§6. An inductive definition of K

The definition of K given in 5.17 is $\Sigma_{\omega}\left(V_{\Omega+1}\right)$, and therefore much too complicated for some purposes. In this section we shall give an inductive definition of K whose logical form is as simple as possible. Assuming that K^{c} has no Woodin cardinals, we shall show that $K \cap H C$ is $\Sigma_{1}\left(L_{\omega_{1}}(\mathbb{R})\right)$ in the codes; Woodin has shown that in general no simpler definition is possible.

The following notion is central to our inductive definition of K.
Definition 6.1. Let \mathcal{M} be a proper premouse such that $\mathcal{M} \vDash Z F-$ $\{$ Powerset $\}$ and $\mathcal{J}_{\alpha}^{\mathcal{M}}$ is S-sound. We say \mathcal{M} is (α, S)-strong iff there is an $(\omega, \Omega+1)$ tterable weasel which witnesses that $\mathcal{J}_{\alpha}^{\mathcal{M}}$ is S-sound, and whenever W is a weasel which witnesses that $\mathcal{J}_{\alpha}^{\mathcal{M}}$ is S-sound, and Σ is an $(\omega, \Omega+1)$ iteration strategy for W, then there is a length $\theta+1$ iteration tree \mathcal{T} on W which is a play by Σ and such that $\forall \gamma<\theta\left(\nu\left(E_{\gamma}^{\mathcal{T}}\right) \geq \alpha\right)$, and a $Q \unlhd W_{\theta}^{\mathcal{T}}$, and a fully elementary $\pi: \mathcal{M} \rightarrow Q$ such that $\pi \upharpoonright \alpha=$ identity.

We shall see that it is possible to define " (α, S)-strong" by induction on α. First, let us notice:

Lemma 6.2. Let W be an $(\omega, \Omega+1)$ iterable weasel which witnesses that \mathcal{J}_{α}^{W} is S-sound; then W is (α, S) strong.

Proof. Let R be a weasel which witnesses \mathcal{J}_{α}^{W} is S-sound, and let Σ be an $\Omega+1$ iteration strategy for R. Let Γ be an $\Omega+1$ iteration strategy for W, and let $(\mathcal{T}, \mathcal{U})$ be the successful coiteration of R with W determined by (Σ, Γ). Let Q be the common last model of \mathcal{T} and \mathcal{U}, and let $\pi: W \rightarrow Q$ be the iteration map given by \mathcal{U}. By Lemma $5.1, \pi \upharpoonright \alpha=$ identity.

Lemma 6.2 admits the following slight improvement. Let W witness that \mathcal{J}_{α}^{W} is S-sound, and let Σ be an $(\omega, \Omega+1)$ iteration strategy for W. Let \mathcal{T} be an iteration tree played by Σ such that $\forall \gamma<\theta\left(\nu\left(E_{\gamma}^{\mathcal{T}}\right) \geq \alpha\right)$, where $\theta+1=l h \mathcal{T}$; then $W_{\theta}^{\mathcal{T}}$ is (α, S) strong. [Proof: Let R be any weasel witnessing \mathcal{J}_{α}^{W} is S sound. Comparing R with W, we get an iteration tree \mathcal{U} on R and a map $\pi: W \rightarrow R_{\eta}^{\mathcal{U}}$, where $\eta=\operatorname{lh} \mathcal{U}-1$. By $5.1, \operatorname{crit}(\pi) \geq \alpha$. Let $\sigma: W_{\theta}^{\tau} \rightarrow\left(R_{\eta}^{\mathcal{U}}\right)_{\theta}^{\pi \tau}$ be the copy map. Then σ and $\mathcal{U} \sim \pi \mathcal{T}$ are as required in 6.1 for R.] This shows that we obtain a definition of (α, S) strength equivalent to 6.1 if we replace "whenever W is a weasel" by "there is a weasel W " in 6.1. It also shows that there are (α, S) strong weasels other than those described in 6.2. For example, suppose W witnesses that \mathcal{J}_{α}^{W} is S-sound, and E is an extender on the W sequence which is total on W and such that $\operatorname{crit}(E)<\alpha \leq \nu(E)$. Setting $R=\operatorname{Ult}(W, E)$, we have that R is (α, S) strong, but R does not witness that \mathcal{J}_{α}^{R} is S-sound.

In view of the fact that $K(S)$ is independent of S, one might expect the same to be true of (α, S)-strength. This is indeed the case.

Lemma 6.3. Suppose $K(S)$ and $K(T)$ exist, and $\alpha \leq O R \cap K(S) \cap K(T)$; then for any \mathcal{M}, \mathcal{M} is (α, S) strong iff \mathcal{M} is (α, T) strong.

Proof. Suppose \mathcal{M} is (α, S)-strong. Let \mathcal{R} witness that $\mathcal{J}_{\alpha}^{\mathcal{M}}$ is S-sound, and W witness that $\mathcal{J}_{\alpha}^{\mathcal{M}}$ is T-sound. Let Σ be an $(\omega, \Omega+1)$ iteration strategy for W, and Γ an $(\omega, \Omega+1)$ iteration strategy for R. From the proof of 5.16, we get iteration trees \mathcal{T} and \mathcal{U} on W and R which are plays of two rounds of $\mathcal{G}^{*}(W,(\omega, \Omega+1))$ and $\mathcal{G}^{*}(R,(\omega, \Omega+1))$ according to Σ and Γ respectively, and such that \mathcal{T} and \mathcal{U} have a common last model Q. The proof of 5.16 also shows that the iteration maps $\sigma: W \rightarrow Q$ and $\tau: R \rightarrow Q$ satisfy $\alpha \leq \min (\operatorname{crit}(\sigma), \operatorname{crit}(\tau))$. Since $\alpha \leq \operatorname{crit}(\sigma), \nu\left(E_{\gamma}^{\mathcal{T}}\right) \geq \alpha$ for all $\gamma+1<\operatorname{lh} \mathcal{T}$.

Now Σ yields an $(\omega, \Omega+1)$-iteration strategy Σ^{*} for Q, and the strategy of copying via τ and using Σ^{*} on the copied tree is an $(\omega, \Omega+1)$-iteration strategy for R; call it $\Sigma^{* *}$.
According to 6.1 , there is an iteration tree \mathcal{V} on R having last model \mathcal{P} which is a play by $\Sigma^{* *}$, and such that $\forall \gamma\left(\gamma+1<l h \mathcal{V} \Rightarrow \nu\left(E_{\gamma}^{\mathcal{\nu}}\right) \geq \alpha\right)$, and an embedding $\pi: \mathcal{M} \rightarrow \mathcal{P}^{\prime}$ for some $\mathcal{P}^{\prime} \unlhd \mathcal{P}$ such that $\pi \mid \alpha=$ identity. Let $\tau^{*}: \mathcal{P} \rightarrow \mathcal{L}$, where \mathcal{L} is the last model of the copied tree $\tau \mathcal{V}$ on Q, be the copy map; thus $\tau^{*}|\alpha=\tau| \alpha=$ identity. Let $\mathcal{L}^{\prime} \unlhd \mathcal{L}$ correspond to \mathcal{P}^{\prime}. Then \mathcal{L}^{\prime} is an initial segment of the last model of $\mathcal{T} \simeq \tau \mathcal{V}$, which is a play by Σ; moreover $\tau^{*} \circ \pi$ maps \mathcal{M} into \mathcal{L}^{\prime} and $\left(\tau^{*} \circ \pi\right) \upharpoonright \alpha=$ identity.

