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Summary. K Gδdel published two seminal papers on general relativity theory and
its application to the study of cosmology. The first examined a non-expanding but
rotating solution of the Einstein field equations, in which causality is violated; this
lead to an in-depth examination of the concepts of causality and time in curved
space-times. The second examined properties of a family of rotating and expanding
spatially homogeneous solutions of the Einstein equations, which was a forerun-
ner of many studies of such cosmologies. Together they stimulated examination of
themes that were fundamental in the development of the Hawking-Penrose singu-
larity theorems and in studies of cosmological dynamics. I review these two papers,
and the developments that resulted from them.

1. Introduction

Gδdel became interested in general relativity theory while he and Einstein
were both on staff of the Institute for Advanced Studies in Princeton. Ap-
parently they discussed the subject together often. His resultant two papers
had a major impact:

Curiously, the beginning of the modern studies of singularities in
general relativity in many ways had its seeds in the presentation by
Kurt Gόdel (1949) of an exact solution of Einstein's equations for
pressure-free matter, which could be thought of as a singularity-free,
rotating but non-expanding cosmological model ... [this paper] was
one of the papers presented in a special issue of Reviews of Modern
Physics dedicated to Einstein on his 70th birthday. Gδdel used this
space-time as an example helping to clarify the nature of time in gen-
eral relativity, for it is an exact solution of the Einstein equations in
which there are closed timelike lines: an observer can travel into his
own past, and (as an old man) stand alongside himself (as a young
man). He shortly thereafter published a further paper (1952) dis-
cussing a family of exact solutions of Einstein's equations represent-
ing rotating and expanding spatially homogeneous universe models
(and relying on the geometric results derived many decades earlier by
Sophus Lie and Luigi Bianchi). As these permit non-zero redshifts,
they could include realistic models of the observed universe.

* This paper is in its final form and no similar paper has been or is being submitted
elsewhere
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These papers perhaps more than any other antecedents of later
work particularly stimulated investigations leading to fruitful devel-
opments. (This may partly have been due to the enigmatic style in
which they were written: literally for decades after, much effort was
invested in giving proofs for some of the results stated without proof
by Gόdel).

(Tipler Clarke and Ellis 1980, pp. 111-112). This is what I will explore in the
sequel. The discussion that follows cannot possibly consider all developments
from these papers (according to the Science Citation Index, the first paper
has been the subject of 220 citations between 1965 and 1993 and the second
47 citations in the same period); rather I will concentrate on main themes
and arguments that have arisen.

2. GόdePs stationary universe

GόdeΓs paper of 1949 gave the first exact rotating fluid-filled cosmological
solution of Einstein's gravitational field equations. It is uniquely character-
ized by its symmetry properties, for it is a highly symmetric space-time: it is
the only perfect-fluid filled universe invariant under a GS of isometries mul-
tiply transitive on space-time, which is space-time homogeneous (there is a
4-dimensional subgroup of isometries simply transitive on space-time) and
locally rotationally symmetric (there is a 1-dimensional isotropy group act-
ing about each space-time point) (Ellis 1967). Thus every space-time point
is equivalent to every other one, and the universe is axially symmetric about
every event. However it is not spatially homogeneous, because there is no
family of spatially homogeneous 3-surfaces in the space-time.

Because this universe is space-time homogeneous, the density μ and pres-
sure p are the same everywhere, and hence (using the standard notation for
kinematic variables, see Ehlers 1961, Ellis 1971) it does not expand (θ = 0)
and matter moves geodesically (ύa = 0). It also has zero shear (σ = 0), so
the matter velocity vector is a Killing vector field but is not hypersurface
orthogonal:

Ua]b = U[α;6] = ^ab Φ 0 (2.1)

(i.e. it generates a timelike symmetry, making it stationary) and the only
non-zero kinematic quantity is the vorticity (ω φ 0). The vorticity vector is
covariantly constant:

ωa.c=Q <* ωab]C = Q. (2.2)

