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§7. Some applications

In this section, we use the theory developed in §1 - §6 to show that various
propositions imply the existence of an inner model with a Woodin cardinal.

A. Saturated ideals

Shelah has shown, in unpublished work, that Con (ZFC + There is a
Woodin cardinal) implies Con (ZFC -f There is an u^-saturated ideal on u>ι).
(For earlier results in this direction, see [Ku2], [SVW], [W], and [FMS].) Here
we shall prove what is very nearly a converse to Shelah 's result. We shall
show that Con (ZFC + There is an α;2-saturated ideal on ωι + There is a
measurable cardinal) implies Con (ZFC -f There is a Woodin cardinal).

The best lower bound on the consistency strength of the existence of an
^-saturated ideal on ω\ known before our work is due to Mitchell ([M?]).
He obtained Con (ZFC + 3κ(o(κ) = ft"1"1")), which of course is as far as the
models studied in [M?] could go.

Actually, our proof does not require that the given ideal be on α>ι, nor
does it require u^-saturation in full. A generic almost-huge embedding will
suffice.

Theorem 7.1. Lei Ω be measurable, and let G be V-generic/ P for some
IP £ VΩ. Suppose that in V[G] there is a transitive class M and an elementary
embedding

j : V -+ M C V[G]

with critical point K such that

V α < j(κ)(aM Π V[G] C M) .

Then Kc |= There is a Woodin cardinal.

Proof. Suppose toward contradiction that K° has no Woodin cardinals. This
supposition puts the theory of §1- §6 at our disposal. In particular, by 5.18
we have that Kv = KV^G1. Moreover, by 6.15, the agreement between M
and V[G] implies that if P is a properly small premouse of cardinality < j ( κ )
in V[G], and a < j ( κ ) , then

(M \= P is α-strong) & (V[G\ |= P is α-strong) .

It follows that KM agrees with KVW below j ( κ ) . That is, J*M =
for all a < j ( κ ) .

Since K — crit(jf), K is a regular cardinal in V, and thus j ( κ ) is a regular
cardinal in M. Since P(a)M = P(a)vW for all a < j(/c), j ( κ ) is a cardinal
of V[G\. Thus j(/c) is a cardinal of both KM and KVW.

We claim K is inaccessible in Kv . For otherwise, we have β < K such

that /c = (β+)κV. This means j ( κ ) = (β+)RM = (β+)κV[G] = (β+)κV , a
contradiction. So AC is inaccessible in Kv . But then j ( κ ) is inaccessible in
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KM , and j(κ) is a limit cardinal in KVW. Also, since Kv and A'M agree
below j ( κ ) , K is inaccessible in KM .

Let Ey be the extender over V derived from j. We shall show that for all
a < j(κ):

Ejn([a]<ω xKv)eKV .

This is a contradiction, as then these fragments of Ej witness that K is Shelah
in Kv. (That is so because j(Kv) = KM agrees with Kv below j ( κ ) . )

So fix α < j ( κ ) , and take α large enough that (κ+ )κ < a. Let W £ V be

a weasel which witnesses that J% is ylo-sound. We may assume a is chosen
to be a cardinal of Kv and W. It will be enough to find an extender F on
the W sequence such that crit(F) = «, v(F) > α, and for all A £ P(κ)Π Kv ,

Working in V[G], we shall compare W with j(W). Notice that by 5.12, there
is in V[G] a (unique) Ω + 1 iteration strategy Σ* for IV. We shall show that
there is a (unique) β+1 iteration strategy Γ for the phalanx ((W,j(W)), {α}).
Let us assume for now that such a Γ exists, and complete the proof.

Let T on W and U on ({VF, j(W)), {α}) be the iteration trees resulting
from a (Σ, Γ) coiteration. (Coiteration was defined only for premice, but it
makes obvious sense for phalanxes. Here we start out comparing j(W) with
W, iterating the least disagreement, but the tree U, which begins on j(W),
goes back to W whenever it uses an extender with critical point < α.) Let
Ma be the αth model of T and Λfa the αth model of U. In order to save a
little notation, let us assume T and U are "padded", so that Ih T = Ih U.
Let Ih Ί = Ih U = θ + 1, where θ < Ω.

We claim that rootw(0) = 1. For otherwise, rootw(0) = 0; that is, λfθ is
above W = Λ/o in U. Now W is universal, and therefore there is no dropping
on [0,0] c; or [0,0]τ, so that i% θ and ι£0 are defined; moreover, MΘ = Me-
Let

^ = {7<«l^(7) = i^(7)=7>,

so that Δ is thick in W and Me- The construction of U guarantees crit i% θ <

Oί. It follows that crit i^ θ is the least 7 such that 7 ^ H^Θ(Δ). From this we

get crit IQΘ = crit i^θ. Using the hull property for W at crit i% θ, we proceed
to the standard contradiction.

So λίβ is above j(W) = Λ/Ί on W. Now j(lV) is universal (in V[G\) since
the class of fixed points of j is α-club in Ω for all sufficiently large regular
α, so that j(W) computes α+ correctly for stationary many α < Ω. Thus
Λ/i = Λί^j and i^e and ιζe and defined.

Let

so that Γ is thick in W and Λ40 = Λ/0. Now « = cτit(i^θ o j), so

K = least r y s . t . r?
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It follows that /c = crit ιζe. Similarly, using the hull property for W at K,

for all A C K s.t. A G W.
Let 77 + I E [0, θ]τ be such that T-pτed(η + 1) = 0. Now all extenders used

in T or U have length > α, and sup of generators > α. So crit i^+i)θ > &.