This shows that \mathcal{M} is (α, T)-strong, as desired.
Definition 6.4. Let \mathcal{M} be a proper premouse, and let $\alpha<\Omega$. We say \mathcal{M} is α-strong iff for some S, \mathcal{M} is (α, S)-strong.

We proceed to the inductive definition of " α-strong". The definition is based on a certain iterability property: roughly speaking, \mathcal{M} is α-strong just in case \mathcal{M} is jointly iterable with any \mathcal{N} which is β-strong for all $\beta<\alpha$. In order to describe this iterability property we must introduce iteration trees whose "base" is not a single model, but rather a family of models. Such systems were called "psuedo-iteration trees" in [FSIT]. Here we shall simply call them iteration trees, and distinguish them from the iteration trees considered so far by means of their bases.

Definition 6.5. A simple phalanx is a pair ($\left(\mathcal{M}_{\beta}|\beta \leq \alpha\rangle,\left\langle\lambda_{\beta} \mid \beta<\alpha\right\rangle\right)$ such that for all $\beta \leq \alpha, \mathcal{M}_{\beta}$ is an ω-sound proper premouse, and
(1) $\beta \leq \gamma \leq \alpha \Rightarrow\left(\mathcal{M}_{\gamma} \vDash\right.$ " λ_{β} is a cardinal" and $\left.\rho_{\omega}\left(\mathcal{M}_{\gamma}\right) \geq \lambda_{\beta}\right)$,
(2) $\beta<\gamma \leq \alpha \Rightarrow \mathcal{M}_{\beta}$ agrees with \mathcal{M}_{γ} below λ_{β}, and
(3) $\beta<\gamma<\alpha \Rightarrow \lambda_{\beta}<\lambda_{\gamma}$.

We have added the qualifier "simple" in 6.5 because we shall introduce a more general kind of phalanx in $\S 9$. Since we shall consider only simple phalanxes in this section, we shall drop the "simple" when referring to them.

If $\mathcal{B}=\left(\left\langle\mathcal{M}_{\beta} \mid \beta \leq \alpha\right\rangle,\left(\lambda_{\beta}|\beta<\alpha\rangle\right)\right.$ is a phalanx, then we set lh $\mathcal{B}=\alpha+1$, $\mathcal{M}_{\beta}^{\mathcal{B}}=\mathcal{M}_{\beta}$ for $\beta \leq \alpha$, and $\lambda(\beta, \mathcal{B})=\lambda_{\beta}$ for $\beta<\alpha$.

A phalanx of length 1 is just a premouse. Iteration trees on phalanxes are the obvious generalization of iteration trees on premice; the main point is that we use $\lambda(\beta, \mathcal{B})$ to tell us when to apply an extender to $\mathcal{M}_{\beta}^{\mathcal{B}}$, just as we used $\nu\left(E_{\beta}^{\mathcal{T}}\right)$ in the special case of a tree on a premouse. We shall have $\beta T \gamma$ for $\beta<\gamma<l h \mathcal{B}$, but this is only a notational convenience, and it would be more natural to think of a tree with lh \mathcal{B} many roots. Since we only need normal, ω-maximal trees, we shall only define these.

Definition 6.6. Let \mathcal{B} be a phalanx of length $\alpha+1$, and $\theta>\alpha+1$. An (ω maximal, normal) iteration tree of length θ on \mathcal{B} is a system $\mathcal{T}=\left\langle E_{\beta}\right| \alpha+1 \leq$ $\beta+1<\theta\rangle$ with associated tree order T, models \mathcal{M}_{β} for $\beta<\theta$, and $D \subseteq \theta$ and embeddings $i_{\eta \beta}: \mathcal{M}_{\eta} \rightarrow \mathcal{M}_{\beta}$ defined for $\eta T \beta$ with $(\alpha \cup D) \cap(\eta, \beta]_{T}=\emptyset$, such that
(1) $\mathcal{M}_{\beta}=\mathcal{M}_{\beta}^{\mathcal{B}}$ for all $\beta \leq \alpha$, and for $\beta, \gamma \leq \alpha, \beta T \gamma$ iff $\beta<\gamma$;
(2) $\forall \beta<\alpha\left(\lambda(\beta, \mathcal{B})<l h E_{\alpha}\right)$, and for $\alpha+1 \leq \beta+1<\gamma+1<\theta$, lh $E_{\beta}<l h E_{\gamma}$;
(3) for $\alpha+1 \leq \beta+1<\theta$: T-pred $(\beta+1)$ is the least ordinal γ such that $\gamma<\alpha$ and $\operatorname{crit}\left(E_{\beta}\right)<\lambda(\gamma, \mathcal{B})$, or $\alpha \leq \gamma$ and $\operatorname{crit}\left(E_{\beta}\right)<\nu\left(E_{\alpha}\right)$. Moreover, letting $\gamma=T$-pred $(\beta+1)$ and $\kappa=\operatorname{crit}\left(E_{\beta}\right)$,

$$
\mathcal{M}_{\beta+1}=U l t_{k}\left(\mathcal{M}_{\gamma}^{*}, E_{\beta}^{\mathcal{T}}\right)
$$

where \mathcal{M}_{γ}^{*} is the longest initial segment of \mathcal{M}_{γ} containing only subsets of κ measured by E_{β}, and k is largest such that $\kappa<\rho_{k}\left(\mathcal{M}_{\gamma}^{*}\right)$. Also, $\beta+1 \in D$ iff $\mathcal{M}_{\gamma} \neq \mathcal{M}_{\gamma}^{*}$, and if $\beta+1 \notin D$ then $i_{\gamma, \beta+1}$ is the canonical embedding from \mathcal{M}_{γ} into $\operatorname{Ult}_{k}\left(\mathcal{M}_{\gamma}, E_{\beta}\right)$, and $i_{\eta, \beta+1}=i_{\gamma, \beta+1} \circ i_{\eta \gamma}$ for $\eta T \gamma$ such that $D \cap(\eta, \gamma]_{T}=\emptyset ;$
(4) if $\alpha<\beta<\theta$ and β is a limit, then $D \cap[0, \beta)_{T}$ is finite, $[0, \beta)_{T}$ is cofinal in β, and \mathcal{M}_{β} is the direct limit of the \mathcal{M}_{γ} for $\gamma \in[0, \beta)_{T}$ such that $\gamma \geq \alpha \cup \sup (D)$. Moreover, $i_{\gamma \beta}: \mathcal{M}_{\gamma} \rightarrow \mathcal{M}_{\beta}$ is the direct limit map for all $\gamma \geq \alpha \cup \sup (D)$.

