§4. The hull and definability properties

Definition 4.1. Let \mathcal{M} be a premouse and $X \subseteq \mathcal{M}$. Then

$$a \in H^{\mathcal{M}}(X) \iff$$
 for some $s \in X^{<\omega}$ and formula φ ,
 $a =$ unique v such that $\mathcal{M} \models \varphi[v, s]$

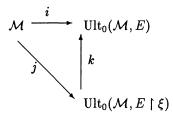
Notice here that $H^{\mathcal{M}}(X)$ in the uncollapsed hull of X inside \mathcal{M} .

Definition 4.2. Suppose Ω is S-thick in \mathcal{M} , and let $\alpha < \Omega$. We say that \mathcal{M} has the S-hull property at α iff whenever Γ is S-thick in \mathcal{M}

 $P(\alpha)^{\mathcal{M}} \subseteq transitive \ collapse \ of \ H^{\mathcal{M}}(\alpha \cup \Gamma)$.

In his work on the core model for sequences of measures, Mitchell makes heavy use of a lemma which states (translated into our context) that if Ω is S-thick in \mathcal{M} then \mathcal{M} has the S-hull property at all $\alpha < \Omega$. This will fail as soon as we get past sequences of measures, as the following example shows.

Example 4.3. Suppose Ω is S-thick in \mathcal{M} . Let E be an extender from the \mathcal{M} sequence which is total on \mathcal{M} , and $\kappa = \operatorname{crit} E$. Suppose E has a generator $> \kappa$, and let ξ be the least such. (So $\kappa^{+\mathcal{M}} < \xi$, and $E \upharpoonright \xi = \dot{E}_{\xi}^{\mathcal{M}}$.) Now let $\mathcal{N} = \operatorname{Ult}_0(\mathcal{M}, E) = \operatorname{Ult}_{\omega}(\mathcal{M}, E)$. Then Ω is S-thick in \mathcal{N} . We claim that \mathcal{N} fails to have the hull property at ξ . For let $i: \mathcal{M} \to \mathcal{N}$ be the canonical embedding and $\Gamma = \operatorname{ran} i$. Thus Γ is S-thick in \mathcal{N} . Moreover we can factor i as follows:



where k([a, f]) = i(f)(a). We have $\xi = \operatorname{crit} k$, and $\operatorname{ran}(k) = H^{\mathcal{N}}(\xi \cup \Gamma)$, and so $Ult(\mathcal{M}, E \upharpoonright \xi)$ is the transitive collapse of $H^{\mathcal{N}}(\xi \cup \Gamma)$. On the other hand, by coherence $E_{\xi}^{\mathcal{N}} = E_{\xi}^{\mathcal{M}} = E \upharpoonright \xi$, so $E \upharpoonright \xi \in \mathcal{N}$. As $E \upharpoonright \xi$ is essentially a subset of ξ (in fact, of $(\kappa^+)^{\mathcal{N}}$) and $E \upharpoonright \xi \notin \operatorname{Ult}(\mathcal{M}, E \upharpoonright \xi)$, we are done.

Remark. If Ω is S-thick in \mathcal{M} , and $\mathcal{P} = \mathcal{M}_{\alpha}^{\mathcal{T}}$ where \mathcal{T} is an iteration tree on \mathcal{M} and there is no dropping along $[0, \alpha]_T$ and $\alpha \leq \Omega$, and \mathcal{M} has the S-hull property at all ξ , then \mathcal{P} has the S-hull property at ξ iff for no $\beta + 1 \in [0, \alpha]_T$ do we have $(\kappa^+)^{\mathcal{M}_{\beta}} \leq \xi < \nu$, where $\nu = \nu(E_{\beta}^{\mathcal{T}})$ and $\kappa = \operatorname{crit}(E_{\beta}^{\mathcal{T}})$. So we can recover from \mathcal{P} , using the hull property, the pairs (κ, ν) such that some extender with critical point κ and sup of generators $= \nu > (\kappa^+)^{\mathcal{P}}$ is used on the branch from \mathcal{M} to \mathcal{P} . Notice also that \mathcal{P} will have the S-hull property at club many $\xi < \Omega$.