Also, crit i^ θ > a by construction. So for all A £ P(κ)w ,

Let F be the trivial completion of E^ \ a. Then F is on the sequence o

It follows (using coherence if η > 0) that F is on the sequence of W =
Moreover, for A C K s.t. AζW,

So F is as desired.
It remains to show that the phalanx ( ( W , j ( W ) ) , (a)) is Ω -f 1 iterable in

F[G]. We claim that the strategy of choosing the unique cofinal wellfounded
branch is winning in the length Ω -f 1 iteration game. If not, then as in 6.14
there are properly small Ίl < W and S < j(W) such that α G ORπ Π OR5,
and a putative iteration tree on ((7£, <S), (a)) which is bad; that is, which has
a last, illfounded model, or is of limit length but has no cofinal wellfounded
branch. Since Ω is weakly compact, our bad tree has length < β, so that its
sharp exists. Using this for absoluteness purposes, as in the proof of 6.14, we
can find in V[G]

σ:P -+U (where ft < W) ,

r:Q -> S (where S < j(W)) ,

such that V and Q are of cardinality < a and

σ \ a = r \ a, = identity ,

together with a countable bad tree on ({^,(5), (α)). Now V is α-strong in
F[G], as witnessed by σ. Also, Q is α-strong in M, as witnessed by r; note
that T e M as M<jW C M in V[G\. Since M and V[G\ have the same subsets
of α, 6.11 and 6.14 imply that Q is α-strong in V[G\. But then the (l)->(2)
direction of 6.11 implies that ({P, Q), (α)) is Ω + 1 iterable, a contradiction.

D

Corollary 7.2. Xe< Ω be measurable, and suppose there is a pre-saturated
ideal on ω\\ then Kc \= There is a Woodin cardinal.

We conjecture that the measurable cardinal is not needed in the hypothe-
ses of 7.1 and 7.2.
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B. Generic absoluteness

One of the most important consequences of the existence of large cardinals
is that the truth values of sufficiently simple statements about the reals can-
not be changed by forcing. For example, if there are arbitrarily large Woodin
cardinals, then L(R)V = ^(M)^^ for all G set-generic over V. (This result is
due to Hugh Woodin.) We shall show that this generic absoluteness implies
that there are inner models with Woodin cardinals.

Hugh Woodin pointed out this application of §1 - §6. The key is the
following lemma.

Lemma 7.3. (Woodin) Let Ω be measurable, and suppose Kc has no Woodin
cardinals. Then there is a sentence φ in the language of set theory, and a
partial order P £ Vfa, such that whenever G is V-generic over P

Proof. Here (Lωι(R))vW = Lωv[G](Rv^G]). Using the formula ψ described in

6.15 (2) which defines (jj^ \ δ < ωi) in all generic extensions of V by posets
IP G VΩ , we can construct a sentence φ such that (provably in ZFC -f "ί? is
measurable" + "Kc \= There are no Woodin cardinals") we have

Lωι(R)\= φ iff ωι is a successor cardinal of K .

Our hypotheses guarantee (a+)κ — α+ for some a. If (Lωι(Sk))v ¥ φ, then
take P = Col(u>,α); letting G be ^-generic / P, we have (Lωι(M))v[σl \=
φ by 5.18 (3). On the other hand, if (Lωι(R))v [= φ, then take P =
Col(ω, < a) where α < Ω is inaccessible; letting G be F-generic/P, we have

* φ. D

Theorem 7.4. (Woodin) Suppose that Ω is measurable, and that whenever
G is V-generic/^ for some P G VΩ, (Lωι(R))v = (Lωι(R))vW . Then Kc \=
There is a Woodin cardinal.

It is well known that weak homogeneity can be used to obtain generic
absoluteness. We can therefore use 7.4, together with standard arguments,
to show

Theorem 7.5. // every set of reals definable over Lωι(M) is weakly homoge-
neous, then letting Kc be the model constructed in §1 below Ω, where Ω is
the least measurable cardinal, we have Kc \= There is a Woodin cardinal.

Proof. If any set is weakly homogeneous, then there is a measurable cardinal.
Let Ω be the least measurable cardinal. For any weakly homogeneous tree
T, let T* be the tree for the complement coming from the Martin-Solovay
construction. (The notation assumes the homogeneity measures for T are
given somehow.) So
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is true in V[G] whenever G is generic for P with card (P) < additivity of
homogeneity measures for T, hence whenever G is generic for P £ VΩ - Let

Sn = universal Σn(Lωι(lΆ)) set of reals

Pn = universal 77n(Lωι(lR)) set of reals

for 1 < n < ω. Pick weakly homogeneous trees Un such that Pn = p[Un]
and let Tn+ι be the canonical weakly homogeneous tree which projects to

&p[Un] in all V[G]

p[Γn+ι] = ΈPp[Un] in all V[G] .

(Thusin VΓ,p[Γn+ι] = 5n+ι.)

Claim. If G is P-generic, where P 6 Vh, then for all n > 2

Prw/. Fix F[G]. Since p[Un] Πp[Tn] = 0 in 7, this remains true in V[G] by
absoluteness of wellfoundedness. On the other hand, if x £ RFtGJ and x £
(p[Un] Up[Tn]), then z G p[l/*] Πp[Γ^] because £/"* and Γ* project absolutely
to the complements of the projections of {7n, Tn. But then p[U*] Πp[T^] έ̂ 0
in V by absoluteness of wellfoundedness. This is a contradiction as p[Un] =

inF. D

It follows that in all V[G], G generic for P G VΩ,

p[Un+ι] — universal 77^(^4) set of reals, where A = p[Uι] .

But now the fact that A is the universal Πι(Lωι(R)) set of reals is a TZ^o fact
about A. So in all such V[G]

p[Un+ι] = universal 77n+ι(Lωι(M)) set of reals.

Thus for any sentence φ of the language of set theory

By Theorem 7.4, /fc [= There is a Woodin cardinal, where Kc is con-
structed below Ω. D

Woodin has shown (unpublished) that if there is a strongly compact car-
dinal, then all sets of reals in L(IR) are weakly homogeneous. So we have at
once:

Theorem 7.6. Suppose there is a strongly compact cardinal, and let Kc be
the model o f § l constructed below f2, where Ω is the least measurable cardinal.
Then Kc \= There is a Woodin cardinal.
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We shall give a more direct proof of Theorem 7.6 in §8, a proof which does
not rely on Woodin's work deriving weak homogeneity from strong compact-
ness.

We conclude this section on generic absoluteness by re-proving a slightly
weaker version of the following theorem due to Woodin:

Con (ZFC + ^-determinacy) =» Con (ZFC + There is a Woodin cardinal).

Because the theory of §1 - §6 relies on the measurable cardinal cardinal Ω, we
do not see how to use it to prove Woodin's theorem in full, although we be-
lieve that should be possible. We can, however, prove the theorem with its hy-
pothesis strengthened to: Con (ZFC + Δ^-άeteτmmacy+Vx G M (x* exists)).
Modulo the theory of §1 - §6, our proof is simpler than Woodin's.

