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§9. A general iterability theorem

In this section we give a full proof of the iterability facts we have used.

The proof results from an amalgamation of §12 of [FSIT], §4 of [IT], and
§2 of this paper. Given a premouse M of the construction C of [FSIT], and

an iteration tree Ί on Λ4, §12 of [FSIT] shows how to use the background
extenders of C to "enlarge T" to an iteration tree U on V. The good behavior
of U guarantees that of T. That U is well-behaved is shown in §4 of [IT], by

realizing in V the models ΛΊ^ occurring on countable elementary submodels
U of U. However, since the construction C of the present paper does not
involve background extenders over V, we cannot in the current situation
enlarge T to a tree on V. Instead, we shall run the enlargement process of
[FSIT] and the realization process of [IT] simultaneously, making do with the
partial background extenders of C as in §2.

We have also re-organized and streamlined the construction of §4 of [IT].

Moreover, in order to cover all our applications, we shall consider more than
just iteration trees on premice.

Definition 9.1. A creature is a structure which is either a premouse, a
psuedo-premouse, or a bicephalus.

Let C be the construction of §1, that is,

C = (λfξ I ξ < ΩΛtft is defined).

Definition 9.2. ΛΊ is a creature ofC just in case for some j,ξ

(a)Λ4 = C, M)> or
(b) M = (&w(Aft),F), M is a psuedo-premouse, and letting K = crit(F),

MA C P(κ)M(\Λ\ < ω => F has a certificate on A), or
(c) M = (i^(A^),Fo, FI), M is a bicephalus, and letting i £ {0,1} and

Ki = crit(Fi), MA C P(κ,i)M (\A\ < ω => Ft has a certificate on A).

We say M is C-exotic just in case condition (a) above fails to hold.
If M is a creature of C which is not a premouse, then M must be C-

exotic, but we do not know whether the converse is true. If M — £j(-A/f),

then we call ( j , ξ ) an index (in C) for M\ a non-exotic M can have more

than one such index, but all its indices have the same second coordinate. If

M is C-exotic, it must be of the form (C(A/^),F) or (£u,(-Λ/e),ίo,ίι), and
then we say (0,£) is an index (in C) for M. A C-exotic creature of C has
exactly one index in C. By ind(Λ4) we mean the common second coordinate
of all indices of M.

Recall that a coarse premouse is a structure M = (M, £, ί) such that M is
transitive, power admissible, satisfies choice, infinity, and the full separation
schema, satisfies the full collection schema for domains contained in V§, and
such that ωδ = δ and ωM C M.
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Definition 9.3. // M is a coarse premouse, then CM = (λf£* \ ξ <

6M and λf£* exists) is the construction of §1 as done inside M, up to

stage 6M .

Thus C = C^ for all coarse premice M such that 6M = Ω and V/f = VΩ.

Notice that for any coarse premouse Λ4, λfjf* £ V£M whenever Me4 exists.
Further , there are in V^M certificates for all extenders put into models of

C".
By convention, all creatures are 0-sound. The notion of a weak 0-embedding
extends in an obvious way to creatures which are not premice. If π : M. — > M
and M and Λf are psuedo-premice, then π is a weak 0-embedding just in case
7Γ is rΣo elementary, and for some cofinal X C ORM , π is rΣ\ elementary

on parameters from X. If π : M — »• λf where M = (Λί;, FQ, FI) and Λf =
(λfΊGQjGi) are bicephali, then π is a weak 0-embedding just in case it is a
weak 0-embedding from (Λ4', FQ) to (ΛΛ, GO) and a weak 0-embedding from
(M',Fι) to (ΛΛ,Gι). For k > 0, we shall consider fc-soundness and weak
Ar-embeddings only as applied to premice.

Definition 9.4. Let M be a creature and let k < ω; then (7£, <2, π) is a
k-realization of M just in case Ίi is a coarse premouse and

(a) Q is a creature of Cπ of the same type as M, and if k > 0 then M
is premouse and Q — <£jb( Λ/jr)^ for some ξ,

(b) π is a weak k-embedding from M. into Q, and

(c) 7Γ, M G π.

In the situation of 9.4, if M is a premouse then the ordinal ξ as in (a) is

determined uniquely by Q and k.
If M is a creature and ωβ = ORM , then we set J$* = M . If ωβ < ORM ,

then we let j£* be the unique premouse Q such that Q is an initial segment

o f Λ Ί

Definition 9.5. Two creatures M and λί agree below 7 just in case for all

β<Ί, J^ = 3$

We wish to consider iteration trees whose base is a family of creatures.

Definition 9.6. A phalanx of creatures is a pair

(((Mβ,kβ)\β<a),((vβ,λp)\β«x))

such that for all β < a
(1) Mβ is a creature} kβ < ω, and if kβ φ 0 then Mβ is a kβ-sound

premouse;
(2) ifβ<j< α, then vβ < VΊ;
(3) ifβ<J< «, then \β is the least η > Vβ such that MΊ \= η is a

cardinal, and moreover, pky( M.Ί) > \β',

(4) λ^ < ORMβ; and
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(5) if β < j < a, then Mβ agrees with MΊ below Xβ.

If βis a phalanx of creatures, say B = (((Mβ,kβ) \ β < a) , ((vβ,\β] \ β <

a)) , then we set Λίf - Mβ, degβ(/?) = kβ, v(β,B) = vβ and λ(/?,β) = λβ.
We also set lh(B) = a + 1. Notice that, because of (3), the λ(/?,β)'s are
determined by the z/(/?, #)'s and the ΛΊ|'s.

If B is a simple phalanx in the sense of §6, then B becomes a phalanx in
the sense of 9.6 if we set kβ = ω for all β < /Λ(β), and ι/(/J, B) = X(β, B) for
all β + 1 < lh(B). The notion of an iteration tree on a simple phalanx, as
defined in §6, extends in an obvious way to phalanxes as defined in 9.6.

Definition 9.7. Let T be an iteration tree of length θ + 1 on a phalanx B of
length a + 1. Then:

(i) (a) for β<a, degr (β) = degB(β), and fora<β<θ, degr (β) is the
unique k <ω such that Λ4J = Ultk((Mj)* ,EΪ) if β is a successor, and the

eventual value o/deg (7) forjTβ sufficiently large if β is a limit]
(b) for β < a, v(β,T) = ι/(/?,B) and X(β,T) = X(β,B), while for a <

β<θ, v(β,T) = v(Ej) and X(β,T) = lh(Ej).
(ii) Φ(Ί) is the unique phalanx T> such that lh(D such that lh(D) = θ + l

and
(a) M$ = Mτ

β and degp(/?) = degr(/?) for all β<θ,
(b) ι/(/?,l>) = ι/()9,T) and X(β,Ί>) = X(β,T) for all β < θ.

A realization of a phalanx B will be a family of realizations of the crea-
tures occurring in B. We shall demand that these realizations agree with one
another in a certain way. In order to explain this agreement condition, we
now recall the terminology associated to "resurrection" in §12 of [FSIT].