The kinematic description (1),(2) uniquely characterizes these space-times
(Ehlers 1961, Theorem 1.5.2 and 2.5.4). Thus the homogeneous substratum
rotates uniformly relative to the local compass of inertia: ω2 is constant
everywhere.
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Prom these properties it follows (Ellis 1971 Section 5.2) that the electric
part of the Weyl tensor is non-zero and is given by

Eab = -ωaωb + hab-ω2 , Eab,c = 0 (2.3)
ό

but the magnetic part of the Weyl tensor is zero: Hab = 0. Because of the
rotational symmetry, the Weyl tensor is Petrov type D.

The matter source in the original solution is pressure-free matter, but
there is a cosmological constant of negative sign (the opposite sign to that
usually encountered). More generally one can regard the matter source as
being a perfect fluid. The only non-trivial covariant field equation is the
Raychaudhuri equation, which with restrictions (1), (2) becomes

Λ + 2ω* = ^κ(μ + 3p). (2.4)

The Bianchi identities give

ESK^S = 0, (2.5)

-3E*5u;s = κ(μ + p)u/, (2.6)

the first of which is identically satisfied and the second of which leads to the
relation

2ω2 = κ(μ + p). (2.7)

With the Raychaudhuri equation (4) this gives

Λ=-κ(-μ+p). (2.8)

Hence in the pressure-free case we get

Λ = ~κμ=-ω* <0. (2.9)

One can alternatively represent it as a fluid or scalar field with

Λ = Q=ϊp = μ = ω2/κ. (2.10)

There are many ways to construct this solution, because of its high sym-
metry. Gόdel himself apparently used a deformation of a metric (Klein's
fundamental quadric) along a family of timelike lines at constant distance
('Clifford parallels') generating a space invariant under a 4-parameter simply
transitive group of isometries.

Godel used this exact solution of the Einstein equations to examine prop-
erties of time and causality in general relativity. Using axially symmetric
comoving coordinates centered on a chosen world line, the metric tensor is

ds2 = 2ω~2(-dt2 + dz2 + dr2 - (sinh4 r - sinh2 r)dφ2 + 2v/2sinh2 rdφdt).
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The light cones tip over more and more the further one moves out (Fig-
ure 31 in Hawking and Ellis 1973), so that for large enough r, the circles
{r, £, x const} are closed timelike lines. This demonstrates causality violation:
an observer traveling on this path from some event P will end up, after some
proper time has elapsed, at the same space-time event P; thus she can. as
an old woman, stand next to herself as a young woman. Various paradoxes
ensue (the old person can kill the young one at event P, for example, but
then there will be no older person at that event who can kill the young one,
for she will not have survived - in which case the young one survives after
all until arriving at P, and is then able as an old person to kill the young
one ...). Furthermore by traveling far enough away, any observer can reach
an arbitrarily distant event in the past on her own world line, and so influ-
ence events in her own past history at an arbitrary early proper time in that
history.

The essential point demonstrated is that the Einstein Field Equations,
determining space-time curvature from the matter present, are compatible
with such causal violation. Until this solution was discovered, it had been
taken for granted this could not occur. Furthermore, because the universe
is space-time homogeneous, there are closed timelike curves through every
event (hence the causal violation is not localized to some small region). It
must be emphasized that this breakdown of causality does not occur because
of any multiple- connectivity of the space-time, such as happens for example
in a 2-dimensional torus universe (it is easy to construct space-times with
closed timelike lines if one allows 'cutting and pasting'). Rather the Gόdel
universe is simply connected (indeed it is homeomorphic to R4).

A necessary condition that causal violation can occur is that there exist
no cosmic time, that is, no time function which increases in the future direc-
tion along every (timelike) world line. Gόdel demonstrated that no such time
function exists in these models, indeed he showed there are no inextendible
spacelike surfaces at all in this space-time (on attempting to extend them,
they necessarily become null and then timelike). This is possible because of
the cosmic rotation signaled by the non-zero vorticity (for if the vorticity were
zero, there would be a potential function for the fluid flow vector field that
would provide a cosmic time function). However not all rotating universes
admit causal violation; it occurs here because of the uniform extent of the
rotation (it does not die away at infinity).