Our proof relies on the observation that the theory of §1 - §6 uses some-
what less than a measurable cardinal. Namely, suppose A is a set of ordi-
nals and A^ exists. Let CQ be an indiscernible of L[A], let j : L[A] —>• L[A]
have critical point CQ, and let U be the L[A]-ultrafilter on CQ given by:
X G U & CQ G j(X). Working in L[A], we can construct (KC)L^ below
CQ just as we constructed Kc below Ω in §1. Let us assume that L[A] satis-
fies: There is no proper class inner model with a Woodin cardinal. We can
then conduct our proof of iterability within L[A] (using 2.4 (b) rather than
2.4 (a)), and we have that indeed (KC)LM exists and (by 2.10) is (ω,θ)
iterable for all θ. Further, the proof of 1.4 shows that for U a.e. α < CQ,
L[A] \= (a+)κ° = a+. (The main point here is that we don't really need
U G L[A] to carry out the proof; it is enough that if Ej is the (CQ, J(CQ))
extender over L[A] derived from j, and A G L[A] and |^4|L[Λ1 < CQ, then
Ej Π ([j(cQ)]<ω x A) G L[A]. That these fragments of Ej are in L[A] is well
known.) This implies that L[A] [= "CQ is Ao-thick in Kc". We can therefore
carry out the arguments of §3 - §6 within L[A], and we get that KL^ exists,

is absolute for forcing over L[A] with posets P G V^o , and inductively de-
finable over L[A] as in §6. (The only serious use of the measurable cardinal Ω
in these sections occurs in the proof of 4.8. Once again, it is clear from that
proof that we only need the fragments Ej Π ([j(co)]<ω x .4), for \A\L[A^ < c0,
to be in L[A].) We also have that for U a.e. α < c0, L[A] \= (α+)K = α+.

Theorem 7.7. (Woodin) //Var G ωω (x^ exists) and all A\ games are deter-
mined, then there is a proper class inner model with a Woodin cardinal.

Proof. According to a theorem of Kechris and Solovay (cf. [KS]), A\ deter-
minacy implies that there is a real x such that for all reals y >τ x, L[y] f=
"All ordinal-definable games are determined". Fix such a real x, and let CQ
be the least indiscernible of L[x]. We may suppose that L[x] \= "There is no
proper class inner model with a Woodin cardinal". As we have observed, this
means that KL^ exists and is absolute for size < CQ forcing over L[a?], and
that for W-a.e. α < c0, L[x] \= (&+}κ = α"1", where U is the L[x]-ultrafilter
on c0 given by x f l . Let α < c0 be such that L[x] \= (a+)κ = α+, and let
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y = ( x , z ) where z is (a real) generic over L[x] for the poset Col(u;, a) collaps-
ing OL to be countable. Then in L[y], K exists and is inductively definable as
in §6, and ω\ is a successor cardinal of K. Moreover, OD determinacy holds
in L[y]. Let us work in L[y]. Now OD determinacy implies that every OD set
A C ω\ either contains or is disjoint from a club, and therefore that ω\ is
measurable in HOD. On the other hand, K C HOD, so since u% = (a+)κ,

ω\ = (α+)HOD. But HOD \= AC, so HOD |= all measurable cardinals are
inaccessible. This contradiction completes the proof. D

C. Unique branches

The Unique Branches Hypothesis, or UBH, is the assertion that if T is
an iteration tree on V, then T has at most one cofinal wellfounded branch.
Martin and the author showed that the negation of UBH has some logical
strength, in that it implies the existence of an inner model with a Woodin
cardinal and a measurable above. (Cf. [IT], §5.) Woodin then showed, in un-
published work, that if there is a nontrivial elementary j : V\+ι —> VA+I,
for some λ, then UBH fails. The gap between these two bounds on the con-
sistency strength of -UBH is, of course, enormous. Here we shall improve
the lower bound to two Woodin cardinals. (However, we must add "There
is a measurable cardinal" to -UBH because the basic theory demands it.)
We conjecture that -UBH is equiconsistent with the existence of two Woodin
cardinals.

Theorem 7.8. Let Ω be measurable, and suppose there is a normal itera-
tion tree T on V such that T £ VΩ and T has distinct cofinal wellfounded
branches. Then there is a proper class inner model satisfying "There are two
Woodin cardinals".

Proof. Assume toward contradiction than there is no such model.

We shall need a slight generalization of the K° construction in §1. Let X
be any transitive set, X 6 Vfo where Ω is measurable. We can form KC(X) by
relativizing the construction of §1. So Λ/Ό = X, and all hulls used in forming
Gu(tft(X)) = Mξ(X) contain X U {X}, so that X € λΓξ(X) for all ξ. We
require that all extenders added to the KC(X) sequence have critical point
> ORΠ X. We require that the levels λίξ(X) of the construction be "1-small
above X", that is, if K is a critical point of an extender from the Λfξ(X)

sequence, then for no δ > OR Π X do we have J^ίW |= δ is Woodin. By
KC(X) we mean the limit as ξ —*• Ω of the Mξ(X). Let us call a structure
with the appropriate first order properties of the Mξ(X) an X-premouse.

If there is no δ > (ORΠX) such that KC(X] |= δ is Woodin, then as in §2
we get that KC(X) is (ω,Ω+ΐ) iterable "above X", that is, via extenders on
its sequence and the images thereof. (All such extenders have critical point
> OR Π X, so none of the embeddings move X.) Of course, any two Ω + I
iterable-above-X X-premice have a successful coiteration. As in 1.4, we also
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have (a+)κc(χ) = α+ for μ0 a.e. α < β, where μ0 is a normal measure on
Ω. The rest of §3 - §6 adapts in an obvious way. (We shall not need §6.)

Now let Ί be our iteration tree on V having distinct cofinal wellfounded
branches 6 and c. We have T G VΩ, where Ω is measurable. Let

6 = δ(T) = sup{//ι E%\a+l<lhT}.

By the results of §2 of [IT], whenever / : 6 -> δ and / G Mj Π M* , then
ΛΛf |= "6 is Woodin with respect to /". (Equivalently, Mr

c satisfies this.)
Notice that %b(Ω) = ϊξc(Ω) = β. Working in Mξ and Λίf, let us form

the models

R = Kc(Vδ}
Mΐ

5 = Kc(Vδ)
M

Notice here that V* = V ; setting X = V , w e have that both R a n d
5 are 1-small above X.