In the situation of 6.6 , we set $\theta=l h \mathcal{T}, \mathcal{M}_{\beta}=\mathcal{M}_{\beta}^{\mathcal{T}}, E_{\beta}=E_{\beta}^{\mathcal{T}}$, and so forth. For $\beta<\theta$, we let $\operatorname{root}^{\mathcal{T}}(\beta)$ be the largest $\gamma<l h \mathcal{B}$ such that $\gamma T \beta$.

If \mathcal{B} is a phalanx, then $\mathcal{G}^{*}(\mathcal{B}, \theta)$ is the obvious generalization of the length θ normal iteration game on premice: I and II build an iteration tree on \mathcal{B}, with I extending the tree at successor steps and II at limit steps. If at some move $\alpha<\theta$, I produces an illfounded ultrapower or II does not play a cofinal wellfounded branch, then I wins, and otherwise II wins. A winning strategy for II in $\mathcal{G}^{*}(\mathcal{B}, \theta)$ is a θ-iteration strategy for \mathcal{B}, and \mathcal{B} is θ-iterable just in case there is such a strategy.

We wish to state an iterability theorem for phalanxes which are generated from iterates of K^{c}.

Definition 6.7. Let \mathcal{R} be a proper premouse and Σ an $(\omega, \Omega+1)$ iteration strategy for \mathcal{R}. We say that a phalanx \mathcal{B} is (Σ, \mathcal{R})-generated iff for
all $\beta<$ lh \mathcal{B}, there is an almost normal iteration tree \mathcal{T} on \mathcal{R} which is a play according to Σ such that $\mathcal{M}_{\beta} \unlhd \mathcal{P}$, where \mathcal{P} is the last model of \mathcal{T}, and such that (i) if $\beta+1<$ lh \mathcal{B}, then $\lambda(\beta, \mathcal{B})$ is a cardinal of \mathcal{R} and $\forall \gamma\left(\gamma+1<l h \mathcal{T} \Rightarrow \nu\left(E_{\gamma}^{\mathcal{T}}\right) \geq \lambda(\beta, \mathcal{B})\right)$, and (ii) if $\beta+1=$ lh \mathcal{B}, then $\forall \gamma \forall \alpha<\beta\left(\gamma+1<l h \mathcal{T} \Rightarrow \nu\left(E_{\gamma}^{\mathcal{T}}\right) \geq \lambda(\alpha, \mathcal{B})\right)$.

Recall that if K^{c} has no Woodin cardinals, then there is a unique $(\omega, \Omega+1)$ iteration strategy for K^{c} (namely, choosing the unique cofinal wellfounded branch).

Definition 6.8. Suppose $K^{c} \vDash$ "There are no Woodin cardinals"; then a phalanx \mathcal{B} is K^{c}-generated iff \mathcal{B} is $\left(\Sigma, K^{c}\right)$ generated, where Σ is the unique $(\omega, \Omega+1)$ iteration strategy for K^{c}.

Our iterability proof for K^{c} in $\S 9$ will actually show:
Theorem 6.9. Suppose $K^{c} \vDash$ "There are no Woodin cardinals"; then every K^{c}-generated phalanx \mathcal{B} such that lh $\mathcal{B}<\Omega$ is $\Omega+1$-iterable.

Proof. Deferred to $\S 9$.
We shall actually only characterize α strength inductively in the case α is a cardinal of K. In this case we have the following little lemma.

Lemma 6.10. Suppose $K^{c} \vDash$ "There are no Woodın cardinals", and let α be a cardinal of K. Suppose $\alpha<O R^{\mathcal{M}}$, and \mathcal{M} is α strong. Then α is a cardinal of \mathcal{M}.

Proof. There is a weasel W which witnesses that $\mathcal{J}_{\alpha}^{W}=\mathcal{J}_{\alpha}^{K}$ is S-sound, and an elementary $\pi: K \rightarrow W$ with $\operatorname{crit}(\pi) \geq \alpha$. Since α is a cardinal of K, α is a cardinal of W. But then α is a cardinal of \mathcal{P}, whenever \mathcal{P} is an initial segment of a model on an iteration tree \mathcal{T} on W such that $l h\left(E_{\gamma}^{\mathcal{T}}\right) \geq \alpha$ for all $\gamma+1<l h \mathcal{T}$. We have $\sigma: \mathcal{M} \rightarrow \mathcal{P}$ with $\operatorname{crit}(\sigma) \geq \alpha$, for some such \mathcal{P}, and this implies that α is a cardinal of \mathcal{M}.

We can now prove the main result of this section.
Theorem 6.11. Suppose K^{c} has no Woodin cardinals. Let \mathcal{M} be a proper premouse, and let $\alpha<O R^{\mathcal{M}}$ be such that α is a cardinal of K and $\mathcal{J}_{\alpha}^{\mathcal{M}}=\mathcal{J}_{\alpha}^{K}$; then the following are equivalent:
(1) \mathcal{M} is α strong,
(2) if $(\langle\mathcal{N}, \mathcal{M}\rangle,\langle\alpha\rangle)$ is a phalanx such that \mathcal{N} is β strong for all K cardinals $\beta<\alpha$, then $(\langle\mathcal{N}, \mathcal{M}\rangle,\langle\alpha\rangle)$ is $\Omega+1$ iterable.

Proof. We show first (2) $\Rightarrow(1)$. Let W witness that $\mathcal{J}_{\alpha}^{\mathcal{M}}$ is S-sound, and let Σ be an $\Omega+1$ iteration strategy for W. By $6.2, W$ is β strong for all $\beta<\alpha$, and so our hypothesis (2) gives us an $\Omega+1$ iteration strategy Γ for the phalanx ($\langle W, \mathcal{M}\rangle,\langle\alpha\rangle$). We now compare \mathcal{M} with W, using Σ to form an iteration tree \mathcal{T} on W and Γ to form an iteration tree \mathcal{U} on $(\langle W, \mathcal{M}\rangle,\langle\alpha\rangle)$. The trees \mathcal{T}
and \mathcal{U} are determined by iterating the least disagreement, starting from \mathcal{M} vs. W, as well as by the rules for iteration trees and the iteration strategies. (See 8.1 of [FSIT] for an example of such a coiteration.)

Let $l h \mathcal{U}=\theta+1$ and $l h \mathcal{T}=\gamma+1$. We claim that $\operatorname{root}^{\mathcal{U}}(\theta)=1$. For otherwise $\operatorname{root}^{\mathcal{U}}(\theta)=0$, and the universality of W implies that $\mathcal{M}_{\theta}^{\mathcal{U}}=\mathcal{M}_{\gamma}^{\mathcal{T}}$, and that $i_{0 \theta}^{\mathcal{U}}$ and $i_{0 \gamma}^{\mathcal{T}}$ exist. Moreover, the rules for \mathcal{U} guarantee that $\operatorname{crit}\left(i_{0 \theta}^{\mathcal{U}}\right)<$ α. Since W has the S-hull and S-definability properties at all $\beta<\alpha$, we then get the usual contradiction involving the common fixed points of $i_{0 \theta}^{\mathcal{U}}$ and $i_{0 \gamma}^{\mathcal{T}}$.