Let M be a creature ωa = ORM , and t < ω. Suppose t = 0 if M is not
a premouse. Let ωX < OR^ . Set

and

!, fci+i) = lexicographically least pair {/?, k). such that

(\,0)<(βi,ki)<leχ(β,k)<leχ(a,t)

and Pk(Jβ

M) < P

where (/?t +ι,fc t +ι) is undefined if no such pair exists. Let i be largest such
that (βi , ki) is defined; then we call {{/?o5 &o)j - , (βίy fc<}) the (t, λ) dropdown
sequence of M. It is clear that if ((βe,ke) \ e < i) is the (t,λ) dropdown
sequence of Λί, then (βe,ke) <jeχ (/?β+ι, fce+ι) for all e < i, and 0 < ke < ω

for all e < i such that e > 0. Also, letting ωa = ORM ,

{flkO^) I λ < /?Λ (/?,*) <leχ (α,ί)Λpt(J^) < A} = {pt.(J^) I e < <} .
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The following lemma is proved in §12 of [FSIT]. We gave its proof in a
typical special case in Lemma 2.6 of these notes.

Lemma 9.8. Let M be a creature of C with index (*,£), let ((βe,ke) \ e < i)
be the (tf, λ) dropdown sequence of M. Then there is a unique 7 < ξ such that
Jβ^ is a creature of C with index (^,7).

Now let M be a creature of C with index (t,ξ), and let ωX < ORM .
We define the (.M,tf,£) resurrection sequence for λ as follows. Let {/?, k) be
the last term in the (ί, λ) dropdown sequence of M. If {/?, k) = (λ,0), then
the (M,t,ξ) resurrection sequence for λ is empty. If (β,k) φ (λ,0) (so that
k > 0), then let 7 < ξ be unique so that J$* = Cjk(Λ/*7), as given by 9.8. Let

be the canonical embedding. Then the (-M,i,£) resurrection sequence for λ
is {/?, fc,7, π)~s, where s is the (<£fc_i(<V7), k — 1,7) resurrection sequence
for ττ(λ). Here, as usual, if λ = ORΠ CjbCΛ/^), then ττ(λ) = OR Π £k-ι(λfΊ)
by convention. Notice (7,^ — 1) <lex (ζ>t), s° this is indeed a legitimate
inductive definition.

Now suppose M is a creature of C with index (t, f ), ωλ < ORM , ((βe,ke) \

e < i) is the (tf, λ) dropdown sequence of Λί, and {{<5e,4,7e, TΓe) | e < 5) is
the (M,t,ξ) resurrection sequence for λ. As explained in §12 of [FSIT], we
can find stages

i < eι < e2 < < et _ι = s

such that for 1 < j < i — 1,

(δej , ίej) = πβ j_ι o πβ j_2 o - - o

We set eo = 0, and interpret "7Γeo_ι o o TΓQ" as standing for the identity
embedding; this makes the equation just displayed true for j = 0 as well. Set

σi-j = πe3 ° TΓβj-1 O O 7ΓQ

so that

is an 4j — 1 embedding, for 0 < j < i — 1. In order to simplify the indexing a
bit, we set r, _j = jej for 0 < j < i — 1. Notice that &, _j = tej . Thus, setting
p = i — j, we have that for 1 < p < i,

is a fcp - 1 embedding. Let us set Resp = ίfcp-ι(Λ/Vp)

Definition 9.9. In the situation described above, we call (σp,Resp) the pth

partial resurrection of X from stage (/,£).
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The partial resurrections of λ from stage (t,ξ) agree with one another in
the following way. For 1 < p < i, let

Then one can check without too much difficulty that KI > «2 > > «t ,

p < q => σp \ κq_λ = σq \ κq-ι ,

and
p < q => Resp and Res? agree below sup(σqκq-ι) .

Definition 9.10. In the situation described above, we call (σ, Res) the com-
plete resurrection of X from (M,t,ξ) if and only if

(a) the (M,t,ξ) resurrection sequence for X is empty, and (σ,Res) —
(identity, M), or

(b) the (M,t,ξ) resurrection sequence for X is nonempty, and (σ, Res) =

Notice that in either case of 9.10, Res is a creature of C with index (k, 7),
for some (7, k) <\ex (£,*)• ̂  ̂ es ^s C-exotic, then 9.10 (a) must hold.

Of course, the notions associated to resurrection can be interpreted in
any coarse premouse 72., using C^ , and not just in V '. We shall do this in the
following.

Let (σ, Res) be the complete resurrection of A from (M,t,ξ). Suppose
Jχ* is active, which is a case of particular interest. If ( t , ξ ) — (0,λ), then
M = J*Λ = Res, and σ is the identity. Otherwise, (λ, 1} <jeχ ( ζ , t ) , so
(βi , *ι) = (λ, 1). It follows that Res = Λ/"7 for some 7 < ξ, and σ : jf* -^ λfΊ

is a 0-embedding.

Definition 9.11. Let B be a phalanx of length a + 1. Then a realization of
B is a sequence ((TlβyQβ,πβ) \ β < <*) such that

(1) for all β < a, (Kβ,Qβ,πβ) is a degβ(β)- realization ofM%, and

(2) if β < 7 < α, and τ is the unique ordinal ζ such that (degβ(/?),£) is
an index of Qp in Cπβ , and Xβ = X(β,B), and (σ^,Re/) is the complete

resurrection of πβ(Xβ) from (Q β , degβ (β) , r) , and v$ — v(β,B), then

(a) V*e = Vf\ and V^\ C V^\, for μ = σ" o *β(Vβ),

(b) Resr agrees with QΊ below σ@
(c) (σ& o πβ) \ Xβ = πΊ \ Xβ, and

If £ = ((Έ,β, Qβ, πβ) I β < a) is a realization of B, then we write li^ for
Ίlβ, etc.

Definition 9.12. Let B be a phalanx of length α+ 1, S a realization of B,
and T a putative iteration tree on B. Let a + 1 < 7 < Ih T, and let β < a + 1
and βTj. We call a pair ( P , σ ) an S-reahzation of M^ if and only if
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(1) (Kε

β,P,σ) is a degτ(7) realization of M*,

(2) if Qβ has index (degβ(/?),£) and P has index (degτ(j),θ) in the
construction ofR,^, then θ < ξ, and

(3) if Dr Π [/?,7]τ - Φ and degr(T) = degβ(/J), then P = Qβ and
πβ = σoιβ,Ί

Definition 9.13. Let Ί be an iteration tree on B, and b a maximal branch of
T such that DΊΠ& is finite. Then an ε-realization ofb is just an ε-realization
of ΛΊ^, where 7 = sup 6 and S is the putative iteration tree of length 7 + 1
such that S \ 7 = T \ j and b — {η \ ηSj}. We say b is ε-realizable iff there
is an ε-realization o f b .

We can now state the main result of this section. Recall that a cutoff point
of a coarse premouse (M, E, δ) is an ordinal Θ £ M such that (Vθ

M, E, δ) is a
coarse premouse. We say that M has a cutoff points if the order type of the
set of cutoff points of M. is at least a.