Definition 4.4. Let Ω be S-thick in \mathcal{M} , and $\alpha < \Omega$. We say \mathcal{M} has the Sdefinability property at α iff whenever Γ is S-thick in \mathcal{M} , $\alpha \in H^{\mathcal{M}}(\alpha \cup \Gamma)$.

Even at the sequences of measures level, it is possible that Ω is S-thick in \mathcal{M} , but \mathcal{M} fails to have the S-definability property at some α . For let Ω be S-thick in \mathcal{P} , and $\mathcal{M} = \text{Ult}(\mathcal{P}, \mathcal{U})$ where \mathcal{U} is total on \mathcal{P} with critical point α .

In view of the previous examples, we cannot expect that K^c will have the A_0 -hull or definability properties at all $\alpha < \Omega$. We shall show, however, that K^c has these properties at many $\alpha < \Omega$.

Lemma 4.5. Let W be an $\Omega + 1$ -iterable weasel, and let Ω be S-thick in W; then there is an elementary $\pi : M \to W$ such that ran π is S-thick in W, and M has the S-hull property at all $\alpha < \Omega$.

Proof. Let us use "thick" to mean "S-thick", and "hull property" for "S-hull property". We shall define by induction on $\alpha \leq \Omega$ classes $N_{\alpha} \prec W$ such that N_{α} is thick in W. We shall have $N_{\alpha+1} \subseteq N_{\alpha}$ for all α , and $N_{\lambda} = \bigcap_{\beta < \lambda} N_{\beta}$ if λ is a limit. We then take ran π to be N_{Ω} .

In order to avoid dealing with collapse maps, let us say that a class $N \prec W$ which is thick in W has the hull property at κ , where $\kappa \in N$, iff \overline{N} has the hull property at $\sigma(\kappa)$, where $\sigma : N \cong \overline{N}$ is the transitive collapse. Equivalently, N has the hull property at κ iff whenever $\Gamma \subseteq N$ is thick in W, and $A \subseteq \kappa$ and $A \in N$, then there is a set $B \in H^W((N \cap \kappa) \cup \Gamma)$ such that $B \cap \kappa = A$.

As we define the N_{α} 's we define κ_{α} for $\alpha < \Omega$. κ_{α} will be the α th infinite cardinal of N_{Ω} . We shall have $N_{\alpha} \cap (\kappa_{\alpha} + 1) = N_{\beta} \cap (\kappa_{\alpha} + 1)$ for all $\beta > \alpha$. We also maintain inductively that N_{β} has the hull property at κ_{α} , for all $\beta > \alpha$.

Base step:

$$N_0 = W,$$

$$\kappa_0 = \omega.$$

Limit step:

$$N_{\lambda} = \bigcap_{\beta < \lambda} N_{\beta}$$

$$\kappa_{\lambda} = \text{least } \kappa \in N_{\lambda} \text{ such that}$$

$$\kappa_{\beta} < \kappa \text{ for all } \beta < \lambda.$$

(By induction, κ_{β} is a cardinal of N_{λ} for all $\beta < \lambda$. So κ_{λ} is a cardinal of N_{λ} .)

Successor step: Suppose we are given N_{α} and κ_{α} , where $N_{\alpha} \models \kappa_{\alpha}$ is a cardinal. For each $A \subseteq \kappa_{\alpha}$ such that $A \in N_{\alpha}$ and A is a counterexample to N_{α} having the hull property at κ_{α} , pick a thick class Γ_A witnessing this. Let

$$\Gamma = \bigcap \{ \Gamma_A \mid A \subseteq \kappa_\alpha \land A \in N_\alpha \land \Gamma_A \text{ exists} \},\$$

where we set $\Gamma = N_{\alpha}$ if no Γ_A 's exist, i.e. if N_{α} has the hull property at κ_{α} . Set

$$N_{\alpha+1} = H^{W}((N_{\alpha} \cap (\kappa_{\alpha}+1)) \cup \Gamma)$$

(Each $\Gamma_A \subseteq N_{\alpha}$, so $N_{\alpha+1} \subseteq N_{\alpha}$.)