Gόdel did not describe the geodesic properties of this space-time, but
may have investigated them (see pp.560-1 and footnote 11 in Gόdel 1949a).
Later investigations by Kundt (1956) and Chandrasekhar and Wright (1961)
explicitly showed that there are no closed timelike geodesies in the Gόdel
universe. This is compatible with GόdeΓs results because the closed timelike
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lines he found are non-geodesic (some force would have to be exerted, for
example by a rocket engine, for an observer to move on them and experience
the violation of causality). The past null cone of each point on the coordi-
nate axis, generated by the null geodesies through that point, diverges out
from there to a maximum radius rm where closed (non-geodesic) null lines
occur and it experiences self-intersections, and then reconverges to the axis
(Hawking and Ellis 1973). Thus the past light cone of each event is quite
different than in flat space-time. No null geodesic every reach further from
their starting point than rm.

This study of geodesies also showed that these space-times are geodesi-
cally complete (and so singularity-free). This means that this universe is an
example of an Anti-Mach metric. One of the still unsolved problems of gravi-
tational theory was raised inter alia by Ernst Mach: what gives an explanation
of the origin of inertia? and why is it that in the real universe, distant galax-
ies are apparently at rest in a local inertial rest-frame? This could simply be
a coincidence, but cosmologists have sought for a causal explanation of this
fact: hopefully in the form of a direct link of local inertial properties to the
distribution of matter (Einstein 1949a).

The Gόdel universe shows conclusively that this is not a necessary con-
nection, for in that universe the metric and curvature are regular everywhere,
and the space-time is complete (there is no boundary at finite distance from
any space-time point), but the matter in the universe rotates relative to a lo-
cal inertial rest- frame (because of the non-zero vorticity). Thus specification
of matter by itself (the singularity-free condition is needed for a complete
matter specification, as otherwise singularities can be regarded as limiting
distributions of matter) does not guarantee the Machian property we observe
in the real universe: some extra boundary conditions have to be imposed to
guarantee this condition. The Gόdel universe sparked considerable new dis-
cussion of this feature (e.g. Oszvath and Schucking 1962, Rindler 1977, Adler
et al 1975).

At the end of his paper, Gόdel related his solution to the rotation of
galaxies, comparing observed rotation rates with the vorticity in his solu-
tion. He acknowledged that his solution was not a realistic universe model,
in that it does not expand (and so could not explain the observed redshifts
in the spectra of distant galaxies). Nevertheless it is interesting that he made
some attempt to relate it to astrophysical observations of galactic rotation by
Hubble, estimating ω from equation (9) and a value of 10~30 gm/cc for the
density of matter, presumably obtained from Bubble's data (he specifically
mentions Bubble's estimates of the rotation rates of galaxies). Gόdel must
have been led to these considerations and estimates by his conversations with
Einstein. In any case this section clearly shows Gόdel functioning in the mode
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of an applied mathematician (comparing observational data with model pa-
rameters to check the validity of a universe model).

Some while after the publication of this solution, Heckmann and Schucking
showed there is an exact Newtonian analogue of the solutions (Heckmann
and Schucking 1955), provided one adopts generalized boundary conditions
(which are in fact needed for any Newtonian cosmology at all to be vi-
able). In terms of suitably adapted coordinates the gravitational potential
is Φ = 7}U2(xl + x\] which diverges at infinity, and generates a non-zero
Newtonian tidal force field Eab = Φ,α& - |Λα&Φα

;α In this case the only field
equations to be satisfied is

2ω2 + Λ = i p , (2.11)

correspondingt to (4). Thus the relation between these variables is less re-
stricted than in EFE, when additionally (7) must be satisfied. Clearly there is
in this case no implication of causal violation, but this now gives a Newtonian
example of an anti-Mach metric where this effect results from the imposition
of specific boundary conditions at infinity. The issue of boundary conditions
for Newtonian cosmology is ongoing, and in a sense has still not been sat-
isfactorily resolved; this solution provides a specific example that shows the
significance of this issue.