Thus $\operatorname{root}^{\mathcal{U}}(\theta)=1$. Since W is universal, $i_{1, \theta}^{\mathcal{U}}$ exists, and maps \mathcal{M} into some initial segment of $\mathcal{M}_{\gamma}^{\mathcal{T}}$. By the rules for $\mathcal{U}, \operatorname{crit}\left(i_{1, \theta}^{\mathcal{U}}\right) \geq \alpha$. Thus \mathcal{T} and $i_{1, \theta}^{U}$ witness that \mathcal{M} is (α, S) strong.

We now prove $(1) \Rightarrow(2)$. Let us consider first the case α is a successor cardinal of K, say $\alpha=\left(\beta^{+}\right)^{K}=\left(\beta^{+}\right)^{\mathcal{M}}$ where β is a cardinal of K. Let $(\langle\mathcal{N}, \mathcal{M}\rangle, \alpha)$ be a phalanx such that \mathcal{N} is β-strong. We shall show $(\langle\mathcal{N}, \mathcal{M}\rangle, \alpha)$ is $\Omega+1$ iterable by embedding it into a K^{c}-generated phalanx, and then using 6.9.

Note that \mathcal{M} and \mathcal{N} agree below α, and since \mathcal{M} is α - strong, $\mathcal{J}_{\alpha}^{\mathcal{M}}$ is A_{0}-sound. Let W be a weasel which witnesses that $\mathcal{J}_{\alpha}^{\mathcal{M}}$ is A_{0}-sound. By Definition 6.1, there are (finite compositions of normal) iteration trees \mathcal{T}_{0} and \mathcal{T}_{1} on W, having last models \mathcal{P}_{0} and \mathcal{P}_{1} respectively, such that $\forall \gamma[(\gamma+1<$ lh $\mathcal{T}_{0} \Rightarrow \nu\left(E_{\gamma}^{\mathcal{T}_{0}}\right) \geq \beta$) and $\left.\left(\gamma+1<l h \mathcal{T}_{0} \Rightarrow \nu\left(E_{\gamma}^{\mathcal{T}_{1}}\right) \geq \alpha\right)\right]$, and there are fully elementary embeddings τ_{0} and τ_{1} such that

$$
\tau_{0}: \mathcal{N} \rightarrow \mathcal{J}_{\eta_{0}}^{\mathcal{P}_{0}} \quad \text { and } \quad \tau_{0} \mid \beta=\text { identity }
$$

and

$$
\tau_{1}: \mathcal{M} \rightarrow \mathcal{J}_{\eta_{1}}^{\mathcal{P}_{1}} \quad \text { and } \quad \tau_{1} \upharpoonright \alpha=\text { identity }
$$

The proof of 5.10 shows that we may assume our A_{0}-soundness witness W is chosen so that there is an elementary $\sigma: W \rightarrow K^{c}$. Since α is a cardinal of K, we may also assume that α is a cardinal of W. Let $\sigma \mathcal{T}_{0}$ and $\sigma \mathcal{T}_{1}$ be the copied versions of \mathcal{T}_{0} and \mathcal{T}_{1} on K^{c}. Since W has no Woodin cardinals (because K^{c} has none), the trees \mathcal{T}_{0} and \mathcal{T}_{1} are simple. This implies that the copying construction does not break down, and that $\sigma \mathcal{T}_{0}$ and $\sigma \mathcal{T}_{1}$ are according to the unique $(\omega, \Omega+1)$ iteration strategy for K^{c}. If E is an extender used in $\sigma \mathcal{T}_{0}$, then $\nu(E) \geq \sigma(\beta)$, and if E is used in $\sigma \mathcal{T}_{1}$, then $\nu(E) \geq \sigma(\alpha)$. Let

$$
\psi_{0}: \mathcal{P}_{0} \rightarrow Q_{0} \quad \text { and } \quad \psi_{1}: \mathcal{P}_{1} \rightarrow Q_{1}
$$

be the copy maps, where Q_{0} and Q_{1} are the last models of $\sigma \mathcal{T}_{0}$ and $\sigma \mathcal{T}_{1}$ respectively. We have $\psi_{0} \upharpoonright \beta=\sigma \upharpoonright \beta$ and $\psi_{1} \upharpoonright \alpha=\sigma \upharpoonright \alpha$. Let, for $i \in\{0,1\}$,

$$
\mathcal{R}_{i}=\left\{\begin{array}{lll}
Q_{i} & \text { if } & \mathcal{P}_{\imath}=\mathcal{J}_{\eta_{2}}^{\mathcal{P}_{2}} \\
\mathcal{J}_{\psi_{2}\left(\eta_{2}\right)}^{Q_{2}} & \text { otherwise }
\end{array}\right.
$$

We claim that $\left(\left\langle\mathcal{R}_{0}, \mathcal{R}_{1}\right\rangle,\langle\sigma(\alpha)\rangle\right)$ is a K^{c}-generated phalanx, the trees by which it is generated being $\sigma \mathcal{T}_{0}$ and $\sigma \mathcal{T}_{1}$. For this, we must look more closely
at the extenders used in \mathcal{T}_{0}. We claim that if E is used in \mathcal{T}_{0}, then $l h E>\alpha$. For if some E such that $l h E<\alpha$ is used in \mathcal{T}_{0}, then there is a $B \subseteq \beta$ such that $B \in \mathcal{J}_{\alpha}^{W}$ and $B \notin \mathcal{P}_{0}$. Since \mathcal{M}, \mathcal{N}, and W agree below $\alpha, B \in \mathcal{N}$, so $\tau_{0}(B) \in \mathcal{P}_{0}$, so $\tau_{0}(B) \cap \beta=B \in \mathcal{P}_{0}$, a contradiction. Also, lh $E \neq \alpha$ for all E on the W sequence, since α is a cardinal of W. Thus lh $E>\alpha$ for all E used in \mathcal{T}_{0}. Since α is a cardinal of W, this means $\nu(E) \geq \alpha$ for all E used in \mathcal{T}_{0}. That implies that $\nu(E) \geq \sigma(\alpha)$ for all E used in $\sigma \mathcal{T}_{0}$. The remaining clauses in the definition of " K^{c}-generated phalanx" hold obviously of $\left(\left\langle\mathcal{R}_{0}, \mathcal{R}_{1}\right\rangle,\langle\sigma(\alpha)\rangle\right)$.

By 6.9 we have an $\Omega+1$ iteration strategy Σ for $\left(\left\langle\mathcal{R}_{0}, \mathcal{R}_{1}\right\rangle,\langle\sigma(\alpha)\rangle\right)$. We can use Σ and a simple copying construction to get an $\Omega+1$ iteration strategy Γ for $(\langle\mathcal{N}, \mathcal{M}\rangle,\langle\alpha\rangle)$. We shall describe this construction now; it involves a small wrinkle on the usual copying procedure, and it shows why it is necessary that \mathcal{M} be α-strong, and not just β-strong.