This finishes the construction. It is clear that if $\alpha < \beta < \Omega$, then $N_{\alpha} \cap (\kappa_{\alpha}+1) = N_{\beta} \cap (\kappa_{\alpha}+1)$, κ_{α} is a cardinal of N_{β} , and N_{β} has the hull property at κ_{α} . Moreover, $\langle \kappa_{\gamma} | \gamma \leq \beta \rangle$ is an initial segment of the cardinals of N_{β} . Moreover, N_{β} is thick.

Set $N_{\Omega} = \bigcap_{\alpha < \Omega} N_{\alpha}$. The assertions of the last paragraph are also obvious for $\beta = \Omega$, except that N_{Ω} is not obviously thick in W. The following claim is the key to showing this.

Claim. Let $\lambda < \Omega$ be a limit; then N_{λ} has the hull property at κ_{λ} , and therefore $N_{\lambda+1} = N_{\lambda}$.

Proof. Let M be the transitive collapse of N_{λ} , and κ the image of κ_{λ} under collapse. So κ is a limit cardinal of M, and M has the hull property at all $\alpha < \kappa$. We want to show that M has the hull property at κ . Notice Ω is thick in M.

Let Γ be thick in M, and H = transitive collapse of $H^M(\kappa \cup \Gamma)$. We are to show $P(\kappa) \cap M \subseteq H$.

Let \mathcal{T} on H and \mathcal{U} on M be the iteration trees resulting from a conteration of H with M determined by $\Omega + 1$ iteration strategies. (Notice that H and M are $\Omega + 1$ -iterable because they are embeddable in W, and by 3.3 the comparison ends as a stage $\leq \Omega$.) Let $lh \mathcal{T} = \gamma + 1$ and $lh \mathcal{U} = \theta + 1$, where $\gamma, \theta \leq \Omega$ by 3.3.

Since H and M are both universal, $H_{\gamma} = M_{\theta}$ (where these are the final models or the two trees), and $i_{0,\gamma}^{\mathcal{T}}$ and $i_{0,\theta}^{\mathcal{U}}$ are both defined.

It is enough to see that crit $i_{0,\theta}^{\mathcal{U}} \geq \kappa$, as then $P(\kappa) \cap M = P(\kappa) \cap M_{\theta} = P(\kappa) \cap H_{\gamma} \subseteq H$. So suppose that crit $i_{0,\theta}^{\mathcal{U}} = \mu < \kappa$. Notice $(\mu^+)^M < \kappa$.

Let E be the first extender used along $[0, \theta]_U$; that is, $E = E_{\eta}^{\mathcal{U}}$ where $\eta + 1 \in [0, \theta]_U$ and \mathcal{U} -pred $(\eta + 1) = 0$. So crit $E = \mu$ and $lh \ E \ge \kappa$. The argument of example 4.3 shows that $E \upharpoonright (\mu^+)^M$ witnesses that M_{θ} doesn't have the hull property at $(\mu^+)^M = (\mu^+)^{M_{\theta}}$. On the other hand, M and hence M_{θ} has the hull property at all ordinals $< (\mu^+)^M$.

If crit $i_{0,\gamma}^{\mathcal{T}} \geq (\mu^+)^M = (\mu^+)^H$, then $H_{\theta} = M_{\theta}$ has the hull property at $(\mu^+)^M$. Thus crit $i_{0,\gamma}^{\mathcal{T}} = \operatorname{crit} i_{0,\theta}^{\mathcal{U}} = \mu$.

Now let $A \subseteq \mu$ and $A \in M$. Let $\Gamma = \{\alpha \mid i_{0,\gamma}^{\mathcal{T}}(\alpha) = i_{0,\theta}^{\mathcal{U}}(\alpha) = \alpha\}$. By 3.9 and 3.11, Γ is thick (in H, M, and $H_{\gamma} = M_{\theta}$). So we can find a term τ such that

$$A = \tau^M[\bar{\beta}, \bar{c}] \cap \mu$$

where $\tilde{\beta} \in \mu^{<\omega}$ and $\bar{c} \in \Gamma^{<\omega}$, using the hull property at μ in M. But then

$$i_{0,\theta}^{\mathcal{U}}(A) = \tau^{M_{\theta}}[\bar{\beta}, \bar{c}] \cap i_{0,\theta}^{\mathcal{U}}(\mu)$$