Theorem 9.14. Let B be a hereditarily countable phalanx, and let ε be a

realization of B such that Vα < lh(β) (R,e

a has δπ<* cutoff points). Let T be
a countable putative normal iteration tree on B. Then either

(1) T has a maximal, ε-realizable branch, or
(2) T has a last model M^, and this model is ε-realizable.

Proof. Fix £o, a realization of BQ as in the hypotheses, and T a putative nor-
mal iteration tree of countable length θ on BQ . We shall consider no iteration
trees but T in the proof to follow, and so we set Mβ = M*β , Eβ = Ej,

vβ = ι/(/?,T), λβ = λ(/?,T), and deg(/?) = degr(/?). Let n* : θ —> ω be
one-one, and set

n(α) = inf{π*(/?) | a - β or aTβ} .

Clearly aTβ => n(α) < n(/?), and for λ a limit < 0, n(λ) is the eventual value
of n(β) for all sufficiently large βT\. Notice that if n(a) = n(β), then aTβ
or /?Tα or α = β. Also, for 6 a branch of T,

6 is maximal O> sup{n(α) | a £ 6} = ω .

For a,β < θ, we say

α survives at β & [a - β V (αT/2 Λ n(α) = n(β) Λ

< 7 < β Λ 7 ^ (α, /?)τ) =^ n(c

It is easy to see that if a survives at β and β survives at 7, then α survives at
7. Also, if α survives at 7 and aTβTj, then α survives at β and /? survives
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at 7. One can also easily see that if λ is a limit, then all sufficiently large
βT\ survive at λ, and that for 6 a branch of T,

6 is maximal ^ V α £ δ Ξ / ? E & (α < /? Λ α doesn't survive at /?).

Let Ih (Bo) = α0 + 1.
For each β < α0, letting A! = degβ(/?), choose a cofinal Yβ C pk(M®°) such

that 7Γ0° is rΣfc+i elementary on parameters from Yβ. Next, for α0 < /? < 0,

we define y/? by induction. If T-pτed(β) = 7 and β £ Dτ and deg(/?) =
deg(γ), then set Yβ = iΊβ"YΊ. If T-pτed(β) = j but β £ Dr or deg(β) <
deg(7), then set Y^ = ^"(Λ^). Finally, if β is a limit ordinal < 0, let Y^ =
common value of ̂ Y7 for all sufficiently large jTβ.

The idea here is that in a copying construction beginning from £Q, Y/? is
the subset of Mβ on which we expect rΣk+i elementarity of the copy map,
for k = deg(β). We call a k realization (7£,Q,τr) of Mβ a (k,Y) realization
just in case π is rΣfc+i elementary on Yβ. A realization Σ1 of Φ(T f α +1) is a
Y realization just in case V/? < α((^, Q^, π|) is a (deg(/?), Y) realization of
Mβ). All realizations we consider in the proof to follow will be Y-realizations.

Let α < θ and let (72., (J, π) be a deg(α) realization of Λ4α We shall define
a tree {/ = ί7(α,7J,Q,π). Roughly speaking, 17 tries to build a maximal
branch 6 of T such that α £ 6, together with a realizing map σ for Λ4jf which
extends TT. More precisely, we put a triple

({/?o, . . . ,/?n},{^o, . . . ,^n),(Qo,. . . ,Qn}) into ί7 just in case
(1) /?<> = α, 9?0 = π, and Q0 = Q,
and for all i < n,
(2) βiTβi+ι and /?,- does not survive at $+1,
(3) indπ(Qί+ι) < indπ(Qa and Dr Π (A, β+ι]τ ^ 0 iff indπ(Qί+1) <

ind^(Qi); moreover, if Dτ Π (/?,-, A +I]T = <^ and degr(A) - degr(β+ι),
then Qt = Q, +ι, and

(4) (Λ,Q t +ι,^t +ι) is a (deg(/?;+ι), Y) realization; moreover, if Dr Π

(A, ft+ι]τ ̂  Ψ and deg(β) = deg(^>ι), then φ{ - φi+ι o ίjt)pt+1

Suppose that ((/?; | i G ω), (^ | f E ω), (Q< | f 6 ω)) is an infinite branch
of t/(α,7i,Q,π). Set 6 = {T? | 3i(τyT^)}; then (1) and (2) guarantee that
6 is a maximal branch of T such that α £ 6. By condition (3), Dr Π 6 is
finite, and Q, is eventually constant as i —* ω, say with value Q^. Condition
(3) also guarantees Qoo = Qo = Q in the case £>r Π (6 — (a + 1)) — φ and
deg(α) = deg (b) (i.e., deg(r ) = deg (α) for all η E 6 - (α + 1)). Finally, let
y G M'ζ, and let & be large enough that Dτ Π (6 — βk) = ^, deg(/?fc) = deg
(b), and y = ^βkb(x) ^OΓ some x E Mβk. We then set σ(y) = φk(x) By
condition (4), σ is a well-defined weak deg (b) embedding from Mb into Qoo
Moreover, if Dr Π (6 — (a + 1)) = φ and deg (α) = deg(6), then π = σ o ί£6.

So if for some α < α0 ) ί7(α,^β°,Oβ°ιίrS0) nas an infinite branch, then
conclusion (1) of 9.14 holds. We therefore assume henceforth that for all
a < α0, !7(α,ft£0,Q£0,π£0) is wellfounded. Notice that U(ajπ

ε

a°,Q
ε

Q

0,πε

a

Q)

belongs to 7έ£°, and has size < δn<*Q in ̂ °.
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Notice that if a < 0, then there are only finitely many 7 < θ such that
α < 7 and T-pred(γ) < a. and T-pred(γ) survives at 7. [If not, then we can
fix k < n(θί) such that k — n(j) = n(T-pred(7)) f°Γ infinitely many 7 such
that T-pred(7) < α < 7. Fix two distinct such 7's, say 70 and 71. Then 70
and 71 are T-incomparable, yet 71(70) = ^(71). This contradicts the definition
of n] For α < β < 0, we define

c(α, β] = |{7 I β < 7 <θ Λ T-pred(7) < a Λ T-pred(7) survives at 7} | .

Definition 9.15. Let 7 < θ = Ih Ί, and lei £ be a realization of Φ(T \ 7).
We say S has enough room iff ^ ex. < 7

(a) ^(αsT^jQαj^α) f's wellfounded, and
(b) ft£ Λ α s ω rvnk(U(a,'R,*ίJQ*l,π*)) + c(ct,Ί) cutoff points.

Definition 9. 16. Let a <J<Θ; then a is a breakpoint atj iff whenever β is
a successor ordinal such that a < β < 7 and T-pred(β) < a, then T-pred(β)
does not survive at β.

We can now prove our main lemma, which concerns the extendibility of
realizations of the phalanxes determined by initial segments of T.

Lemma 9.17. Let C*Q < a < η < θ, and let £ be a realization ofΦ(T \ α + 1)
such that S has enough room. Then:

(1) Suppose a. is a break point at η. Then there is a realization T of
Φ(T Γ η + 1) such that T \ a + I - £ , F has enough room, and Ίlζ E #£.

