length n
in IND(P). Depending on n, we obtain an ordinal α < εo such that Ύ A is
true at stage 3θa(°\ From the results in [23] it now follows that the number
of states in the computation tree for A is bounded by rθa^\ where r is a
bound on the size of the definition forms for the predicates in P.

We do not claim that these bounds are best possible, however, the reader
should be aware that, for example, in the following program

test(Q)
test(s(x)) «- test(x) & test(x)

the computation tree for test(n) has size 2n whereas T test(n) can be proved
with length O(n) in the inductive extension of the program.

Acknowledgment

I am grateful to Thomas Strahm and Andreas Weiermann for helpful com-
ments.

The finite stages of inductive definitions 289

References

1. K. R. Apt and D. Pedreschi. Reasoning about termination of pure Prolog
programs. Information and Computation, 106(1):109-157, 1993.

2. H. A. Blair. The recursion-theoretic complexity of the semantics of predicate
logic as a programming language. Information and Control, 54:25-47, 1982.

3. H. A. Blair and A. L. Brown. Definite clause programs are canonical (over a
suitable domain). Annals of Mathematics and Artificial Intelligence, 1:1-19,
1990.

4. B. Blankertz and A. Weiermann. How to characterize provably total functions
by the Buchholz operator method. This volume.

5. W. Buchholz. A simplified version of local predicativity. In P. Aczel, H. Sim-
mons, and S. S. Wainer, editors, Proof Theory. A selection of papers from the
Leeds Proof Theory Programme 1990, pages 115-147. Cambridge University
Press, 1992.

6. W. Buchholz, A. Cichon, and A. Weiermann. A uniform approach to funda-
mental sequences and hierarchies. Mathematical Logic Quarterly, 40:273-286,
1994.

7. W. Buchholz, S. Feferman, W. Pohlers, and W. Sieg. Iterated Inductive Defini-
tions and Subsystems of Analysis: Recent Proof-Theoretical Studies, volume 897
of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1981.

8. A. Cantini. Levels of implication and type free theories of classifications with
approximation operator. Zeitschrift fur mathematische Logik und Grundlagen
der Mathematik, 38:107-141, 1992.

9. A. Cantini. Proof-theoretic aspects of self-referential truth. Technical report,
Department of Philosophy, Universita degli Studi di Firenze, 1995.

10. K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic
and Data Bases, pages 293-322. Plenum Press, New York, 1978.

11. M. Fitting. A Kripke-Kleene semantics for logic programs. J. of Logic Pro-
gramming, 2:295-312, 1985.

12. G. Jager. Fixed points in Peano arithmetic with ordinals. Annals of Pure and
Applied Logic, 60:119-132, 1993.

13. G. Jager and R. F. Stark. A proof-theoretic framework for logic programming.
In S. R. Buss, editor, Handbook of Proof Theory. To appear.

14. K. Kunen. Negation in logic programming. J. of Logic Programming, 4(4):289-
308, 1987.

15. K. Kunen. Signed data dependencies in logic programs. J. of Logic Program-
ming, 7(3):231-245, 1989.

16. A. I. Mal'cev. Axiomatizable classes of locally free algebras of various types.
In The Metamathematics of Algebraic Systems, Collected Papers, chapter 23,
pages 262-281. North-Holland, Amsterdam, 1971.

17. Y. N. Moschovakis. Elementary Induction on Abstract Structures. North-
Holland, Amsterdam, 1974.

18. W. Pohlers. Proof theory: an introduction, volume 1407 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 1989.

19. W. Pohlers. A short course in ordinal analysis. In P. Aczel, H. Simmons, and
S. S. Wainer, editors, Proof Theory. A selection of papers from the Leeds Proof
Theory Programme 1990, pages 26-78. Cambridge University Press, 1992.

20. J. C. Shepherdson. Language and equality theory in logic programming. Tech-
nical Report PM-88-08, University of Bristol, 1988.

21. R. F. Stark. Input/output dependencies of normal logic programs. J. of Logic
and Computation, 4(3):249-262, 1994.

290 Robert F. Stark

22. R. F. Stark. First-order theories for pure Prolog programs with negation.
Archive for Mathematical Logic, 34(2): 113-144, 1995.

23. R. F. Stark. Formal methods for logic programming systems. Technical report,
Department of Mathematics, Stanford University, 1995.

24. R. F. Stark. Total correctness of pure Prolog programs: A formal approach. In
R. Dyckhoff, H. Herre, and P. Schroeder-Heister, editors, Proceedings of the 5th
International Workshop on Extensions of Logic Programming, ELP '96, pages
237-254, Leipzig, Germany, 1996. Springer-Verlag, Lecture Notes in Artificial
Intelligence 1050.

25. M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a pro-
gramming language. J. of the Association for Computing Machinery, 4(23):733-
742, 1976.

26. A. Weiermann. How to characterize provably total functions by local predica-
tivity. J. of Symbolic Logic. To appear.