In summary, Heckman and Schucking express the impact of the solution
thus:

Prom a theoretical point of view, GόdeΓs model is highly interest-
ing in several respects. It shows that in an infinite space the matter
can rotate absolutely. This is the first indication that Mach's ideas
are not automatically contained in Einstein's theory of gravitation.
On the other hand this model pointed out, as showed by Gόdel, that
there may arise considerable difficulties if one wants to introduce
an absolute time coordinate into a model of the Universe. The exis-
tence of closed timelike lines in GόdeΓs model showed moreover that
space-time structures in the large might be very complicated and
that startling situations could arise, e.g. a person could travel into
his own past.

(Heckmann and Schucking 1962)

3. GδdePs expanding universes

GόdeΓs stationary rotating universe is not a viable model of the real uni-
verse because in it the galaxies show no systematic redshifts (Gδdel 1949).
Apparently Gόdel must now have put a great deal of effort into examining
properties of more realistic universe models that both rotate and expand. The
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results were presented at an International Congress of Mathematics held at
Cambridge (Massachusetts) from 30th August to 5th September 1950 (Godel
1952). This represents the first explicit construction of spatially homoge-
neous expanding and rotating cosmological models. They are invariant un-
der a non-abelian GS of isometries simply transitive on spacelike surfaces1.
These are now called Bianchi universes (Heckmann and Schϋcking 1962, El-
lis and MacCallum 1968, MacCallum 1980), because the classification of the
3-dimensional symmetry group transitive on the homogeneous 3-spaces is de-
rived from that introduced much earlier by L Bianchi, which is based on an
examination of the structure constants of the Lie algebra of the symmetry
group.

The models examined by Gόdel belong to the Bianchi IX family, invariant
under the group SO (3), and consequently with compact spacelike surfaces of
homogeneity. Indeed this was his starting point. The matter content is taken
to be pressure-free matter ('dust'). The space-times are rotating solutions
(ω φ 0) with the usual space-time signature, satisfying the further conditions:

Ί. The solution is to be homogeneous in space,
II. Space is to be finite,
III. The density is not constant'.

The last condition implies that the models are expanding. In order that vor-
ticity be non-zero, the models are tilted, i.e. the matter flow lines are not
orthogonal to the surfaces of homogeneity (King and Ellis 1973)2. The paper
argues that these conditions allow only the Type IX group as the group of
isometries, and introduces a decomposition of the metric tensor into projec-
tion tensors along and perpendicular to the fluid flow lines, that has become
fundamental in later work, as well as the idea of an expansion quadric (what
is now called the expansion tensor). Godel stated, mainly without proof, a
number of interesting properties of these space-times, which remain interest-
ing cosmological models today.

On the one hand, he developed relations between vorticity and the local
existence of time functions determining simultaneity for a family of observers:

A necessary and sufficient condition for a spatially homogeneous
universe to rotate is that the local simultaneity of the observers mov-
ing along with the matter be not integrable (i.e. do not define a
simultaneity in the large).

Thus ω = 0 implies the local existence of a time function defining simul-
taneity for all fundamental observers (Ehlers 1960, Ellis 1971), and so ω φ 0

1 The much simpler Abelian case had been considered previously by Kasner
(1921) and Lemaitre (1933); but these cannot rotate, and their construction
does not require explicit consideration of the group action and structure.