(2) Suppose that for some δ < a, δ survives at η, and let SQ be the largest
such ordinal δ. Then there is a realization T of Φ(T \ η + 1) such that
f \ <50 — £ \ όo, T has enough room, and

(a) Ίlζ = ftfo and ιndπϊ (Qζ ) < ind*** (Q*a),

(b) Dr Π (<*,η]τ φφ^ md^(Qζ) < ιndπ«(Qε

a), and

(c) if Dτ Π (<x,η]τ = Φ and degτ (a) - degr(η), then Qε

Q = Qζ and

Proof. By induction on η. First, supposing 9.17 known for η < 7, we prove
it for 7 + 1. So let α0 < α < 7 + 1, and let £ realize Φ(T \ a -h 1) and have
enough room. Let β = T-pred(7 + 1).

We shall ultimately consider two cases in the construction of the desired
T realizing Φ(T \ 7 + 2): the case that for some δ < α, δ survives at 7 -f 1,
and the case that α is a break point at 7 + 1 and β does not survive at
7 + 1. Ostensibly there is a third case, the case that α is a break point at
7 + 1 and β survives at 7 + 1, but this case reduces easily to case one. For
in this third case, a < β < 7 + 1. Since a is a break point at β, induction
hypothesis 9.17 (1) gives us a Q realizing Φ(T \ β+ 1), having enough room,
and such that S — Q \ a + 1 and 7£^ E 1iε

a. Now case one gives us an T
realizing Φ(T \ 7 + 2), having enough room, and such that T \ β = Q \ β
and nζ+l = *R?β. Clearly, T is as required in 9.17 (1) with 77 = 7 + 1.
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The desired F will come from a realization H of Φ(T \ j -f 1) which we
now define. The definition depends on which of the two cases we are in.

Case 1. For some δ < α, δ survives at 7 + 1.
Let <50 be the largest such δ. Since β — T-pred(7-f 1), <5o = β or (δQTβ and

δQ survives at β). Let G = £ if δ0 = /?, and otherwise let £7 be the realization
of Φ(T ί /?+ 1) given by our induction hypothesis 9.17 (2), with η = β. Since
/? survives at 7 + 1, either β = 7 or β is a break point at 7. [If Γ-pred(£) <
β < ξ < 7 and T-pred(£) survives at ξ, then n(β) > n(ζ) = n(T-pred(£)), so
β doesn't survive at 7 + 1.] Let H = Q if β — 7, and otherwise let Ή. be a
realization of Φ(Ί \ 7 + 1) such that Ή. \ β + I = £ as given by our induction
hypothesis 9.17 (1), with η — 7.

Notice that in any case, TΪft = KQ

β - K£

a. Also, if Dr Π (<*,/%• = ^

and degr(α) = degr(/?), then Q* = Qε

a and ττ£ = ττ£ o ί̂ . Finally,

indπ?(Q£) < indπ*(Q£), and if Dτ Π (α,/?]τ ^ <£, then indπ?(g£) <

2. a is a break point at 7 + 1, and β does not survive at 7 -f 1.
In this case, α is a break point at 7. If a = 7 we let Ή = S . If a < 7, we

let 7ί be the realization of Φ(T f 7 -f 1) given by induction hypothesis 9.17
(1). In either case, we have 8 = Ή. \ a -f 1 and 7£^ C ft£.

Now, using W, we produce the desired T realizing Φ(T \ j + 2). We shall
have to consider the case split above again later, but for now we can run
the two cases simultaneously. In order to clean up our notation a bit, we set

(Qη,Kη,*η) = (Q^i^i^) &Γ all η < J.

Let j — deg(7), and let Q7 have index (j,ξ) in C7^. Let (σ7, Res7) be
the complete resurrection of ττ7(λ7) from (<27, j', ̂ ), as computed in 7£7, of

course. Since 7 > αo, λ7 = Ih E^ . If λ7 = OR/^, then as usual we set

π7(A7) = ORQ^.

Claim 1. If η < 7, then σ7 f ^(λ^) = identity.

Proof. Since Φ(T f 7 + 1) is a phalanx, definition 9.6 guarantees that λ^ is a
cardinal of MΊ and pj(MΊ) > λη. Since π7 is a weak j-embedding, ^(λ^)
is a cardinal of QΊ and pj(QΊ) > πΊ(λη). Also, π7(λ^) < ττ7(A7). It follows
that all projecta associated to the (j, ττ7(λ7)) dropdown sequence of QΊ are
>π7(λ,). D

Set
F — σΊ o πΊ(E^) — last extender of Res7 ,

where if ResΊ is a bicephalus we choose the extender interpreting the
same predicate symbol that EΊ interprets in MΊ. We wish to consider
Ult(Q*+1,F), where Q*+1 is the creature of C7^ we shall now define. Let
n = deg(/?), and ((?7o> ^o), , (ηe, ke)) = the (n, \β) dropdown sequence of

and set
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for 0 < i < e. The following claim relates these to the (n, πβ(\β)) dropdown
sequence of Qβ. The claim is slightly complicated by the fact that πβ is only
a weak n-embedding.

Claim 2. The (n, πβ(λβ)) dropdown sequence of Qβ is

(a) {(^(770), fc0)> , (M7?*), ke)) if κe < Pn(Mβ),

(b) {(71^(770), fco),..., (πβ(ηe), ke))~u, where u = φ oτ u = (η,n) for ωη =

if κe = pn(Mβ) but (ωηe,ke) φ (ORM*,n), and

(c) {(π/jfao), *o), , (M»7e-ι), *e-ι))~t*, where w = <£ or tz = (πβ(ηe), ke)

(ωιj,n), for ωij = ORQ* if (u;r/e, te) =

Remark. Note that κe = pn(Mβ) in case (c). If e = 0, then n = 0 = &0 and

ηQ = Xβ = ωXβ = OR ft. The (n, τr0(λ0)) dropdown sequence for Qβ is then

{(ORQ/9,0)}, which falls under case (c).

Remark. The u = φ case in (c) would not be necessary if πβ were a full

n-embedding.
The claim follows quite easily from the fact that πβ is a weak (n,Yβ)-

embedding. For (a), notice that π'βpn(Mβ) < pn(Qβ) Recall that πβ pre-

serves cardinals, so that if for example ωηe < OR β then Mβ \= Vγ >

ηe(pω(Jf) > Λ.(J^)), and thus Qβ \= Vγ > πβ(ηe)(pω(Jf) > *β(κe))

Let μo = crit(.Z£^), and let

e + 1 if μo < κe,

least j s.t. KJ < //o > if κe ^ A*o •

Notice that since KQ — λ^ > //QJ ί' > 0.
Because T is maximal,

if i < e ,
if i = e + l ,

and

j / . - v ( ki — 1 if t < e ,
deg(7+l)=( „ if { - e + l

Let (σf, Resf) be the ith partial resurrection of λ/? from (Q/?, n, r), where
Q0 has index (n, r) in C7^, if this resurrection is defined. (The resurrection

is undefined if i = e + 1, and defined if i < e by claim 2. If i = e, (σf, Resf)
is undefined just in case (ωηe,ke) — (OR^, n) and the conclusion of (c) of
claim 2 holds with u = φ.)