$\mathbf{32}$ §4. The hull and definability properties

Now
$$\tau^{H}[\bar{\beta},\bar{c}] \cap \mu = \tau^{H_{\gamma}}[\bar{\beta},\bar{c}] \cap \mu = i_{0,\theta}^{\mathcal{U}}(A) \cap \mu = A$$
. Thus
$$i_{0,\gamma}^{\mathcal{T}}(A) = \tau^{H_{\gamma}}[\bar{\beta},\bar{c}] \cap i_{0,\gamma}^{\mathcal{T}}(\mu).$$

It follows that the 1st extenders used along $[0, \theta]_U$ and $[0, \gamma]_T$ agree up to the inf of the sups of their generators. This is a contradiction, as in the proof of the comparison lemma. This proves the claim. п

The claim implies N_{Ω} is thick in W. For by Födor's theorem, for all but nonstationary many $\alpha \in S$, $\alpha = \kappa_{\alpha}$ and for all $\beta < \alpha$ there is an α -club $C_{\beta} \subseteq N_{\beta} \cap \alpha^+$. Fix such an α . Let $C = \bigcap_{\beta < \alpha} C_{\beta}$; then C is α -club and $C \subseteq N_{\alpha} \cap \alpha^+$. But the claim tells us $N_{\alpha} = N_{\alpha+1}$, and hence $\kappa_{\alpha+1} = \alpha^+$. Since $N_{\alpha+1} \cap (\kappa_{\alpha+1}+1) = N_{\Omega} \cap (\kappa_{\alpha+1}+1), C \subseteq N_{\Omega} \cap \alpha^+$.

This completes the proof of 4.5.

We note in passing that the proof of the claim in 4.5 almost shows that if Ω is S-thick in M, then $\{\alpha < \Omega \mid M \text{ has the S-hull property at } \alpha\}$ is closed in Ω . It falls a bit short, however, and we do not know whether this is in fact true.

Lemma 4.6. Let W be an $\Omega + 1$ iterable weasel such that Ω is S-thick in W. Then for μ_0 - a.e. $\alpha < \Omega$, W has the S-hull property at α .

Proof. Let M be as given by lemma 4.5. Let $(\mathcal{T}, \mathcal{U})$ be a conteration of M with W determined by $\Omega + 1$ iteration strategies. We suppose $lh \mathcal{T} = lh \mathcal{U} = \Omega + 1$, the contrary case being very similar and left to the reader.

As both M and W are universal, there is no dropping on either $[0, \Omega]_T$ or $[0,\Omega]_{\mathcal{U}}$, and $M_{\Omega} = W_{\Omega}$ (where these are the last models of \mathcal{T} and \mathcal{U} respectively). Let α be such that α is inaccessible, α is a limit point of $[0, \Omega]_T$ and $[0,\Omega]_U$, and $\forall \beta < \alpha$ (*lh* $E_{\beta}^T < \alpha$ and *lh* $E_{\beta}^U < \alpha$). Since branches of an iteration tree must be closed below their sup, all but nonstationary many inaccessible $\alpha < \Omega$ have these properties. Notice that $i_{0,\alpha}^{\mathcal{T}}(\alpha) = i_{0,\alpha}^{\mathcal{U}}(\alpha) = \alpha$, and that $\operatorname{crit}(i_{\alpha,\Omega}^{\mathcal{T}}) \geq \alpha$ and $\operatorname{crit}(i_{\alpha,\Omega}^{\mathcal{U}}) \geq \alpha$.