Our strategy Γ is to insure that if \mathcal{T} is the iteration tree on $(\langle\mathcal{N}, \mathcal{M}\rangle,\langle\alpha\rangle)$ representing the current position in $\mathcal{G}^{*}((\langle\mathcal{N}, \mathcal{M}\rangle,\langle\alpha\rangle), \Omega+1)$, then as we built \mathcal{T} we constructed an iteration tree \mathcal{U} on $\left(\left\langle\mathcal{R}_{0}, \mathcal{R}_{1}\right\rangle,\langle\sigma(\alpha)\rangle\right)$ such that \mathcal{U} is a play by Σ and has the same tree order as \mathcal{T}, together with embeddings

$$
\pi_{\gamma}: \mathcal{M}_{\gamma}^{\mathcal{T}} \rightarrow \mathcal{M}_{\gamma}^{\mathcal{U}}
$$

defined for all $\gamma<l h \mathcal{T}$, satisfying:
(a) for $\eta<\gamma<l h \mathcal{T}, \pi_{\eta} \upharpoonright \nu_{\eta}=\pi_{\gamma} \upharpoonright \nu_{\eta}$, where

$$
\nu_{\eta}= \begin{cases}\beta & \text { if } \eta=0, \\ \nu\left(E_{\eta}^{\mathcal{T}}\right) & \text { if } \eta>0 \text { and } E_{\eta}^{\mathcal{T}} \text { is } \\ & \text { of type III } \\ \operatorname{lh}\left(E_{\eta}^{\mathcal{T}}\right) & \text { otherwise }\end{cases}
$$

moreover, $E_{\eta}^{\mathcal{U}}=\pi_{\eta}\left(E_{\eta}^{\mathcal{T}}\right)$;
(b) for all $\gamma<l h \mathcal{T}$ such that $\gamma \geq 2, \pi_{\gamma}$ is a $\left(\operatorname{deg}^{\mathcal{T}}(\gamma), X\right)$ embedding, where $X=\left(i_{\eta \gamma}^{\mathcal{T}} \circ i_{\eta}^{*}\right)^{\prime \prime}\left(\mathcal{M}_{\eta}^{*}\right)^{\mathcal{T}}$, for η the least ordinal such that $i_{\eta \gamma}^{\mathcal{T}} \circ i_{\eta}^{*}$ exists; for $\gamma \in\{0,1\}, \pi_{\gamma}$ is fully elementary;
(c) for $\eta<\gamma<l h \mathcal{T}$, if $i_{\eta \gamma}^{\mathcal{T}}$ exists, then $i_{\eta \gamma}^{U}$ exists and $\pi_{\gamma} \circ i_{\eta \gamma}^{\mathcal{T}}=i_{\eta \gamma}^{U} \circ \pi_{\eta}$.

These are just the usual copying conditions, except that the agreement-of-embeddings ordinal ν_{0} is β, rather than α.

We have $\mathcal{M}_{0}^{\mathcal{T}}=\mathcal{N}, \mathcal{M}_{1}^{\mathcal{T}}=\mathcal{M}, \mathcal{M}_{0}^{\mathcal{U}}=\mathcal{R}_{0}$, and $\mathcal{M}_{1}^{\mathcal{U}}=\mathcal{R}_{1}$ to begin with, and we set

$$
\pi_{0}=\psi_{0} \circ \tau_{0} \text { and } \pi_{1}=\psi_{1} \circ \tau_{1}
$$

Since $\pi_{0} \upharpoonright \beta=\pi_{1} \upharpoonright \beta$ and π_{0}, π_{1} are fully elementary, our induction hypotheses (a) - (d) hold.
[To see π_{0} and π_{1} are fully elementary, notice that \mathcal{M} and \mathcal{N} satisfy ZFPowerset, and τ_{0} and τ_{1} are fully elementary according to 6.1. If $\mathcal{J}_{\eta_{i}}^{\mathcal{P}_{\mathbf{i}}}=\mathcal{P}_{i}$, this means $\mathcal{P}_{i} \models$ ZF-Powerset, so $\operatorname{deg}^{\mathcal{T}_{2}}\left(\xi_{i}\right)=\omega$, where $\mathcal{P}_{i}=\mathcal{M}_{\xi_{i}}^{\mathcal{T}_{2}}$, and thus ψ_{\imath} is fully elementary $(i \in\{0,1\})$. On the other hand, if $\mathcal{J}_{\eta_{2}}^{\mathcal{P}_{2}}$ is a proper
initial segment of \mathcal{P}_{i}, then $\psi_{i} \upharpoonright \mathcal{J}_{\eta_{i}}^{\mathcal{P}_{i}}$ is obviously fully elementary. So in any case π_{0} and π_{1} are fully elementary.]

Now suppose we are at a limit step λ in the construction of \mathcal{T} and \mathcal{U}. Σ chooses a cofinal wellfounded branch b of $\mathcal{U} \upharpoonright \lambda$, and we let Γ choose b as its cofinal wellfounded branch of $\mathcal{T} \mid \lambda$. It is cofinal because \mathcal{T} and \mathcal{U} have the same tree order, and wellfounded because we have an embedding $\pi: \mathcal{M}_{b}^{\mathcal{T}} \rightarrow \mathcal{M}_{b}^{\mathcal{U}}$ given by

$$
\pi\left(i_{\gamma b}^{\mathcal{T}}(x)\right)=i_{\gamma b}^{\mathcal{U}}\left(\pi_{\gamma}(x)\right)
$$

defined for $\gamma \in b$ sufficiently large. Setting $\pi_{\lambda}=\pi$, we can easily check (a) (d).

Now suppose we are at step $\eta+1$ in the construction of \mathcal{T} and \mathcal{U}. Player I in $\mathcal{G}^{*}(\langle\mathcal{N}, \mathcal{M}\rangle,\langle\alpha\rangle)$ has just played $E_{\eta}^{\mathcal{T}}$, and thereby determined $\mathcal{T} \upharpoonright \eta+$ 2. We must determine $\mathcal{U} \upharpoonright \eta+2$ together with $\pi_{\eta+1}$. In the case that T $\operatorname{pred}(\eta+1) \neq 0$, we can simply quote the shift lemma, Lemma 5.2 of [FSIT], and obtain the desired $\mathcal{M}_{\eta+1}^{\mathcal{U}}$ and $\pi_{\eta+1}$. We omit further detail, and go on to the case $T-\operatorname{pred}(\eta+1)=0$. [Unfortunately, the agreement-of-embeddings hypothesis for the copying construction was mis-stated in [FSIT], because squashed ultrapowers were overlooked. We only get $\pi_{\eta} \upharpoonright \nu\left(E_{\eta}^{\mathcal{T}}\right)=\pi_{\gamma} \upharpoonright$ $\nu\left(E_{\eta}^{\mathcal{T}}\right)$, for $\eta<\gamma$, in the case $E_{\eta}^{\mathcal{T}}$ is type III, rather than $\pi_{\eta} \upharpoonright\left(l h\left(E_{\eta}^{\mathcal{T}}\right)+1\right)=$ $\pi_{\gamma} \upharpoonright\left(l h E_{\eta}^{\mathcal{T}}+1\right)$ as claimed in [FSIT] (after 5.2, in the definition of $\left.\pi \mathcal{T}\right)$. This weaker agreement causes no new problems, however.]