Now let
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/n* _ s is defined ,
7+1 I Qβ otherwise

{ σf if Resf is defined ,

identity otherwise .

Thus, in any case, σo(πβ \ Λ4*+1) is a weak deg(γ + 1) embedding from

Mj+ι into <37+ι Moreover, σ o πβ is ^deg^+iHi elementary on Z, where

Z = Yβ if 7 + 1 £ £>r and deg(γ + 1) = deg(£), and Z = universe of Λ<*+1

otherwise.

Set t = deg(γ+l).

C/αzm 2.5. σ o π/j is a weak ^-embedding which is rΣfc+i elementary on

Proof. Assume first that Resf is defined, so that i < e, deg(γ -f 1) = ki — 1,

and σ = σf is a full fcj — 1 embedding. Looking at claim 2, we see that in

all cases the domain of σ is J^β, ^ since we cannot have the situation in (c)

with i = e and u = φ. But M.^+1 = Jηt

 β , and πβ \ Λ"ί*+1 is a weak ki — 1

embedding. In fact, if ωηi < OR ft, then π^ f M*+1 is fully elementary,

and if ωηi = ORMβ , then fci < n, so π/j f -^7+1 is a weak fci embedding. It
follows that σ o (π^ f -M*.^) is a weak Ar, — 1 embedding from M^+ι into

<37+ι. Assume next that Resf is undefined. Then either i — e + 1, or we have
the situation in (c) of claim 2 with u = φ. In either case, deg(γ + 1) < n. Also

Λ4*+1 = Mβ, Q7+ι = Qβ, and σ=identity. Since πβ is a weak n-embedding,

σ o πβ is a weak deg(γ H- 1) embedding from Λ47+1 into <37+ι

Let (σ^, Res^) be the complete resurrection of π^(λ^) from (Q^, n, r). Let
-0 be the complete resurrection embedding for σ(πβ(λβ)) from the appropriate

tuple. (This tuple is (Q7+ι,ft,τ) if Resf is undefined, and (Q*+1, Art — 1,77)

where Resf = (£fct_ι(M/)π/? otherwise.) Then

and

C/αz'm 3. ψ \ (sup(σ o π^7/Ci_ι)) = identity.

/. Suppose first that Resf exists, so that i < e and σ = σf . From

claim 2 and the fact that πβ is a weak n-embedding we see that πβ(κi-ι)
is the projectum associated to the (i — l)st element of the (n, πβ(Xβ)) drop-
down sequence of Qβ. As we remarked earlier, ψ is therefore the identity on

sup(σf "πβ(κ,i-ι)}> and this implies the claim.

Suppose next that Resf is undefined, so that either i = e + I or i = e and
(c) of claim 2 holds with u = φ. In either case the projectum associated to the
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last term of the (n, πβ(λβ)) dropdown sequence of Qβ is at least sup(τr^'/q_ι).

Thus σ& \ sup(7Γ0/q_ι) = identity. But ψ = σ^ and σ = identity, so this
implies the claim. D

Now let

•{ Otf)"^1 if >ς+ιN/4 exists,
OR^**1 otherwise.

Claim 4. μ\ < λ/?, and if μ\ = OR Ύ+1 then Λi7_|_ι — J^ β and μo is the
largest cardinal of M^+l.

Proof. If β = 7, then (μj) A Ύ exists (is < λ7) since EΊ has index A7 on the
MΊ sequence. Also, Λί7+1 is the shortest initial segment of Λi7 over which a

M M* JM^
subset of μo not in Jχ

 Ί is definable. Thus μ\ — (μo ) Ύ+1 = (^o ) λγ < ̂ 7,

and λ7 < OR^1**1, which yields the claim.
Now let β < 7. We have μo < vp < \β, and Xβ is a cardinal of ΛΊ7. Also

P(μ0) Π MΊ = P(μ0) Π J^Ί = P(μ0) Π j£ft - P(μ0) Π Λf*+ 1. It follows

that μi < Xβ. If μi = OR^**1, then as λβ < OR^**1, Aί*+1 = J^* and
μo is the largest cardinal of M^+I. Π

From the proof above we see that if β < 7, then μ\ — (μ^)My. Also,
claim 4 implies μi < /q_ι. If «, _ι = A/? this is obvious. Otherwise κt _ι is a

cardinal of Jχ

 β, since it is a projectum of some Jη

 β with η > Xβ. Since
μo < κ>i-ι by the choice of i, μi < /ct _ι.

The next claim shows that Res7 and Q7+ι have the agreement required
for an application of the shift lemma.

Claim 5. (a) Res7 agrees with Q7_|_ι below sup(σ o π^'μi),
(b) σ7 o ττ7 \ μi = σ oπβ \ μ\.

Proof.
Subclaim A. Q7+ι and Res^ agree below sup(σ o πβ'1'μi), and σ o πβ \

μ\ = "0 o (7 o TΓβ f μi.

Proof. This follows at once from claim 3 and the fact that μ\ < /q_ι.
Subclaim A yields claim 5 at once in the case β = 7, so let us assume

Subclaim B. If β < 7, then Res^ and QΊ agree below sup(σoττ^/ /μι), and
/ h K

Proof. Recall that *ψ o σ o πβ = σ^ o πβ. This sub claim therefore follows at
once from the fact that Ή is a realization of Φ(T \ 7 + 1); see clause 2 of
9.11. Notice here that μ\ < Xβ by claim 4.

Subclaim C. If β < 7, then QΊ and Res7 agree below sup(σoπ^//μι), and
ττ7 \ μi = σ7 o π7 f μ\.
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Proof. μ\ <\β, and σ o πp \ μι = π7 \ μi, so sup(σ o πβ"μι) < πΊ(\β). By
claim 1, QΊ and Res7 agree below π7(λ/3), and σ7 is the identity there.

Together, A, B, and C yield claim 5. D
Let us define

K = σΊ o π7(μ0) = & ° Kβ(μo) = crit F .

Thus («+)<?*+1 = σoπp(μι), with the usual understanding if μ\ =

Claim 6. Res7 agrees with Q7+1 below (/c+)Q*+ι < (/o+)Res\

Pπ?0/. We prove this slight strengthening of claim 5(a) in the same way
that we proved 5(a). First, Res^ and <27+ι agree below (/c"1")^**1, and

(κ+)Qι+l < (/c+)^es . This is because μo < «ί-ι, so σoττ0(μo) = « < crit ^,

so (/c+)^ *+ι < crit ψ. This finishes the proof of claim 6 if β = 7, so suppose

β < 7. Since μi < λ^, and (/c+)^es = σ^3 o πβ(μι), and ?ί is a realization,

we have Res^ agrees with Q7 below (/c+)Res/3 and (/c+)Res/S < (κ+)Q^ . But
Q7 agrees with Res7 below σ7 o ττ7(λ^), and (/c"1")^ < σ7 o ττ7(λ^), which
completes the proof. D

Proof, μo < Vβ because Ύ is an iteration tree, so K = σ o πβ(μQ) = σβ o
π^(μo) < σ^ o πβ(vβ). The claim now follows from the fact than Ή. is a
realization; cf. 9.11 (2) (a). D

Now Res7 is a creature of C?*Ύ with an index of the form (0, η) in C^Ύ .
Therefore 7£7 has background certificates for the countable fragments of F.
Let

(TV, G) = some (σ7 o ττ7(ί/7), ran(σ7 o ττ7)) —

certificate for F, as computed in HΊ .