2 Tilt is always a necessary condition for rotation; in Bianchi IX universes, it
implies rotation.
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implies tilt. This led him to an important observation: in such models, there
is necessarily an anisotropy in source number counts: "for sufficiently great
distances, there must be more galaxies in one half of the sky than in the
other half. He estimated the size of this anisotropy (which is proportional
to the vorticity), and which must occur in any tilted universe model whether
rotating or not (King and Ellis 1973). He went on to develop vorticity conser-
vation relations3, and gave the condition for the vorticity vector to be parallel
propagated along the matter flow lines (it must be an eigenvector of the shear
tensor, cf. Ehlers 1960), relating this to the axes of rotation galaxies: "The
fact that the direction of ω need not be displaced parallel to itself might be
the reason for the irregular distribution of the directions of the axes of rota-
tion of the galaxies (which at first sight seems to contradict an explanation
of the rotation of galaxies from a rotation of the universe [together with con-
servation of angular momentum]"

Further, he linked these local studies to the global topology and the exis-
tence of closed timelike lines: "The precise necessary and sufficient condition
for the non-existence of closed timelike lines (provided that the one-parameter
manifold of the spaces p = const is not closed) is that the metric in the spaces
of constant density be spacelike". That is, provided the matter flowlines them-
selves do not close up, spatial homogeneity precludes closed timelike lines,
but if the surfaces of homogeneity are timelike then closed timelike lines will
occur (because these surfaces are compact). It follows that

The non-existence of closed timelike lines is equivalent with the
existence of a'world-time', where by a world-time we mean an assign-
ment of a real number t to every space-time point so that t always
increases if one moves along a timelike line in its positive direction4.

This is because if the surfaces of constant density are spacelike, a world-time
can be defined by taking these 3-spaces as surfaces of constant time (and this
is the only world time invariant under the group of transformations of the
solution).

On the other hand, he gave some dynamical results that are deeper in
that they involve a detailed study of the Einstein field equations (rather than
just the kinematic identities that are the basis of the vorticity conservation
results, see Ehlers 1960). First, he considered the locally rotationally symmet-
ric ('LRS') cases, showing there exist no LRS cases satisfying the conditions
above. Second, he stated that

Under the additional assumption that the universe contains no
closed timelike lines, the quadric of expansion, at no moment of time,

3 partly implied in previous work by Synge (1937).
4 Note that there is no requirement relating this function to measurements of

simultaneity.
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can be rotationally symmetric around ω. In particular it can never be
a sphere, i.e. the expansion is necessarily coupled with a deformation.
This is true even for all solutions satisfying I-III, and gives another
directly observable property of rotating universes of this type.

Godel suggested that the result on rotational symmetry might be related
to the spiral structure of galaxies. The somewhat convoluted last statement
above means that there are no expanding and rotating spatially homoge-
neous type IX universes with vanishing shear. Third, he stated existence
of stationary homogeneous rotating solutions with finite space, no closed
timelike lines, and λ > 0, in particular such as differ arbitrarily little from
Einstein's static universe; but that there exist no stationary homogeneous
solutions with λ = 0. These results however are almost an afterthought; the
reason is that such models are unrealistic, for they cannot expand on average.

Gόdel gave only the briefest of hints as to how he proved the dynamic
results. Because of the symmetry of these space-times, the Einstein Field
equations reduce to a system of ordinary differential equations. He did not
give those equations, but he gave a Lagrangean function from which they
could be derived, and stated an existence theorem: "for any value of [the
cosmological constant] λ (including 0), there exist oo8 rotating solutions sat-
isfying all the conditions stated. The same is true if in addition it is required
that a world-time should exist (or should not exist)". The latter is the re-
quirement that initially the surfaces of homogeneity should be spacelike or
timelike.

This paper by Godel is enigmatic, because the proofs of some of the major
results are only sketched in the briefest manner5; the material is presented
in a somewhat random order; and it is sparse on references6. Nevertheless it
was a profound contribution to theoretical cosmology.

4. Resulting studies of causality

GodeΓs papers (1949,1952) lead to an in-depth reconsideration of the nature
of time and causality in relativity theory. He had showed there were acausal
simply connected exact solutions of EFE. One stream of development was
looking at space-times that were not simply connected, for example Bass and
Witten (1957) showed that a compact space-time was necessarily acausal;
and various papers considered specific high-symmetry space-times where one

5 E. Schϋcking asked Gόdel how he had proved the statements made, and in
essence the answer was by detailed calculation. Schϋcking suggests that Gόdel
did not give more details of the proofs because the method used was inelegent
(private communication).