Claim 1. Let α > 6 be a successor cardinal of R such that J* ¥ 3κ(δ <
K Λ K is Woodin); then J^ is Ω + 1 iterable above X. Similarly for 5.

Proof. Our "proper smallness above X" requirement on a guarantees, as in
§6, that no iteration tree on J^ which is above X can have distinct cofinal
wellfounded branches. Our standard reflection argument (cf. 2.4 (a)) shows
that it is enough to prove the following.

Subclaim. Let π : P — »• J^ be elementary, with V countable, and let ττ(X) =
X. Let U be a countable putative iteration tree on P\ then either W has a
last, wellfounded model, or U has a cofinal wellfounded branch.

Proof. Since 7> is countable, P G ΛΊf , and of course J* G Λ<f . Since
ΛΊj" is wellfounded, an easy absoluteness argument gives us an embedding
σ : P -> J* such that σ G Λf f. But also W G Λίf . We can therefore carry
out the iterability proof of Theorem 2.5 within M^ using the background

extenders given by the construction of R = Kc(Vs)Mb . D

Claim 2. P(δ) Γ\R= P(δ) Π 5.

Proof. Let α = (δ+)R and /? = (5+ )5. By Claim 1, both J* and J^5 are ί?+l
iterable above X. It follows that they have a successful coiteration above X,
and since neither can move without dropping, we get j£ < jj or Jjj < j£.

Suppose without loss of generality that j£ < Jjj .

It follows that P(6) Π R C 5, so P(δ) Π R C Λίf Π Λίf, so that R\=6
is Woodin. We are done if R has another Woodin cardinal above 6, so we
assume otherwise. But then, whenever 7 is a successor cardinal of R above
δ, then J* P 3κ(δ < K Λ K is Woodin). Claim 1 then shows jf is Ω + I
iterable, and since this is true for all 7, R itself is Ω + 1 iterable above X.
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Theorem 1.4, applied within M^ to R = KC(X), implies that M^ sat-
isfies "for %b(μo) a.e. α < β, α+ - (<*+)*"(*>. But for μ0 a.e. a < β,

*oδ(α) = α an(^ zoft(a+) — α+ Thus it is true in V that for μo a.e. α < β,

Since R and J f̂ are β + 1 iterable above X, they have a successful coit-
eration above X. Since R computes successor cardinals correctly μo a.e., and
jj cannot move without dropping, jj < R. This completes the proof of the
claim. D

Inspecting the proof of claim 2, we have:

Claim 3. δ is Woodin in both R and S. Both R and S are β + 1 iterable.
Finally, (a+)R = (a+)s = α+ for μo a.e. α.

Let us emphasize that R and 5 are (ω} Ω + 1) iterable in V, not just in
the models M\ or Λί£".

We wish to compare R with 5, but first we must pass to models for which
the comparison will have a large set of fixed points. Working in Λ4jf, let R*
come from R by taking ultrapowers by the order zero total measure at each
measurable cardinal of R. Thus R* is M% definable (from δ and β), R* is a
linear iterate of β, and if δ < K < Ω and K, is strongly inaccessible in Λ4j",
then K is not the critical point of a total extender on the R* sequence. Let
5* be obtained from 5, working inside MJ, in a similar fashion.

Now let (W, V) be a successful coiteration of R* with 5*, according to their
unique β + 1 iteration strategies. Since R* and S* compute α+ correctly for
a.e. a < β, U and V have a common last model Q. Let j : R* -+ Q and
fc : 5* —»• Q be the iteration maps. Let

be the set of common fixed points of j o ιζb and k o ί^e. We have then that
μo(Z) = 1, and for μo a.e. α, Z is cofinal in α+ and a+ = (a+)Q.

Now let c*o G 6 — c, and define

/?n = least 7 G (c-αn),

αn+ι = least 7 G (δ-/?„).

Let us assume that αo is chosen large enough that δ G ran i^ 6 Π ran ̂  c.

It follows, of course, that R* G ran i^ 6 and 5* G ran ij^ c. Set

/c = crit i£ι>6

and τ

# = transitive collapse of HullQ(v"b (J Z \J {δ}).

The next claim comes directly from the proof of the uniqueness theorem of
§2 of [IT] (see also 6.1 of [FSIT]).

Claim 4. EullQ(V^ (J Z U {δ}) Π vf4* =
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Proof. (Sketch) For all i > 1, on and $ are successor ordinals, and

and

Here stιM(E) is the strength of E in the model M. Now suppose t is a
ΛΊT

sequence of parameters from Vκ

 b U Z U {<5}, and

Let /c, = crit(£'Jt_1) and ι/t = crit(£?Ji_1). Since sup{/cλ \ i £ ω} = sup{ί/, |

i G ω} = 6, we can let i be least such that for some x £ VKt

 b , Q ^= φ[x,i\.
ΛΊT

Fix such an x in VKl

 b . We claim i = 1; since «ι = /c this will complete the
proof of claim 4. Suppose then i = e + 1.

Since fc is the identity on Vδ

 b U Z

5* (= y>[x,*]. Let /? = Γ-pred (/?e), and let
Since fc is the identity on Vδ

 b U Z U {<$}, we have fe((x,ί)) = (x,t), so

Now z/e = crit iJ jC, and κe+ι < i^c(ve). Since i^c is elementary and x G

Vίί^, we have x7 G VΪf* such that 5 |= φ[x'tΐ\. But then 5* |= φ[x' >t], and
hence Q \= φ[xf,t\.

We can now go apply the argument of the last paragraph to i J b , where
!MT

α = T-pred(αe), using R* and j instead of 5* and k. We get x" G VΓ

Λe

 b such
that Q |= <p[x",t]. This contradicts the minimality of i, and completes the
proof of claim 4. D

Let π : H — »• Q be the collapse map, so that τr(κ ) = δ and .EΓ [= /c is
Woodin by claim 4. The properties of Z guarantee that (α"*")^ = α+ for
μo a.e. a < ί?, and that in fact ί? is A-thick in H , where A = {α < Ω \
α is inaccessible}.

Now, working in R, let

M = KC(VK)R.

Claim 5. M \= K is Woodin.