Since Ult(ΛΓ, G) is closed under α -sequences, σ7 o ττ7 f VΊ £ Ult(7V, G). Let

us fix 6 G [lh G]<ω and a function ΰ •-»• π(w) mapping [/c]'6' into V^ Ύ so that

Suppose for a moment that case 1 of 9.17 applies, that is, that OQ < a
and <$o survives at 7 + 1. It follows that c(η, 7 + 2) < c(r/, 7 + 1) for all η such
that β < η < 7. Therefore, for such 77, TLη has ω rank(ί/(r7,^,Q,7,πf;)) +
c(η, 7 -f 2) + 1 cutoff points, because H has enough room. Let ξη be the last
of these cutoff points, and set

7£* = transitive collapse of

Eu\\v^(Vσ^η(l/η) U {6**, Qη, πη} U σ» o π,(A,)) ,

as computed in ΊZη ,
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and

(Qη> πη) = image of (Qη^η) under collapse.

Notice that ft* is coded by an element of VσT)*π , s+1, which is a subset

of ft7 because Ή. is a realization. (Note here ση o ττ^(λ^) has cardinality
ση o ̂ (i/,,) in ft,,.) So (ft*, Q*, TT*) G ft7 for all η such that /? < η < 7. Set

Then 7ί* G HΊ since 7£7 is closed under ω sequences. Clearly, Ή* is coded by
72.

a member of Vσ^π , s+1 . It is easy to check that (H \ β)"W* is a realization

of Φ(T f 7+ 1). It may not have enough room as a realization of Φ(T \ 7 + 1),
of course, because we have dropped an ordinal on coordinates η such that
β < η < 7 Since G is σ7 o π7(ι/7) + 1 strong in ft7 , W* G Ult(7V, G). We may
suppose our finite support 6 was chosen so that for some function ΰ «— »• W*(ϋ)
mapping [/c]W into V^,

If there is no δ < a such that δ survives at 7 + 1, then W* is undefined.
Let k = deg(7 + 1), and Q'Ί+ι = Ultfc(Q*+1, F). The ultrapower makes

sense by claim 6, and it is wellfounded because F has background certificates
in 7£7, and 7£7 is ω-closed. Let r : MΊ+ι — »• <97+ι be given by the shift
lemma, that is,

(Here, if k > 0, then σ o π^(/r>g) = fr,σoπβ(q) for all terms r G Sfcfc and
q G A47+1. For simplicity, we shall use the k = 0 ultrapower notation.) By
the shift lemma, Q7+ι agrees with QΊ below σ7 o π7(λ7), and r \ \Ί =
σ7 o π7 ί A7. Also, r is a weak fc-embedding which is r Σσ+ι elementary on
YΊ+I. We now use the countable completeness of G to reflect τ below K.

Let {xn I n < ω} be an enumeration of the universe of ,M7+ι , and let xn =
— jwf * —

[άn, /nlj^*1 where αn G [ι/7]
<ω. Set an = σ7 o πτ(αn) and /„ = σ o πβ(fn),

so that
r(xn) = [αnj/n]?;+1.

For notational reasons, we shall sometimes regard the component measures
EC of an extender E as concentrating on order-preserving t : c —* crit(E'),
so that "for E a.e. t : c —* crit(E'), ί G X" means that there is a set Y G
J^c such that whenever i : c — >• crit(E') is order preserving and ΐ"c G Y,
then t G -X". Let us write /(/?, Q,σ) just in case σ is rΣfc elementary on its
domain, σ is r Z^+i elementary on dom σ Π Y/j , V i < fc(p*(A</j) G dom σ =>

^(Λ(^ί/j)) = Λ(0))» and *"Pk(Mβ) C Λ(Q). Thus, if TT : Λί^ -. Q, then
π is a weak k -embedding from Mβ into Q which is r Σk+i elementary on
Yβ & (V finite F C Mβ)I(β, Q, π ί F).
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For t : (b U αo U αn) —»• K order preserving, let

<fl(xi) = fi(t"at)

for all i < n.

Claim 8. Let n< ω and let c = b U α0 U U αn. Then there is a set Wn £ Gc

such that whenever t : c —> K is order preserving and £"c £ Wn,

(ii) if i;+1(y) € dom y>?, then y>?(ς+1(y)) = σ o
(iii) if a?n < λγ, then #(*„) = τ(t"6)(arn), and
(iv) if arn = λ7, then ¥>?(*«) > »(*"&)(*„).

Proof. We first show that (ii) holds for G a.e. ί : c — »• K. Let i^+i(y) — %i =
— JWf * —

[άj, /j]^ "H"1, where i < n. Then /<(ΰ) = y for (-Ey)s, a.e. ϋ. Since σ o πβ and

σ7 o π7 agree on P(μo), this means that /i(ΰ) = σ o τr/?(j/) for F0t a.e. ϋ. The
set of such ΰ is in ran(σ7 o π7), so fi(t"a,i) = σ o π/j(2/) for G a.e. t : c — >• «.

Since ^(ί^+ι(y)) = fi(t"a-i)ι we are done.
Next, we show (i) holds G a.e. First, let p(vo - -vn) be an rΣk formula.

Then

i ff for F a.e. t : I) α,

iff for G a.e. t : c

Notice, for the third equivalence above, that the appropriate set of ΰ is in the
range of στ o ττ7, so that Fι ι and G\ \ a give it the same measure. Second,

we show φ" is rΣk+i elementary on YΊ+ι Π {XQ zn}, for G a.e. t : c —* K.
Notice here that Y7+ι = i^+iZ, where σ o πβ is rZ"jk+i elementary on Z. [If

7 4- 1 g £>r and A: = deg(γ + 1) = deg(/?), then Z = Yj j , and σ o πβ = πβ

is rΣΆ ^i elementary on y^ because W is a Y-realization. Otherwise, Z is
the universe of Λ4*+1, σ is a full fc-embedding, and TT/? is at least rΣk+i as

a map from Λ<*+1 to J^^, where ωη = πβ(OR Π Λί*+1).] Thus, if we set

Y7+ι Π {XQ '"Xn} = {i^+ι(yo), »*7+ι(ym)}, then we have for all rΣk+ι
formulae p

•̂ 7+1 N p[*7+ι(yo) «7+ι(ym)] iff Λί*+1 |= p[y0 ym]

iff O^+i N /^[σ ° τ/?(yo) σ o

iff for G a.e. t : c — » K
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This completes the proof of (i).
We now prove (iii). Let xn < λ7, and assume first that λ7 = ι/7. Since

xn < ι/7,

SO

because of the agreement between σ o πβ and σ7 o π7. Letting d = αn U {σ7 o
π7(zn)}, this means that for F a.e. t : d — > «, fn(t"an) = ί(σ7 o τr7(zn)).
Because the set of all ί"cί for which this equation holds is in ran(σ7 o π7), we
get that

/n(*"fln) = *(<r7 o JT7(*n)) , for G a.e. t .