6 Indeed the only reference is to his own paper, Gόdel (1949).
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could determine all possible connectivities. Perhaps most significant was the
broad realization that one could not take either the topology or the causal-
ity of space-time for granted: one needed to consider multiply connected
space-times and possibilities such as wormholes, for example, as well as the
possibility of causal violations.

Resulting from this, a general analysis of the ideas of causality took place,
developing also from two other directions. First, Zeeman's remarkable paper
'Causality implies the Lorentz group' (Zeeman 1964) showing that causal or-
derings induced by the metric of Minkowski space-time are preserved only by
the Lorentz group and dilations. Second, the study of Causal domains and
their boundaries by Penrose, arising out of work on the Cauchy development
of initial data for space-time and the idea of global hyperbolicity (due to
Leray and others) on the one hand, and studies of the conformal structure of
space-time on the other.

A series of important ideas arose, developed particularly by Penrose,
Carter, Geroch, and Hawking, that were crucial in the later studies of causal-
ity and singularities:

(1) the idea of causal domains: the domain of dependence of initial data,
of Cauchy horizons bounding this domain of dependence, and of Cauchy
surfaces (surfaces on which initial data determines the evolution of the entire
space-time) in space-times where no such horizons exist. The latter case was
shown to be equivalent to the condition of Global Hyperbolicity, and implied
geodesic connectivity of the space-time (which is not true in general).

(2) a series of causality conditions of increasing strength (causality, fu-
ture distinguishing, past distinguishing, strong causality) leading up to the
strongest and physically most relevant, namely stable causality. The latter
was shown to be true if and only if there is a cosmic time function, i.e. a func-
tion that increases along all timelike curves (which is not true in the Gόdel
stationary universe). This generalizes and completes GόdeΓs statement on
the relation between time functions and causality.

(3) the broad idea of null boundaries of causal domains, and an under-
standing of their properties. These boundaries include Cauchy horizons, par-
ticle and event horizons, and causality horizons (where the nature of the
causality conditions obeyed by space-time changes).

These ideas are discussed in broad outline in Tipler Clarke and Ellis
(1980); they are presented in technical detail in Penrose (1972) and Hawking
and Ellis (1973). I believe it is fair to say that GόdeΓs paper gave the impetus
to a lot of this work by initiating a new round of questioning of the nature
of time and causality in relativity theory.
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5. Resulting studies of universe models

The papers also resulted in a series of studies that greatly expanded our un-
derstanding of the dynamics of universe models, extending and in many cases
completing the work initiated by Gόdel.

Firstly, they initiated systematic analysis of the family of Bianchi universe
models. Taub (1951) gave an enlightening study of the equations and proper-
ties of empty Bianchi universes with arbitrary group type. This built on and
extended the (largely unexplained) methods used by Gόdel in his expand-
ing universe study, and made the needed techniques accessible to workers in
the field, based on local properties of symmetry groups and the classifica-
tion of 3-d Lie algebras developed by Luigi Bianchi from Sophus Lie's work.
Taub found some new Canti-Mach' metrics, notably the remarkable space later
known as Taub-NUT space (see Hawking and Ellis 1973 for a discussion).