Proof. Assume otherwise; letting a = (/c+)M, we then have that J*f is prop-
*^τ

erly small above Vκ

 b We get that J™ is Ω 4- 1 iterable (in V, not just in
β) by the same argument we used to prove claim 1. But then H and J*f are

Vκ

 b -premice which are Ω + 1 iterable above Vκ

 b , so they have a success-

ful coiteration above Vκ

 b . Since J*f \= K is not Woodin, there is a subset
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of K which is in J*f but not H. This means J*f must iterate past H. On
the other hand, H computes α"1" correctly for μo a e. α < ί2, so J*f cannot
iterate past H. D

Now K < δ, δ is Woodin in R, and M = KC(VK)R. A standard argument
shows that for some v such that /c < z/ < <$, M [= ι/ is Woodin. (See the proof
of 11.3 of [FSIT]. Thus M \= There are two Woodin cardinals, and the proof
of 7.8 is complete. D

D. Σg correctness and the size of UΊ

We say that a transitive model M is Σ$ correct iff whenever x £ M Γ\ωω
and P is a nonempty Π^x) set of reals, then P Π M -φ. 0. The proof of the
following theorem was inspired by, and relies quite heavily upon, an idea due
to G. Hjorth.

Theorem 7.9. Suppose Kc [= "There are no Woodin cardinals", and suppose
there is a measurable cardinal μ < Ω; then K° (or equivalently, K) is Σ%
correct.

The remarkable insight that there are theorems along the lines of 7.9,
and the proof of the first of them, are due to Jensen (cf. [D]). Jensen's work
was later extended by Mitchell ([M2]), and by Steel and Welch ([SW]). The
smallness hypotheses on K in these works are, respectively: no inner model
with a measurable cardinal, no inner model with a cardinal /c such that
o(κ) = K"1"1", and no inner model with a strong cardinal.

The smallness hypothesis on K in Theorem 7.9 is necessary. For if Kc \=
"There is a Woodin cardinal", then Kc is not Σ% correct. [Let P = {x £
ωω I x codes a countable, Π\ -iterable premouse which is not 1-small}.
The existence of the measurable cardinal Ω gives P / 0. On the other hand
PΓ\KC = 0, since if M is coded by a real in P, then J*° < M for a = ωf °.
(Cf. [PW], 3.1.)] However, if we liberalize our definition of Kc so as to allow
levels which are not 1-small (but still retain some weaker smallness condition,
e.g. tameness, which suffices to develop the basic theory of A'c), then we can
simply drop the hypothesis that Kc satisfies "There are no Woodin cardinals"
from 7.9. This is because if there are arbitrarily large α < ω^c such that j£°
is not 1-small, then Kc is Σ\ correct. (In fact, if x is a real coding a countable,
ω\ + 1-iterable, non-1-small mouse M such that y £ M, and P is nonempty
and Π\(y), then 3z £ P(z <τ x). This result is due to Woodin; cf. [PW],
§4.)

Where we have assumed in 7.9 that there are two measurable cardinals,
[D] requires only that every real has a sharp, and [M2] and [SW] require only
the sharps of certain reals. We believe that it should be possible to eliminate
the hypothesis that there is a measurable cardinal < Ω from 7.9. Of course,
the need for Ω itself is also problematic, here and elsewhere.
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Proof of 7.9. Our proof descends from a proof of Jensen's Σ\ correctness
theorem which is much simpler than Jensen's original proof. That simpler
proof is due to Magidor.

Suppose that Kc |= "There are no Woodin cardinals", and let μ < Ω be
measurable. For a > 1, we let ua be the αth uniform indiscernible relative
to parameters in Vμ, that is

ua = αth ordinal β such that Vx G Vμ

(β is an indiscernible of L[x]).

Thus iίι = μ. Magidor's argument is based on the following lemma.

Lemma 7.10. (Magidor) Suppose u% = 1/2 >' then there is a tree T% £ K such
that p[T2\ is the universal Π\ set of reals, and thus K is Σ\ correct.

Proof. (Sketch) We first show that for all α, u% = ua. The proof is by
induction on α; the cases a = I and α is a limit are trivial. Let α = β + I.
Let

71(7, x) = least indiscernible of L[x] which is > 7 .

We have
Uβ+ι = sup{n(tι/j, x) I x G Vμ] ,

and

ί/2 = sup{n(tiι, x) I x G Vμ}

= sup{n(uι,a?) | x G V^} ,

since 1/2 = t/^ But then for any x £ Vμί we can find t; £ V*f so that
n(ιtι,x) < n(uι,y), and thus 71(11/3, x) < n(uβ,y) by the uniform indiscerni-
bility of the it^'s. It follows that

ti/j+i = sup{n(tι/3, x) I x G ΐ^f} ,

as desired.
It is well known that for any ordinal 77, these are an x G V^ and

a term r and uniform indiscernibles wαo < < uan < η such that
η = τL^(uao - - -uan). (This result is due to Solovay; the proof is an easy
induction on η.) Since ua = u# for all α, we can take x G K in the above.

By Γ2, we mean the Mart in-Solovay tree for U\ constructed as follows.
Let L = (Jί ̂ M I x ^ ^μ} ^t S on ω x ω x μ be the Shoenfield tree for a
Buniversal Σ\ set. For w, υ G ω<ω such that dom(iί) = dom(t ), let S(u,v) =
{w I (u, υ, w) G 5}. We define an ultrafilter on P(S(UfV)) Π L as follows. For
X C μ and n < ω, let [X]n = {(α0 «n-ι) I «o < «ι < < <*n-ι A Vi <
n(θίi £ X)}. Letting n = dom(u) = dom(υ), there is a unique permutation
(f 'o,...,i n-ι) of n such that 5(u>v) = {(αίo - - α»n-1} | {α0 αn_ι} G [μ]n}.
For A C 5(W)t;) with A G L, we put
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μ(n,v)(Λ) = 1 «• 3C(C is club in μ Λ V{α0 αn_ι) € [C]n

(K •<*._,}

Since Vz £ Vμ(x* exists), μ(U)υ) is an ultrafilter on P ( S ( U y V ) ) Γ \ L . If tί C r and
v C Sj then μ(u,v) is compatible with μ(r,*)> so we nave a natural embedding

* (u,t,),(r,5) : Ult(L,/l(tt>t,)) -> Ult(L,μ(Γ)S)) .