But also,

[{σ7 o ττ7(zn)}, id]£ = σ7 o ττ7(xn) = [6, λϋ - π(ύ)]g (zn) ,

and since zn is countable in A'', it is represented by the constantly xn function
in Ult(7V, G). By Los' theorem for Ult(7V, G),

π(t"&)(zn) = t(σΊ o π7(xn)) , for G a.e. t .

This finishes the proof of (iii) in case A7 = VΊ .
If z/γ < λ7 , then ι/7 = v + 1 where v is the largest generator of EΊ , and

A7 = lh EΊ = (l,+)Ult(^;+1,^)

If xn < VΊ, the proof in the first case applies, so assume xn > z/7. We then
AΊ*

get a function g G Vr

μo_j7j[1"1 such that

[αn, p]^ Ύ+1 = some wellorder of z/ of order type xn .

Applying the shift lemma map τ to this fact, with g = σoπβ(g) — σ7 oττ7(y),

Q*
[αn, 9]py+l = some wellorder of σ7 o ττ7(z/) of order type σ7 o ττ7(a?n) .

But now Fd agrees with Gd on all sets in ran(σ7 o π7), whenever d G [σ7 o
π7(ι/+ l)]<ω This implies

It follows that for G a.e. ί , g(t"an) is a wellorder of order type t(σΊ o π7(a?n)).
We also have that for F a.e. t, hence for G a.e. ί, g(t"an) has order type
f(t"an}. So we get that /(2x/αn) = ί(σ7 o ττ7(xn)) for G a.e. tf. Now we can
finish the proof of (iii) as in the first case.

We leave the proof of (iv) to the reader. The main point is that [αn, /n]^ ^

σ7 o ττ7(λ7).
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— jw<* —
(We may assume fn E VμQ+\l , so that fn = σ7 oπ7(/n) is in ran(σ7 oττ7).)

This follows from the agreement between F and G; the proof breaks into the

cases VΊ — λ7 and VΊ < λ7 as did the proof of (iii).
This completes the proof of claim 8.

We can now finish the proof of 9.17 in case 1, the case that for some

δ < α, a survives at 7 + 1. For β < η < 7, let σ* be the complete resurrection

embedding in ft* for Q* from ττ*(λ^). Then σ* f λ,, = σΊ o π7 \ Xη, and
ση ° ^(^η) ^ σ7 ° ^(^f?) for all 77 < 7; this one sees from the construction of
H*. This agreement is a fact about H* and σ7 o π7 \ (A7 + 1) in Ult(7V, G);

by Los' theorem we get a set X G G& such that for all ΰ G X

and

for /? < η < j. Here (σj o π*)(ϋ) = σ;(ΰ) o ^(tϊ), where W;(δ) -
(7£*(u),Q*(u),7Γ*(iί)) and cτ*(iί) is the complete resurrection of π*(u)(Xη)
from Qη(ΰ) in ft^(i/). We can also arrange that for ΰ G X,

σ7 o ττ7 Γ μo = ττ(^) Γ μo ,

because σ7 o ττ7" μo is just a countable subset of /c = crit G, and G is
countably complete. Finally, we can arrange that for ΰ G X, ftJjW 'ιas

ω - rank(W(77, ̂ (ϋ), g;(u), π;(δ)) + cfo, 7 + 2) cutoff points.
Now let Wn be as in claim 8, for all n < ω, and let t : b U Un<ω an -^ K

be order preserving and such that t"b E X and t"(b U αo U αn) G Wn for
all n. Such a t exists because G is countably complete. Set φ(xn) — fn(i//an)
for all n < ω, and

It is easy to verify that f fulfills the requirements of 9.17 as a realizations of
Φ(T \ 7 + 2) in case 1.

Now let us prove 9.17 in case 2, the case that α is a break point at 7 -f 1
and β does not survive at 7 + !. From claim 8 and the countable completeness
of G we get

Claim 9. For G& a.e. ϋ, there is a ( deg(7 + 1), Y) embedding φ : Λί7+ι — »•
<57+1 such that

(a) φ \ λ7 = π(ϋ) \ A7,
(b) φ(\Ί) > π(ϋ)(A7),
(c) ^oΐ* + 1 =σoπβ.

Now if w and φ are as in claim 9, then (7 + 1,<^,Q7+1) is a node of

the tree W(/?,ft*,Qjgf,π^). (The fact that β does not survive at 7 + 1 is

relevant here.) Moreover, ̂ (7 + 1,7£?, Q7+χ, <£>) is isomorphic to the subtree
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of W(/?,ft^,<2^,τr^) consisting of nodes below (7 + l,p,Q7+ι). It follows

that Tϊfi has an ω rank(ZY(7 + l,ft^,<2*+1, <£>)) + 0(7 + l,γ + 2) + 1st cutoff
72.^

point 77. Working in ft^, we can form a Skolem hull of Vη

 β containing
72, Ή

^r(o)(λ ) U {Φy+ι^}> closed under ^-sequences and having size < K. The
'R,Ή

collapse of this hull belongs to Vκ

 β = V**. This gives us

Claim 10. For G& a.e. ϋ, there is a triple (ft, Q, v?) such that
(a) (ft, Q, <p) is a (deg(γ + 1), Y) realization of ΛΊ7+ι ,
(b)(ft,Q,^)EFΛ
(c) ft has ω - rank(Z/(7 + 1, ft, Q, <p)) + 0(7 + 1, 7 + 2) cutoff points,
(d) Q agrees with <27 below ττ(ΰ)(λ7), and ft agrees with Λf below

ττ(ϋ)(λ7),
and

(e) φ \ A7 = τr(ύ) Γ λ7 and φ(\Ί) > ττ(ΰ)(λ7).

By the axiom of choice in N, there is in TV a function f ( ΰ ) = (ft(ϋ), Q(ϋ),
<£>(ϋ)) which picks, for each ΰ in the relevant G^-measure one set, a triple
satisfying claim 10. Let

It is easy to see that T is a realization of the phalanx Φ(T \ 7 + 2); the
necessary agreement of models and embeddings comes from parts (d) and (e)
of claim 10. Part (c) of claim 10 implies that T has enough room. As case 2
governed our definition of Ή, £ \ α+1 -U \ α + 1 and ft^ C ft£. It follows

that T \ a + 1 = S [ α + 1, and since ft^+1 E Ult(ΛΓ,G) C ft*, we have

1lζ+1 E ft£ Thus f witnesses the truth of 9.17 (1).
This finishes the successor step in the inductive proof of 9.17.
Now let η be a limit ordinal, and αo < <* < η- Let βTη, where β is large

enough that α < β, β survives at 77, Dr Π [/?, 77]̂  — ψ, and deg(/J) = deg(τ7).
Let (βn I n E ω) be such that /?o = β, and βnTβn+ιTη for all n, and
77 = sup{/?n I n E ω}. Let £ be our given realization of Φ(T \ a + 1).