Heckmann and Schucking (1962) extended the equations to a study of
fluid-filled Bianchi models, initiating the systematic study of this class of
models. This has become an important topic of study in terms of provid-
ing a parametrized set of alternative models to the standard Friedmann-
Lemaitre models of cosmology. The dynamical and observational properties
of the Bianchi models have been extensively studied (see Ellis and MacCal-
lum 1968, King and Ellis 1973, MacCallum 1980, 1993, Wainwright and Ellis
1996, and references therein). There is only space to mention here four as-
pects of this study. First, the 'mixmaster' universe studied by Misner (1968),
which is in fact the same model studied by Godel (1952), was shown by Mis-
ner and then by Lifshitz, Belinskϋ, and Khalatnikov to have complex oscil-
latory properties at early times, leading to chaotic-like behaviour. Whether
or not the early epoch of this universe exhibits truly chaotic behaviour is
still the object of investigation (Hobill et al, 1994). Second, the Hamiltonian
methods introduced by Misner became the cornerstone of the Hamiltonian
approach to cosmology (Ryan 1972), which in turn is the foundation of the
study of quantum cosmology (Coleman et al, 1991). Third, a very interesting
series of dynamical systems investigations of these universes has been under-
taken, which is just coming to fruition and leading on to similar studies of
inhomogeneous universe models (Wainwright and Ellis 1996). Fourth, these
analyses were extended to the case of Newtonian cosmology by Heckmann
and Schucking (1955,1956), see also Raychaudhuri (1957).

Secondly, the (observationally unrealistic) space-time homogeneous G±
cases were studied and completely solved by Ozsvath, Schucking, Farnsworth,
and Kerr, see the references in Ellis (1967).

Thirdly, the LRS cases were completely determined, see Ellis (1967) for
the dust case, Stewart and Ellis (1968) for the fluid case, and van Elst and
Ellis (1996) for a covariant approach to the fluid and dust cases. These in-
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elude some of the simplest interesting anisotropic cosmological models with
non-trivial properties (see e.g. Collins and Ellis 1979 for phase planes and
the singularity structure of the tilted type V LRS models).

Fourthly, the local covariant analysis of dynamics of cosmological mod-
els developed from GόdeΓs second paper, utilising and extending his use of
the projection tensors and his analyses of vorticity and the expansion tensor
(Ehlers 1960, Ellis 1971). A proof of his theorem on shear-free motion was
given for the general homogeneous case by Schϋcking (1957) and then ex-
tended to the general inhomogeneous dust case by Ellis (1967), who proved
that in all cases, dust-filled solutions with vanishing shear must have either
vanishing rotation or vanishing expansion. Extension of this result to various
perfect fluid cases followed, see Collins (1986) for a summary.

Fifthly, and perhaps most significant of all, GόdeΓs paper seems to have
been influential in the formulation of Raychaudhuri's fundamentally impor-
tant equation, giving the rate of change of the volume expansion along fluid
flow lines in terms of the fluid shear, rotation, and matter content (Raychaud-
huri 1955, Ehlers 1961). This is the fundamental equation of gravitational
attraction, playing a central role in the dynamics of all cosmological mod-
els. It underlies the instability of the Einstein static universe (Ellis 1971),
and directly gives simple singularity theorems for both the dust case (Ray-
chaudhuri 1955) and for perfect fluids (Ehlers 1960): neither anisotropy nor
inhomogeneity can avoid a singularity in universe models where matter moves
without rotation or acceleration. Together with its null analogue, obtained
by Ehlers and Sachs7, this equation is one of the pillars of the important
Penrose-Hawking singularity theorems.

6. The singularity theorems

The point here is simple: Raychaudhuri's result shows that irrotational dust
cannot avoid a singularity at the beginning of the universe. Can rotation or
pressure avoid the singularity?

All efforts at a direct attack, based on the dynamical equations, failed.
Many thought that it was only the symmetry of the FL models that led to
the prediction of a start to the universe. A similar issue arose in the case
of gravitational collapse. The resolution of this problem came in a brilliant
paper by Roger Penrose (1965) who used a combination of arguments from
the convergence properties implied by the null version of Raychaudhuri's
equation and analysis of its implications for the boundaries of causal sets, to

7 See Tipler Clarke and Ellis 1980 for a discussion, and Hawking and Ellis 1973
for a derivation.
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show there must be a singularity (in the sense of existence of inextendible
incomplete null geodesies) at the endpoint of realistic gravitational collapse.
Stephen Hawking then extended this kind of argument to the cosmological
case (the start of the universe), proving a series of theorems applicable in
that context, and leading to the combined Hawking-Penrose theorem that
applies in both cases (Hawking and Penrose 1970) and uses both the timelike
and null versions of the Raychaudhuri equation.