Let $\kappa=\operatorname{crit}\left(E_{\eta}^{\mathcal{T}}\right)$, so that $\kappa<\alpha$ and hence $\kappa \leq \beta$. To simply quote the Shift lemma we would need that $\pi_{0} \upharpoonright\left(\kappa^{+}\right)^{\mathcal{M}_{\eta}^{\tau}}=\pi_{\eta} \upharpoonright\left(\kappa^{+}\right)^{\mathcal{M}_{\eta}^{\tau}}$, and that is more than we know. Still, the proof of the Shift lemma works: set

$$
\mathcal{M}_{\eta+1}^{\mathcal{U}}=\operatorname{Ult}_{\omega}\left(\mathcal{R}_{0}, \pi_{\eta}\left(E_{\eta}^{\mathcal{T}}\right)\right)
$$

From 6.6 (2), we get $\nu_{1} \geq \alpha$, and our agreement hypothesis (a) then gives $\pi_{1} \upharpoonright \alpha=\pi_{\eta} \upharpoonright \alpha$. Thus $\pi_{\eta}(\kappa)=\pi_{1}(\kappa)<\pi_{1}(\alpha)$. Also, $\pi_{1}(\alpha)=\sigma(\alpha)$. (Since $\tau_{1} \upharpoonright \alpha=$ identity and $\psi_{1} \upharpoonright \alpha=\sigma \upharpoonright \alpha, \pi_{1}(\beta)=\sigma(\beta)$. But $\pi_{1}(\alpha)$ is the $\mathcal{R}_{1^{-}}$ successor cardinal of $\pi_{1}(\beta)$, and $\sigma(\alpha)$ is the K^{c}-successor cardinal of $\sigma(\beta)$, and since all extenders used in $\sigma \mathcal{T}_{1}$ have length $>\sigma(\alpha)$, these are the same.) Since $\mathcal{M}_{\eta}^{\mathcal{U}}$ agrees with \mathcal{R}_{1}, and hence \mathcal{R}_{0}, through $\sigma(\alpha)=\pi_{1}(\alpha), \mathcal{M}_{\eta}^{\mathcal{U}}$ and \mathcal{R}_{0} have the same subsets of $\pi_{\eta}(\kappa)$, and the ultrapower defining $\mathcal{M}_{\eta+1}^{\mathcal{U}}$ makes sense.

We can now define $\pi_{\eta+1}: \mathcal{M}_{\eta+1}^{\tau} \rightarrow \mathcal{M}_{\eta+1}^{\mathcal{U}}$ by:

$$
\pi_{\eta+1}\left([a, f]_{E_{\eta}^{\tau}}^{\mathcal{T}}\right)=\left[\pi_{\eta}(a), \pi_{0}(f) \upharpoonright\left[\pi_{\eta}(\kappa)\right]^{|a|}\right]_{\pi_{\eta}\left(E_{\eta}^{\tau}\right)}^{\mathcal{R}_{0}}
$$

The shift lemma argument shows that $\pi_{\eta+1}$ is well defined, fully elementary, and has the desired agreement with π_{η}. To see this, recall that $\nu(E) \geq \alpha$ for all E used in $\sigma \mathcal{T}_{0}$. This implies that $\psi_{0} \upharpoonright \alpha=\sigma \upharpoonright \alpha$, and thus $\psi_{0}, \psi_{1}, \pi_{1}$, and π_{η} all agree with σ on α. Now $\kappa \leq \beta$, and for any $A \subseteq \beta$ in \mathcal{N},

$$
\begin{aligned}
\pi_{0}(A) \cap \pi_{\eta}(\beta) & =\pi_{0}(A) \cap \psi_{0}(\beta) \\
& =\psi_{0}\left(\tau_{0}(A)\right) \cap \psi_{0}(\beta) \\
& =\psi_{0}\left(\tau_{0}(A) \cap \beta\right) \\
& =\psi_{0}(A) \\
& =\pi_{\eta}(A)
\end{aligned}
$$

Thus, for example, if $f=g$ on $A \subseteq[k]^{|a|}$ with $A \in\left(E_{\eta}^{\mathcal{T}}\right)_{a}$, then $\pi_{0}(f)=$ $\pi_{0}(g)$ on $\pi_{0}(A)$, and hence $\pi_{0}(f)=\pi_{0}(g)$ on $\pi_{0}(A) \cap\left[\pi_{\eta}(\kappa)\right]^{|a|}$. But then $\pi_{0}(f)=\pi_{0}(g)$ on $\pi_{\eta}(A)$, and $\pi_{\eta}(A) \in\left(\pi_{\eta}\left(E_{\eta}^{\mathcal{T}}\right)\right)_{\pi_{\eta}(a)}$. This shows that $\pi_{\eta+1}$ is well defined, and the other conditions on it can also be checked easily.

This completes the proof of $(1) \Rightarrow(2)$ in the case that α is a successor cardinal of K. It is worth noting that we really used that \mathcal{M} was α-strong, and not just β-strong. This guaranteed $\tau_{1} \upharpoonright \alpha=\mathrm{id}$, and thus $\pi_{1} \upharpoonright \alpha=\sigma \upharpoonright \alpha$. That in turn gave $\pi_{\eta} \upharpoonright \alpha=\psi_{0} \upharpoonright \alpha$, which was crucial. It is not true that if \mathcal{M} is β-strong, where β is a cardinal of K, and $\mathcal{J}_{\alpha}^{\mathcal{M}}=\mathcal{J}_{\alpha}^{K}$ for $\alpha=\left(\beta^{+}\right)^{K}$, then \mathcal{M} is α-strong.