The ultrapowers here are formed using functions in L. The result of Solovay
mentioned above yields

{«<0+ι, . . . , tι, n_1 +ι) = [identity]^ v) ,

where (io, . . . , in-ι) is the permutation of n = dom(iί) used to define μ(u,v)ι
and the uz 's are the uniform indiscernibles. By convention, μ(0,0) is principal
and Ult(L,μ(0 }0)) = L. We then have:

μ(Utυ)(A) = 1 iff (ns 0 +ι,...,tiin - 1+ι) £π(V>j),(u,v)(A).

Except for the fact that they are not total on V, the measures μ(u,υ)
witness the weak homogeneity of S. In particular x £ p[S\ iff By G ωω (the
direct limit of the Ult(L, μ(x\nty\n)) under the *(s\niy\n)t(x\n+i,y\n+i) is well-
founded). The tree TI builds a real x on one coordinate, and proves x £ p[S]
on the other by showing continuously that all associated direct limits are
illfounded. More precisely, let (r, | i G ω) enumerate ω<ω so that ΓQ = 0 and

= n

(ti, {α0, . . . , αn_ι» G T2 iff α0 = μ Λ Vi < j < n -

(r< C r; => τr

Since if (= Var £ V^(x* exists), we can form T£ inside /C. In order to see
that T£ — TV, we must see that for any iί, υ £ ω<ω with dom(iί) = dom v

and if iί C r and v C 5 and dom(r) = dom s,

^Kt;),^,,) ί / = Titi.t/Mr.O ί /

for μ* = /7Γ(0,0))(r)5)(A<). Now clearly, μfu^ = μ(u,υ) Π X for all (ti, v). We are
done, then, if we show that for any (u, v) and / : S(u,v) — * μ sucn that / £ L,
[/]μ(u υ) has a representative in A'. We may assume that for some x £ Vμ and

term r, f ( w ) = TL^[W] for all w £ S(M>t,). Let ιy* = [identity]^ ^ < ίίί7n+ι ,

where n = dom(υ), so by the result of Solovay mentioned above, applied
inside K, we can find a y £ V* and a term σ such that σL[yl[υ;*] = rLW[w;*].

It follows that for μ(u>v) a.e. tu, σLW[u;] = TL^[W]. Letting flf(ιy) = σLW[w]
for all ιy £ 5(tt>f;), we have 5r £ A and [0]μ(U)V) = [/]μ(U(V).
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This completes the proof of 7.10 D

Now let

T — {M G Vμ I M is Ω + I iterable and properly small} .

Recall from 6.12 that a premouse is properly small just in case it satisfies
"There are no Woodin cardinals" and "There is a largest cardinal". There
can be at most one cofinal wellfounded branch in an iteration tree based on
a properly small premouse, so any M £ F has a unique Ω + 1 iteration
Bstrategy ΣM For M, λί G T , let P and Q be the last models of Ί and
U, where (T,Z/) is the unique successful (Σju,Σj\r) coiteration of M with
λί. We define M <* λί iff P < Q. Thus <* is just the usual mouse order,
restricted to f '. The Dodd-Jensen lemma implies that <* is a prewellorder.
Set

δ - order type of (T , <*) .

Also, for M £ F, let |Λί|<* be the rank of M in the prewellorder <*.
The following lemma is part of the folklore.

Lemma 7.11. δ < u% .

Proof. It is easy to see that if U is any normal ultrafilter on μ, then (θί+}κ =
α+ for U a.e. a < μ. B(We prove this as part of the proof of lemma 8.15 in
the next section.) It follows that K Γ\f is <*-cofinal in T . For let M £ F, and
let (T,U) be the successful coiteration of M with jff determined by Ω+ I

iteration strategies for the two mice. Since J^ computes successor cardinals
correctly almost everywhere, max(//ι T, Ih U) < μ, and the last model P of Ί
is an initial segment of the last model of U. Let a < μ be a successor cardinal
of K and such that Ih E^ < a for all ξ + 1 < Ih U] then we can regard U as

tree on J*, so that (T,U) demonstrates that M <* J* .
It suffices then to show that if Λί £ KΓ\f, then |ΛΊ|<* < uf. Fix Λί, and

let G be F-generic for Col(u>, < μ), and let z0 be a real coding M in V[G].
Choose xQ to be generic over L[Λί], so that (μ+)Llχ°l = (μ+)LίMl < u$ . For
x and y reals in V[G], let

Λ(x, y) iff (x and y code properly small premiceΛία; and Λίy, and

there is a successful coiteration (T,U) of Λί^with My

such that T and U are simple, and the last model of Ί

is a proper initial segment of that of U ),

and let

It is easy to check that 5 is a Σ\(x§) relation on the reals in V[G\.

Claim. S is wellfounded.
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Proof. Suppose not, and let S = SG, where 5 represents the natural defini-
tion of S from M over V[G\. Working in V, we can construct a countable,
transitive P and an elementary π : P -» VΩ with π(M) = M and π(μ) = μ
for some M, μ. Let G in V be P-generic for Col(α;,< μ). Then Sg is ill-
founded, and this implies that the mouse order below M is illfounded. Since
π \ M : M —»• M, and Λ4 G J7, this is a contradiction.

Since 5 is wellfounded and Σ\(XQ), its rank is < (μ+)Llχ°1 by the Kunen-
Martin theorem. Clearly, (|Λ4|<*)V ' is less than or equal to the rank of 5.
This proves 7.11. G

In view of 7.10 and 7.11, we would like to show that 8 — u^. The key idea
for doing this is due to Greg Hjorth.

Lemma 7.13. (Hjorth) Suppose δ < u^; then there is a set M G Vμ such
that F Γ ( L [ M ] is <*-cofinal in T.