Suppose first that α is a break point at 77. Then α is a break point at
/?, so by induction we have a realization ^Ό of Φ(T \ β + 1) which has
enough room. We also get f§ \ a + 1 = 8, and ft^° E ft£. Now suppose fn

realizing Φ(T) \ (βn + 1) is given. Since βn survives at βn+ι, and between βn

and βn+i there is no dropping in model or degree, our induction hypothesis
gives a realization Fn+ι of Φ(T \ /3n+1 -f 1) having enough room, and such

that .Fn+l ί βn ~ ^n \ βn, H'β" = ^β^ and Q^ = Qβ**[ > an<^ ^Γ ~

TΓx,n+1 o z'T Λ . Let
Pn-fl βnβn + l
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where for x £ Mη we define π(x) by

It is easy to check that f witnesses 9.17 (1) for a and η.
Next, suppose <5o < α is largest such that <5o survives at η. Let (βn \ n < ω)

be such that Γ-pred(/?0) = <$o, βnTβn+ιTη for all n, and supn/3n = r?. By
induction hypothesis 9.17 (2) we get a realization FQ ofΦ(T \ β0 + 1) which
has enough room, and such that T§ \ SQ = £ \ SQ and 7^° = 7£fo, and Q^o°

is related as required to (?fo, and ττfo = *fa°iJ0jQ if this is required. We can
then use induction hypothesis 9.17 (2) repeatedly as in the last paragraph,
and we easily get 9.17 (2) at η. This completes the proof of Lemma 9.17. D

We can now easily complete the proof of 9.14. Suppose first that Θ is a
limit ordinal. For 0 < i < ω, let α, +ι be defined by

(Recall that c*o = lh(Bo) — l ) Clearly, αt < αt +ι and α, +ι is a break point
at 0, for all i. We may suppose that n* was chosen so that n*(c*o) = 0, which
means that α0 is a break point at θ. But then 9.17 (1) gives us a sequence
(Fi \ i £ ω) such that /Ό = £o> J7* is a realization of Φ(T f α, + 1), and

ftαί+ϊ € 7£α,*> f°Γ aΉ 2 < ω This is a contradiction.
Next, suppose 0 = 7+1. We may suppose n* is chosen so that n*(ηf) = 0,

which implies that β survives at 7 whenever βTj. But then 9.17 (2) clearly
implies that M^ is £o-realizable, as desired. D

Theorem 2.5 obviously follows from 9.14. (While 9.14 was only proved for
normal trees, whereas 2.5 was stated for linear compositions of normal trees,
we can nevertheless take care of such "almost normal" trees by applying 9.14
(2) repeatedly to their normal components.) The iterability of the exotic
creatures of C which we used in the proof of 1.4 also follows immediately.
This represents all the iterability we used in §1 - §5.

It remains only to prove Theorem 6.9, which states that if Kc \= "There
are no Woodin cardinals", then every Kc generated phalanx B such that
Ih B < Ω is Ω + 1-iterable. We shall now sketch the minor modifications of
the proof of 9.14 which yield this result.

First, the reflection arguments of §2 show that it is enough to prove the
following: let π : M — »• Ke be elementary, where M is countable. Let B
be a hereditarily countable phalanx which is (Σ1, Λ4)-generated, where Σ is
the strategy of choosing unique cofinal wellfounded branches. Let T be a
countable, normal, putative iteration tree on B. Then either T has a cofinal
wellfounded branch or T has a last, wellfounded model. So fix π, ΛΊ, and
B with these properties; we shall show that there is a realization S of B

such that Vα < Ih (B) (Hε

a has <5π« cutoff points). The desired conclusion
concerning T then follows from 9.14.
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Since Ω is measurable, we can find ξ < Ω such that π : Λ4 — -»• λίξ is
elementary. Let η be such that (Vη, £, Ω) is a coarse premouse having Ω + Ω
cutoff points, and let SQ = ((Vη , £, β), Λ/f , π). Thus £Q is a realization of Λ4.

Now fix a. < lh(β), and let «S be a countable iteration tree on M such that
M^ is an initial segment of M^, the last model of *S, and such that 5 has
no maximal wellfounded branches. Such a tree S exists because B is (Σ,M)
generated. We have by definition 6.7: if a + I < /Λ(β), then Vj
λ(α, β)), and if α + 1 = /A(5), then

We now apply a slight variant of 9.17 to find the desired realization

ί,*ί) of M% Let n* : 7 + 1 -» u; be 1-1 and n*(0) = 0. Let
n : 7 + 1 — > ω be defined from n* as in the proof of 9.14, and interpret
"survives" and "break point" relative to n as in 9.14. Thus 0 is a break point
at 7. For β < 7, and (ft, Q, σ) a degs(β) realization of Λff , let £/(/?, ft, Q, σ)
be defined as in the proof of 9.14: it is the tree of attempts to build a max-
imal branch b of S and realize M% appropriately. Since <S has no maximal
wellfounded branches, U(β, ft,<2,σ) is always wellfounded.

For f a realization of Φ(S \ £), let us say that f has more than enough

room just in case Mβ < ζ(R,% has <5π? + ω - rank([/(/?, UT , Qβ, πj")) + c(β, 7)
cutoff points), where of course c(/?, 7) is defined as in the proof of 9.14. So
EQ has more than enough room. It is clear that the proof of 9.17 works
equally well when "more than enough room" replaces "enough room" in its
hypothesis and conclusion. Since 0 is a break point at 7, this version of 9.17

gives us a realization T of Φ(S) such that £ 0 = F \ 1 and ft^7 has δny cutoff

points. Since F is a realization of Φ(5), Q^ agrees with QQ = Λ^ below

σoπ(i/(E1^)) and π^ f ι/(£?f ) = σ o π \ v(E$ ) - σ o π f ι/(i?o), where σ is the
appropriate complete resurrection embedding (bringing K(EQ) back to life).
Now whenever β < a and \(β,B) is defined (i.e. β+l< /Λ(β)), λ(/?,β) is
a cardinal of M and ι/(ί^) > λ(/?,β). Thus π(λ(/?,β)) is a cardinal of A'c

and σ f ττ(λ(/?, β)) + 1 is the identity. This implies that πζ \ (λ(β, B) + 1) =

π f (λ(/3,β) + 1), whenever /? < α and λ(/?,β) exists. Let us set ft£ = ft^,

π^ = π^ Γ ^α> and Q£ = Q^ if Ml = M* , and Q£ = <(Mα) otherwise.
Doing this for all α < ίft(β), we obtain a realization S of B which has enough
room; the agreement properties of £ follow from the fact that if α + 1 < Ih B,
then ττ£ f (λ(α,β) + 1) = π f (λ(α,β) -f 1) and Qε

a agrees with Λ/"ξ below
ττ(λ(α,β) + 1), and from the corresponding facts when α + 1 = /ft(#).

From 9.14 we get that the tree T on B is well-behaved, and this completes
the proof of 6.9.