The case α is a limit cardinal of K is similar. Let \mathcal{N} be β-strong for all K-cardinals $\beta<\alpha$, and $\mathcal{J}_{\alpha}^{\mathcal{N}}=\mathcal{J}_{\alpha}^{\mathcal{M}}$. Let W witness that $\mathcal{J}_{\alpha}^{\mathcal{M}}=\mathcal{J}_{\alpha}^{K}$ is A_{0}-sound, and let $\sigma: W \rightarrow K^{c}$. For each K-cardinal $\beta \leq \alpha$ let \mathcal{T}_{β} be an iteration tree on W with last model \mathcal{P}_{β}, and let $\tau_{\beta}: \mathcal{N} \rightarrow \mathcal{J}_{\eta_{\beta}}^{\mathcal{P}_{\beta}}$ with $\tau_{\beta} \mid \beta=$ id for $\beta<\alpha$. Let $\tau_{\alpha}: \mathcal{M} \rightarrow \mathcal{J}_{\eta_{\alpha}}^{\mathcal{P}_{\alpha}}$ with $\tau_{\alpha} \mid \alpha=$ id. For $\beta \leq \alpha$, let $\sigma \mathcal{T}_{\beta}$ be the copied tree on K^{c}, Q_{β} its last model, $\psi_{\beta}: \mathcal{P}_{\beta} \rightarrow Q_{\beta}$ the copy map, and $\mathcal{R}_{\beta}=\mathcal{J}_{\psi_{\beta}\left(\eta_{\beta}\right)}^{Q_{\beta}}$ or $\mathcal{R}_{\beta}=Q_{\beta}$ as appropriate. Then $\left(\left\langle\mathcal{R}_{\beta}\right| \beta \leq\right.$ $\alpha \wedge \beta$ a cardinal of $K\rangle,\langle\sigma(\beta)| \beta<\alpha \wedge \beta$ a cardinal of $K\rangle)$ is a K^{c}-generated phalanx, and therefore $\Omega+1$ iterable. But then we can win the iteration game $\mathcal{G}^{*}((\langle\mathcal{N}, \mathcal{M}\rangle,\langle\alpha\rangle), \Omega+1)$ just as before; letting $\pi_{\beta}: \mathcal{N} \rightarrow \mathcal{T}_{\beta}$ be given by $\pi_{\beta}=\psi_{\beta} \circ \tau_{\beta}$, for $\beta \leq \alpha$, and defining the remaining π 's inductively, we copy the evolving \mathcal{T} on $(\langle\mathcal{N}, \mathcal{M}\rangle,\langle\alpha\rangle)$ by applying $\pi_{\eta}\left(E_{\eta}^{\mathcal{T}}\right)$ to the model required by the rules for trees on ($\left\langle\mathcal{R}_{\beta}\right| \beta \leq \alpha \wedge \beta$ a K-cardinal $\rangle,\langle\sigma(\beta)|$ $\beta<\alpha \wedge \beta$ a K-cardinal \rangle). Since for $\beta \leq \alpha, \pi_{\beta} \upharpoonright \beta=\psi_{\beta} \upharpoonright \beta=\sigma \upharpoonright \beta$, we have enough agreement to simply quote the shift lemma. Although \mathcal{T} and its copy \mathcal{U} have slightly different tree orders, this causes no problems.

This completes the proof of 6.11 .
To see that 6.11 gives on inductive definition of K, assuming K^{c} has no Woodin cardinals, suppose that α is a cardinal of K and we know which premice are α-strong. Then
$\exists \beta<\left(\alpha^{+}\right)^{K}\left(\mathcal{P}=\mathcal{J}_{\beta}^{K}\right) \Leftrightarrow \exists \mathcal{M}\left(\mathcal{M}\right.$ is α-strong $\left.\wedge \exists \beta<\left(\alpha^{+}\right)^{\mathcal{M}}\left(\mathcal{P}=\mathcal{J}_{\beta}^{\mathcal{M}}\right)\right)$.
(We get \Rightarrow from 6.2. We get \Leftarrow easily from the definition of " α-strong".)
We can determine $\left(\alpha^{+}\right)^{K}$ and $\mathcal{J}_{\left(\alpha^{+}\right)^{K}}^{K}$ using this equivalence. Using 6.11, we can then determine which premice are $\left(\alpha^{+}\right)^{K}$-strong. The limit steps in
the inductive definition of " α is a cardinal of K " and " \mathcal{M} is α-strong" are trivial modulo 6.11.

This definition still involves quantification over $V_{\Omega+1}$. In order to avoid that, we must show that if \mathcal{M} is of size α, and 6.11 (2) fails, then there is an \mathcal{N} of size α and an iteration tree \mathcal{T} of size α on $(\langle\mathcal{N}, \mathcal{M}\rangle,\langle\alpha\rangle)$ witnessing the failure of iterability. (We shall actually get a countable \mathcal{T}.) This is a reflection result much like lemma 2.4.

Definition 6.12. A premouse \mathcal{M} is properly small iff $\mathcal{M} \vDash$ "There are no Woodin cardinals \wedge there is a largest cardinal". A phalanx \mathcal{B} is properly small iff $\forall \alpha<\operatorname{lh}(\mathcal{B})\left(\mathcal{M}_{\alpha}^{\mathcal{B}}\right.$ is properly small $)$.

The uniqueness results of $\S 6$ of [FSIT] easily yield the following.
Lemma 6.13. Let \mathcal{B} be a properly small phalanx, and let \mathcal{T} be an iteration tree on \mathcal{B}; then \mathcal{T} is simple.

Proof (Sketch). Suppose b and c are distinct branches of \mathcal{T} with $\sup (b)=$ $\lambda=\sup (c), b$ and c existing in some generic extension of V. If b and c do not drop, then $\delta(\mathcal{T} \mid \lambda)<\mathrm{OR}^{\mathcal{M}_{b}^{\tau}}$ and $\delta(\mathcal{T} \mid \lambda)<\mathrm{OR}^{\mathcal{M}_{c}^{\mathcal{T}}}$ because $\mathcal{M}_{b}^{\mathcal{T}}$ and $\mathcal{M}_{c}^{\mathcal{T}}$ have a largest cardinal. (This is why we included this condition.) From 6.1 of [FSIT] we get that $\delta(\mathcal{T} \upharpoonright \lambda)$ is Woodin in $\mathcal{M}_{b}^{\mathcal{T}}$ if $\mathrm{OR}^{\mathcal{M}_{b}^{\tau}} \leq \mathrm{OR}^{\mathcal{M}_{c}^{\tau}}$, and Woodin in $\mathcal{M}_{c}^{\mathcal{T}}$ otherwise. This contradicts the proper smallness of the premice in \mathcal{B}. If one of b and c drops, then we can argue to a contradiction as in the proof of 6.2 of [FSIT].

We thank Kai Hauser for pointing out that our original version of 6.13 was false. (We had omitted having a largest cardinal from the definition of properly small.)

By 6.13 , a properly small phalanx can have at most one $\Omega+1$ iteration strategy, that strategy being to choose the unique cofinal wellfounded branch.

Lemma 6.14. Suppose K^{c} has no Woodin cardinals, and that α is a cardinal of K. Let \mathcal{M} be a properly small premouse of cardinality α such that $\mathcal{J}_{\alpha}^{\mathcal{M}}=$ \mathcal{J}_{α}^{K} but \mathcal{M} is not α-strong. Then there is a properly small premouse \mathcal{N} of cardinality α such that $\mathcal{J}_{\alpha}^{\mathcal{N}}=\mathcal{J}_{\alpha}^{K}$ and $\mathcal{N} \alpha$-strong, and a countable putative iteration tree \mathcal{T} on $(\langle\mathcal{N}, \mathcal{M}\rangle,\langle\alpha\rangle)$ such that either \mathcal{T} has a last, illfounded model, or \mathcal{T} has limit length but no cofinal wellfounded branch.