The nature of these arguments, given in depth in Hawking and Ellis
(1973), is summarized in Tipler Clarke and Ellis (1980), Section 3. The impli-
cation is that, classically considered, space-time has a beginning at the start
of the universe. More realistically, a modern view would be that we cannot
avoid a quantum gravity regime at the beginning of the universe (if gravity
is indeed quantized), or in any case a quantum-field dominated era where
energy violations take place. The issue of the nature of the beginning of the
universe is still the subject of intense debate; the Hawking-Penrose theorems
have set the parameters within which the discussion takes place. Those theo-
rems owe much to GpdeΓs papers both in terms of the foundations they laid
for analysis of causality in general relativity, and the initiation of dynamical
analyses that clarified the role and nature of vorticity and led to the timelike
and null versions of the Raychaudhuri equation.

7. GόdePs dialogue with Einstein

Because most of the interaction between Einstein and Gόdel took place during
their talks in the Institute, little is written down of that debate. However there
is a brief public interchange between them resulting from GodeΓs work. It is
printed in the book edited by P A Schilpp (1949), produced for the occasionof
Einstein's 70th birthday on 14th March 1949.

In his contribution to that book, Gόdel (1949a) explains there are world
models in which there exists no objective lapse of time. He then comments:

It might be asked: Of what use is it if such conditions prevail in
possible worlds? Does that mean anything for the question interesting
us whether in our world there exists an objective lapse of time? I
think it does. For (1) Our world, it is true, can hardly be represented
by the particular solutions referred to above (because these solutions
are static and therefore yield no redshift for distant objects); there
exist however also expanding rotating solutions. In such a universe
an absolute time might also fail to exist, and it is not impossible
that our world is a universe of this kind. (2) The mere compatibility
with the laws of nature of worlds in which there is no distinguished
absolute time, and therefore no objective lapse of time can exist,
throws some light on the meaning of time also in those worlds where
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an absolute time can be defined. For, if someone asserts that this
absolute time is lapsing, he accepts as a consequence that, whether
or not an objective lapse of time exists (i.e. whether or not time in the
ordinary sense of the word exists), depends on the particular way in
which matter and its motion are arranged in the world. This is not
a straightforward contradiction; nevertheless, a philosophical view
leading to such consequences can hardly be considered as satisfactory.

(Gδdel 1949a, p.562). This article shows how Gδdel was primarily concerned
with the "non-objectivity of the present", and only secondarily with closed
timelike lines. Einstein replies,

Kurt GδdeΓs essay constitutes, in my opinion, an important con-
tribution to the general theory of relativity, especially the analysis
of the concept of time.... if [causal violations exist] the distinction
Earlier - later' is abandoned for world points which lie far apart in
the cosmological sense, and those paradoxes, regarding the direction
of the causal connections, arise, of which Mr Gόdel has spoken. Such
cosmological solutions of the gravitation equations (with not vanish-
ing cosmological constant) have been found by Mr Gόdel. It will be
interesting to weigh whether these are not to be excluded on physical
grounds.

(Einstein 1949). Later various causality assumptions were introduced to
specifically exclude causal violations (see Hawking and Ellis 1973, Tipler
Clarke and Ellis 1980), with a general assumption that this was necessary for
physical resonableness of solutions; but that assumption has been challenged
from time to time.

This debate has been renewed with vigour in the past couple of years,
with the discovery of closed timelike lines associated with moving cosmic
strings and 'wormholes', and the introduction by Hawking of the 'chronology
protection conjecture'. An illuminating presentation of this new discussion
may be found in Kip Thome's splendid book Black Holes and Time Warps
(Thorne 1994). The debate is not yet ended.
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