One can easily show that for any $\beta \in [0, \alpha]_T$, M_β has the hull property at η whenever $\sup\{lh \ E_{\gamma}^{\mathcal{T}} \mid \gamma + 1 \in [0, \beta]_T\} \leq \eta$. (Proof: let Γ be thick in M_{β} and let $A \subseteq \eta$, $A \in M_{\beta}$. Let $\eta^* \leq \eta$ be least such that $\eta \leq i_{0\beta}^T(\eta^*)$. There is a function $f \in M$, $f : [\eta^*]^{<\omega} \times \eta^* \to \{0,1\}$, and an $a \in [\eta]^{<\omega}$, such that the characteristic function χ_A of A is given by: for $\xi < \eta$, $\chi_A(\xi) =$ $i_{0\beta}^{\mathcal{T}}(f)(a,\xi)$. By the hull property in M we can find $\bar{\xi} \in \Gamma^{<\omega}$ such that $i_{0\beta}^{\hat{\tau}}(\bar{\xi}) = \bar{\xi}, \ b \in [\eta^*]^{<\omega}, \ \text{and a term } \tau \ \text{such that} \ f = \tau^M[b,\bar{\xi}] \upharpoonright ([\eta^*]^{<\omega} \times \eta^*).$ So $i_{0\beta}^{\mathcal{T}}(f) = \tau^{M_{\beta}}[i_{0\beta}^{\mathcal{T}}(b), \bar{\xi}] \upharpoonright ([i_{0\beta}^{\mathcal{T}}(\eta^*)]^{<\omega} \times [i_{0\beta}(\eta^*)].$ So for $\gamma < \eta, \chi_A(\gamma) =$ $\tau^{M_{\beta}}[i_{0\beta}^{\mathcal{T}}(b),\bar{\xi}](a,\gamma)$. Since $i_{0\beta}^{\mathcal{T}}(b) \in [\eta]^{<\omega}$ by the leastness of η^* , A is in the collapse of $H^{M_{\beta}}(\eta \cup \Gamma)$.)

Thus M_{α} has the hull property at α . Since $\alpha \leq \operatorname{crit} i_{\alpha,\Omega}^{\mathcal{T}}, M_{\Omega} = W_{\Omega}$ has the hull property at α . Since $\alpha \leq \operatorname{crit} i^{\mathcal{U}}_{\alpha,\Omega}$, W_{α} has the hull property at α .

Now let Γ be thick in W and $A \subseteq \alpha$, $A \in W$. We can find $\bar{\xi} \in \Gamma^{<\omega}$ and $b \in \alpha^{<\omega}$ such that $i_{0\alpha}^{\mathcal{U}}(\bar{\xi}) = \bar{\xi}$ and

$$i_{0\alpha}^{\mathcal{U}}(A) = \tau^{W_{\alpha}}[b,\bar{\xi}] \cap \alpha$$

for some term τ . Letting b be least which works for $\overline{\xi}$, $i_{0\alpha}^{\mathcal{U}}(A)$, and $\alpha = i_{0\alpha}^{\mathcal{U}}(\alpha)$, b is definable from elements of ran $i_{0\alpha}^{\mathcal{U}}$, so $b = i_{0\alpha}^{\mathcal{U}}(c)$ where $c \in \alpha^{<\omega}$. Then $A = \tau^{W}[c, \overline{\xi}] \cap \alpha$, as desired.

Thus W has the hull property at all but nonstationary many inaccessible $\alpha < \Omega$.

Corollary 4.7. Suppose $K^c \models$ there are no Woodin cardinals; then K^c has the A_0 -hull property at μ_0 - a.e. $\alpha < \Omega$.

Proof. This is immediate from 2.12, 3.12, and 4.6.

One should not expect that 4.6 will hold in full generality for the definability property. For suppose that for μ_0 -a.e. $\alpha < \Omega$, α is measurable in K^c . Let Wbe the iterate of K^c obtained by using one total-on- K^c order zero measure from each measurable cardinal of K^c once. Then Ω is A_0 -thick in W, and Wis $\Omega + 1$ iterable, but W does not have the A_0 -definability property at μ_0 -a.e. α . Nevertheless, one can get a positive result in the case $W = K^c$, and this result will be important in the construction of "true K".

Lemma 4.8. Suppose $K^c \models$ there are no Woodin cardinals; then for μ_0 -a.e. $\alpha < \Omega$, K^c has the A_0 -definability property at α .

Proof. Assume the lemma fails, and for μ_0 -a.e. α pick Γ_{α} thick in K^c such that

$$\alpha \notin H^{K^{c}}(\alpha \cup \Gamma_{\alpha}).$$

We can also arrange that $\alpha < \beta \Rightarrow \Gamma_{\alpha} \supseteq \Gamma_{\beta}$.