Proof. Since δ < 1/2, we have an x G Vμ and a term r such that δ = τL\ x*[x} μ ] .
Now let x G Vη where η < μ, and let (Z, e) < (Vfo, e) be such that card(Z) <
Pi Vη Q Z> and A* £ Z. Let M be the transitive collapse of Z, π : M —»• VΩ
the collapse map, and ττ(μ) = μ. Let 17 be such that M [= ί7 is a normal
ultrafilter on μ, let TV be the μth (linear) iterate of M by U and its images,
and let i : M —>• TV be the iteration map. By an argument due to Jensen,
there is an embedding σ : N —* VΩ such that π = σ o i. Now i(μ) = μ,
so σ(μ) = σ(i(μ)) = ττ(μ) = μ. We also have π \ Vη = i ί V« = identity,
so σ ί Vη = identity, so σ(x) = x. Thus σ(τLW[x,μ]) - rLM[z,μ]; that
is, σ(6) = 5. It follows that (FN, <* N) has order type 6. Now if P G ̂ ,
then σ f P : T> : P ->• σ(P) and σ(P) G 7", and thus P is β + 1-iterable.
Thus TN C T. It is easy to see that (<*)N =<* Π7V. Since N G L[M],
J7^ C T Π i[M], and we are done. D

We will actually use the proof of 7.12, rather than the lemma itself.
So far we haven't worked with K above μ, and indeed Hjorth formulated

his lemma with μ = Ω. But now let M and N be as in the proof of 7.12.
We would be done if we could find V G T such that V<5 G TN(Q <* P).
There is a natural candidate for such a P, namely KM. (KM is not actually
properly small, but this problem is easily finessed.) Of course, the iteration
map i : KM -» KN comes from an "external" iteration of all of M, but
suppose we could absorb its action into an internal iteration of KM. We'd be
done. Since crit(i) = μ, we must use the part of KM above μ to do this. So
we must work with μ < Ω.

The following lemma is the key to absorbing the map from KM to KN

into an iteration of KM. Its proof borrows Lemma 8.2 from §8, a lemma we
originally proved as part of the proof of 7.9.

Lemma 7.13. Let j : V -» Ult(V,U), where U is a normal ultrafilter on
μ; then there are almost normal iteration trees T on K and U on j(K),
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having common last model Q and associated embeddings k
t: j(K) -> Q, such that k = £oj.

K Q and

Proof. Let W be a weasel such that Ω is thick in W, and W has the hull
property at all α < Ω. Lemma 4.5 shows that such a weasel exists. By Lemma
8.2, there is an iteration tree TO on K having last model W whose associated
embedding to ' K —> W satisfies BDef(H^) = t^K. In fact, TO is a linear
iteration by normal measures. Notice that j(To) is an iteration tree on j(K)
with last model j(W) and associated embedding j(ίo) Since the class of fixed
points of j is thick in W, Ω is thick in j(W) and Όeΐ(j(W)) = j" Όef(W).

Now let (Tι,Uι) be the successful coiteration of W with j(W), using their
unique Ω + I iteration strategies, and let Q be the common last model of TI
and U\. BLet t\ : W —* Q and u : j(W) —» Q be the associated iteration
maps.

We have the diagram:

K J(K)

The bottom rectangle commutes: j o^0 = j ( t $ ) o j because j is elementary
on V. The upper "triangle" may not commute, but it commutes on ran(tfo),
since

= Def(Q)

= u" Def(j(W)) = u"(j(

= «''(J''(ΦO)

It follows that, setting T = T<p7i, * = *ιoί0j U = j(T0)~Wι, and ί = uoj(tQ),
the conclusion of 7.13 holds. G

We can now complete the proof of Theorem 7.9. By 7.10 and 7.11 it is
enough to show δ = ι«2, so assume 6 < u }. Let M, N', i, and // be as in
the proof of 7.12. So M G Vμy and i : M —> TV is the iteration map coming
from hitting a normal meaAsure of M on μ repeatedly, μ times in all. LeAt
iaβ : Ma —> Mβ be the natural map, where Mα and Mβ are the αth and βih
iterates of M. So i = io«.
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We define premice Qα, for α < μ, by induction on α. We shall have that
Qα+ι is the last model on an almost normal iteration tree Ta on Qa, with
an associated iteration map fcα,α+ι : Qa —» Qα+i We shall simultaneously
define embeddings -ία : A'*'0' —>• Qa so that for α < β < μ

Qβ

commutes. (Here we are setting ArΛ>7+ι = &7)7+i ° &ατ, and fcαλ : Qa —> Qλ
to be the canonical embedding into Q\ = dir lima<χQa for λ limit.)

Set Qo = AM° and t = identity. Now, given Qα and 4, we apply 7.13
inside the model Ma to the ultrapower which produces Mα+ι. This gives an
almost normal iteration tree T on KMa with last model Q and iteration map
k : KM« -> Q, and an embedding I : KM*+l -> Q such that Jb = t o fα>α+ι.
Note T E Mα. Let 7^ = £aT be the result of copying T to a tree on Qα, and
let Qα+ι be the last model of Tα. (KM<* is a model of ZFC, Ί doesn't drop
on its main branch, and k and ί are fully elementary. So, by induction, all
Qj are ZFC models, no 7^ drops on its main branch, and all kηΊ and £Ί are
fully elementary. So we can copy.) Let u : Q —* Qa+ι be given by the copy
construction, and £a+ι = uol. The commutative diagram below summarizes
the construction of Qα+ι and

For λ a limit < μ, let l χ ( i a χ ( x ) ) = &αλ(4*(#)) whenever α < λ and x E KMot.
This completes the inductive definition of Qa and ίa.

The Qα's are not properly small, but we can easily finesse this problem.
Let Ψ : V —+ Ult(V, U) be the canonical embedding, where U is a normal
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ultrafilter on Ω. Let T> = J$(κ\ where a = Ω+ = (β+)^(*). Clearly, P is
properly small, its largest cardinal being Ω, and K = jj. Also, 7> is β + 1
iterable in V, since 7> is ^(β + 1) iterable in Ult(F, £7) and Vlt(V, U) is closed
under ί?-sequences. It follows that any iteration tree on K of length < Ω + 1
which is built according to the unique Ω+l iteration strategy for K can be
regarded as an iteration tree on P. Now we can assume that the hull Z -< Va
collapsing to M is such that Z — Y Π VΩ for some Y -< V# (for 0 > ί2 large)
with f?, "P £ y. Let M' be the transitive collapse of y and Q'Q be the image of

Ql

Ί> under this collapse. Thus Q'Q £ .T7 and Q0 = t7α °, where a is the collapse
of Ω. We can interpret TO as a tree on Q'Q according to its unique Ω + 1
iteration strategy, and let Q( be the last model of TO, so interpreted. Then

Ql

Qi = Jal , where α is the largest cardinal of Q(, and Q{ £ J7. Proceeding
Ql

similarly by induction, we define Q'a for a < μ so that Qa = Jβ" for β the
largest cardinal of Q'a .