Proof. Let W be a weasel which witnesses that \mathcal{J}_{α}^{K} is A_{0}-sound. By $6.2, W$ is α-strong. From the proof of $(2) \Rightarrow(1)$ in 6.11 , we have that $(\langle W, \mathcal{M}\rangle,\langle\alpha\rangle)$ is not $\Omega+1$ iterable. It follows that there is a putative iteration tree \mathcal{U} of length $\leq \Omega$ on $(\langle W, \mathcal{M}\rangle,\langle\alpha\rangle)$ which is bad; i.e., has a last, illfounded model or is of limit length and has no cofinal wellfounded branch.

Since Ω is weakly compact, lh $\mathcal{U}<\Omega$. This means that for all sufficiently large successor cardinals μ of W, we can associate to \mathcal{U} a tree \mathcal{U}_{μ} on $\left(\left\langle\mathcal{J}_{\mu}^{W}, \mathcal{M}\right\rangle,\langle\alpha\rangle\right) . \mathcal{U}_{\mu}$ has the same tree order and uses the same extenders as
\mathcal{U}; the models on \mathcal{U}_{μ} are initial segments of the models on \mathcal{U}. We claim that there is a μ such that \mathcal{U}_{μ} is bad. If \mathcal{U} has successor length this is obvious, as the last model of \mathcal{U} is the union over μ of the last models of the \mathcal{U}_{μ}. Suppose \mathcal{U} has limit length, and b_{μ} is a cofinal wellfounded branch of \mathcal{U}_{μ}, for all $\mu<\Omega$ such that μ is a successor cardinal of W. Notice that if $\mu<\eta$, then b_{η} is a cofinal wellfounded branch of \mathcal{U}_{μ}, and thus by $6.13, b_{\eta}=b_{\mu}$. Letting b be the common value of b_{μ} for all appropriate μ, we then have that b is a cofinal wellfounded branch of \mathcal{U}, a contradiction.

Let $\mathcal{V}=\mathcal{U}_{\mu}$ and $\mathcal{P}=\mathcal{J}_{\mu}^{W}$, where μ is a successor cardinal of W large enough that \mathcal{V} is a bad tree on $(\langle\mathcal{P}, \mathcal{M}\rangle,\langle\alpha\rangle)$. Note that \mathcal{P} is α-strong, and $(\langle\mathcal{P}, \mathcal{M}\rangle,\langle\alpha\rangle)$ is properly small. Let $X \prec V_{\eta}$, for some η, with $\mathcal{V}, \mathcal{P}, \mathcal{M}, \alpha \in X$, and X countable. Let $\pi: R \cong X$ be the transitive collapse, and $\pi(\overline{\mathcal{V}})=\mathcal{V}$, etc. Let $\lambda \in X \cap \Omega$ be such that $\mathcal{V}, \mathcal{P}, \mathcal{M}, \alpha \in V_{\lambda}$; then $V_{\lambda}^{\sharp} \in X$, and thus $R \vDash V_{\bar{\lambda}}^{\sharp}$ exists. Because π embeds $\left(V_{\bar{\lambda}}^{\sharp}\right)^{R}$ into V_{λ}^{\sharp}, we have $\left(V_{\bar{\lambda}}^{\sharp}\right)^{R}=\left(V_{\bar{\lambda}}^{R}\right)^{\sharp}$, and so $R[x]$ is correct for Π_{2}^{1} assertions about x, whenever x is an R-generic real coding $V_{\bar{\lambda}}^{R}$. But now R satisfies " $\overline{\mathcal{V}}$ is a bad tree on $(\langle\overline{\mathcal{P}}, \overline{\mathcal{M}}\rangle,\langle\bar{\alpha}\rangle)$ ", and because $\overline{\mathcal{V}}$ is simple by $6.13, R[x]$ must satisfy the same. Thus $\overline{\mathcal{V}}$ is indeed a bad tree on $(\langle\overline{\mathcal{P}}, \overline{\mathcal{M}}\rangle,\langle\bar{\alpha}\rangle)$.

Now let $X \prec Y \prec V_{\eta}$, where $(\alpha+1) \cup \mathcal{M} \subseteq Y$ and $|Y| \leq \alpha$. Let $\sigma: S \cong Y$ be the transitive collapse, and $\psi: R \rightarrow S$ be such that $\pi=\sigma \circ \psi$. Notice that $\psi(\overline{\mathcal{M}})=\mathcal{M}$ and $\psi(\bar{\alpha})=\alpha$. Let $\mathcal{N}=\psi(\overline{\mathcal{P}})$. Using ψ we can copy $\overline{\mathcal{V}}$ as a tree $\psi \overline{\mathcal{V}}$ on $(\langle\mathcal{N}, \mathcal{M}\rangle, \alpha)$, noting that because $\overline{\mathcal{V}}$ is simple, $\psi \overline{\mathcal{V}}$ can never have a wellfounded maximal branch. It follows that $\psi \overline{\mathcal{V}}$ is a bad tree on $(\langle\mathcal{N}, \mathcal{M}\rangle,\langle\alpha\rangle)$. Since $\sigma: \mathcal{N} \rightarrow \mathcal{P}$ and $\sigma \upharpoonright(\alpha+1)=$ identity, \mathcal{N} is α-strong. This completes the proof of 6.14.

Clearly, if α is a cardinal of K and $\beta<\left(\alpha^{+}\right)^{K}$, then there is a properly small, α-strong \mathcal{M} such that $\mathcal{J}_{\beta}^{\mathcal{M}}=\mathcal{J}_{\beta}^{K}$ and $\beta<\left(\alpha^{+}\right)^{\mathcal{M}}$. So in our inductive definition of K we need only consider properly small mice. Thus 6.11 and 6.14 together yield:

Theorem 6.15. Suppose K^{c} has no Woodin cardinals; then there are formulae $\psi\left(v_{0}, v_{1}\right), \varphi\left(v_{0}, v_{1}\right)$ in the language of set theory such that whenever G is V-generic $/ \mathbb{P}$, where $\mathbb{P} \in V_{\Omega}$, then $V[G]$ satisfies the following sentences:
(1) $\forall x, y \in{ }^{\omega} \omega \forall \alpha<\omega_{1}\left[\left(L_{\alpha+1}(\mathbb{R}) \vDash \varphi[x, y]\right) \Leftrightarrow \exists \delta \leq \alpha(x\right.$ codes $\delta \wedge y$ codes a δ-strong, properly small premouse)];
(2) $\forall x, y \in{ }^{\omega} \omega \forall \alpha<\omega_{1}\left[\left(L_{\alpha+1}(\mathbb{R}) \vDash \psi[x, y]\right) \Leftrightarrow \exists \delta \leq \alpha(x\right.$ codes $\delta \wedge y$ codes $\left.\left.\mathcal{J}_{\delta}^{K}\right)\right]$.