Let $V_1 = \text{Ult}(V, \mu_0)$, and $j: V \to V_1$ be the canonical embedding. Let $V_2 = \text{Ult}(V_1, j(\mu_0))$, and $j_1: V_1 \to V_2$ the canonical embedding. Let $\Omega_1 = j(\Omega)$ and $\Omega_2 = j_1(\Omega_1)$. Let $K_1 = j(K^c)$ and $K_2 = j_1(K_1)$.

In V_2 , we consider the map

$$\pi: H \cong H^{K_2}(\Omega \cup (\Gamma_\Omega)^{V_2}) \prec K_2$$

which inverts the collapse. Since $\Omega \notin H^{K_2}(\Omega \cup \Gamma_{\Omega}^{V_2})$, crit $\pi = \Omega$. Since K_2 is satisfied to have the hull property at Ω in V_2 , $P(\Omega)^{K_2} \subseteq H$. Let E_{π} be the length $\pi(\Omega)$ extender derived from π . So $E_{\pi} \in V_2$, and measures all sets in $P(\Omega)^{K_2}$. Not every $E_{\pi} \models \nu, \nu \prec \pi(\Omega)$, belongs to K_2 , as otherwise Ω is Shelah in K_2 .

Claim. $E_{\pi} = E_j \cap ([\pi(\Omega)]^{<\omega} \times P(\Omega)^{K_2})$, where E_j is the extender derived from j.

Granted this claim, we can just repeat the proof of the main claim in the proof of Theorem 1.4 to get a contradiction. The point is that V_2 has suitable

33

"background certificates" for the relevant fragments of E_j , so working in V_2 we get that every $E_{\pi} \upharpoonright \nu$ is "on" the K_2 sequence in the right sense of "on". (1-smallness in no barrier to putting them on, as $K_2 \models$ there are no Woodins.)

Aside. Why isn't this an outright contradiction? We don't get $E_j \cap ([j(\Omega)]^{<\omega} \times$ $P(\Omega)^{K_2}$) as member of V_2 without our false hypotheses.

Proof of Claim. Let $A \subseteq \Omega$ and $A \in K_2$. We must show that $\pi(A) = j(A) \cap$ $\pi(\Omega)$. (It is easy to see that $\Gamma_{\Omega}^{V_2} \cap \Omega_1 \neq \emptyset$, and therefore $\pi(\Omega) < \Omega_1$.)

By the hull property for K_1 at Ω in V_1 , we can find a term τ such that

$$A = \tau^{K_1}[\bar{c}, \bar{d}] \cap \Omega \,,$$

for some $\bar{c} \in \Omega^{<\omega}$ and $\bar{d} \in (\Gamma_{\Omega}^{V_1})^{<\omega}$. It follows that

$$j(A) = \tau^{K_2}[\bar{c}, j(\bar{d})] \cap \Omega_1$$

Here we use that $j \circ j = j_1 \circ j$, so that $j(K_1) = K_2$. This also implies that $j(\Gamma^{V_1}) = \Gamma^{V_2}$, so that $j(\Gamma^{V_1}_{\Omega}) = \Gamma^{V_2}_{\Omega_1}$. Thus $j(\bar{d}) \in (\Gamma^{V_2}_{\Omega_1})^{<\omega}$. On the other hand $\Gamma^{V_2}_{\Omega_1} \subseteq \Gamma^{V_2}_{\Omega}$, and $j(A) \cap \Omega = A$, so

$$A = \tau^{K_2}[\bar{c}, j(\bar{d})] \cap \Omega,$$

where $\bar{c} \in \Omega^{<\omega}$ and $j(\bar{d}) \in (\Gamma_{\Omega}^{V_2})^{<\omega}$. Moreover, from the definition of π ,

$$\pi(A) = \tau^{K_2}[\bar{c}, j(\bar{d})] \cap \pi(\Omega) \,.$$

As $\pi(\Omega) < \Omega_1$, $\pi(A) = j(A) \cap \pi(\Omega)$, as desired.