Now let UeFN. Working in TV, we see that Ίl <* j£N for some /? < μ.

Since A"^ is elementarily embedded into Qμ by ίμι and Q^ is an almost
normal iterate of Q'0 by its unique Ω + 1 iteration strategy, 7£ <* QQ. Thus
"̂̂  is not <*-cofinal in T\ Q'Q is an upper bound. The argument in the proof

of 7.12 now yields a contradiction. D

We can use our Σ% correctness theorem to show that certain apparently
weak consequences of A\ determinacy actually imply Δ\ determinacy. The
ideas here are due to A. S. Kechris; what we have contributed is just Theorem
7.9.

Corollary 7.14. Suppose Vx € ωω (a?* exists), and Vx £ ωω (the class of
subsets ofω has the separation property). Then Λ\ determinacy holds.

Proof. We show that A\ determinacy holds; the proof relativizes routinely
to an arbitrary real. By a theorem of Woodin, it is enough to show that there
is a transitive proper class model M and an ordinal δ such that M |= δ is
Woodin, and V^ is countable.

Let x be a real which codes up witnesses to all true Σ\ sentences; that
is, let x be such that whenever P is a nonempty Σ^ set of reals, then 3y £ P
(y <τ x)- Using the Jensen-Mitchell Σ$ correctness theorem, we get a proper
class model N such that x £ N and TV |= "There is are two measurable
cardinals". For if there is no such TV, then KDJ(X) is Σ% correct, where
KDJ(%) is the Dodd- Jensen-Mitchell core model for two measurable cardinals,
relativised to x. Now KDJ(X) \=" There is a Z\g(x)-good wellorder of M", and
thus KDj(x) \= "There are Σ£(X) sets A, B C ω such that AΓ\B = 0 and for
all Δ^(x) sets C, A C C =» B Π C φ 0". Since KDJ(x) is Σ^ correct, there
really are such sets A and 5, and thus Σ$(x) separation fails.

Now let N be as described in the previous paragraph, and let TV \= "μ
and Ω are measurable", where μ < Ω. If (KC)N \=" there is a Woodin
cardinal", then we get the desired proper class model M with one Woodin
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cardinal δ such that V^ is countable. (Let P be the transitive collapse
of a countable elementary submodel of Vn+ω, and i : P —» P^ the result of
iterating a normal measure on the image under collapse of Ω through OR, and
let M = i((Kc)p).) But if (KC)N satisfies that there are no Woodin cardinals,
then KN is Σ% correct in TV by 7.9. The choice of x guarantees that, since
Σ*3 ΠP(u ) has the separation property in V, it has the separation property in
N. The correctness of KN implies that Σ^Γ\P(ω) has the separation property
in KN. But KN \= "M has a Λ^-good wellorder", so KN f= "Σ* ΠP(ω) does
not have the separation property". D

If Π^Γ\P(ωω) has the reduction property, then for all x G ωω of sufficiently
large Turing degree, ΣQ(X) Π P(ω) has the separation property. [Let (A, B)
reduce a universal pair of Π^ subsets of ωω x ωω. Then whenever A and B
are Π^(x)9 Σ^(x)Γ\P(ω) has the separation property.] Thus the proof of 7.14
shows that Vx G ωω (x* exists) + "11$ Π P(ωω) has the reduction property"
implies Δ\ determinacy. We do not know whether Vx G ωω (x f l exists) +
"£3 Π P(ωω) has the separation property" implies A\ determinacy.

We conjecture that Vx G ωω (x" exists) plus "Σ\ Π P(ω) has the sepa-
ration property" implies Δ\ determinacy. If one tries to prove this lightface
refinement of 7.14 by the method of 7.14, then the fact that our Σ\ correct-
ness theorem required two measurable cardinals, (rather than none) becomes
a problem.

Another application of our Σ$ correctness theorem in "reverse descriptive
set theory" can be found in [Hj], where Hjorth uses it to show that Π\ Wadge
determinacy implies Π\ determinacy.

A problem which is closely related to the Σ% correctness problem is: what
is the consistency strength of ZFC + Vx G ωω(x^exists) + #2 — ̂ 2? Woodin
has shown that the strength of ZFC-f "there is a Woodin cardinal with a
measurable cardinal above it" is an upper bound. It is shown in [SW] that
ZFC + "There is a strong cardinal" is a lower bound. We conjecture that
the lower bound can be improved to ZFC + "There is a Woodin cardinal".
Unfortunately, our proof of 7.9 does not seem to help with this conjecture,
because of our use of the measurable cardinals μ and Ω. One wants to replace
μ with ω\ (and Vμ with HC), and avoid Ω altogether, and we don't see
how to do this. However, our proof of 7.9 does give the consistency strength
lower bound ZFC H- "There is a Woodin cardinal" for a certain variant of
ZFC + "Vx G ωω(x* exists) + δ\ = u>2" which we now explain.

Let μ < Ω be measurable, and let ua be the αth uniform indiscernible
relative to elements of Vμ, as in the proof of 7.9. Notice that in γc°^ω'<μ\ μa

is the αth uniform indiscernible relative to reals, and so u^ = (δ\)v ° "><M .
One can ask whether γc°i(ω><μ) |= £* = ω2; we do not know whether it is
consistent relative to any large cardinal hypothesis that this be true. But
if we replace vrCol(ω'<^) by its L(R), then the resulting proposition follows
from ADL(^) in v°ol(ω><μ\ which of course holds if there are enough Woodin
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cardinals in V. We now show that «vCol(ω><ri |= (L(R) |= δ\ = u>2)" is at
least as strong as the existence of one Woodin cardinal.

Theorem 7.15. Let μ < Ω be measurable, and suppose vCol(ω </0 |= S\ =

&2\' then Kc \= There is a Woodin cardinal.

Proof. Suppose Kc \= There are no Woodin cardinals. Letting ua be the
αth uniform indiscernible relative to parameters in Vμ, we have u% = u^
from the proof of 7.9. Now let G be F-generic/Col(ω, < μ). It is easy to see
that u% is the second uniform indiscernible relative to reals in V[G], so that

ul = (δ\}vM. Thus tif = ω%(**\ where M* = M^^. On the other hand,
Jf is Σω(Lμ(l&*)) definable, by §6 and the fact that K = KVW. Since J*

is essentially a subset of//, we get u% < ω^ \ a contradiction. D




