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§2. Iterability

In this section we shall sketch a proof that if T is a ά-maximal iteration
tree on <£jb(Λf), and T \ X is simple for all limit λ < IhΊ ', and IhT is a

limit ordinal, then for all sufficiently large «, ΐ/ColO,*) |= 7" has a cofinal,
wellfounded branch. There are several other iter ability facts we shall need,
and actually we shall not prove even this one in this section, since we shall
make some simplifying assumptions on T. The reader seeking full detail and
generality will find it in §9. The reader who would like to see the main ideas
in our iterability proof, while avoiding full detail and generality, can content
himself with this section.

In this paper, we shall diverge slightly from the terminology of [FSIT]
regarding iteration trees. By an iteration tree we mean a system T obeying
all the conditions required in the definition of §5 of [FSIT] except possibly
the increasing length condition. That is, we do not require a < β => Ih E% <
Ih ET . Iteration trees in the sense of [FSIT] we call normal. (We note that

even in a normal tree T, E% may not be applied to the earliest possible
model. This last requirement is part of fc-maximality.) Although the trees
which arise in comparison processes are all normal and fc-maximal for some
k < ω, we must cover more than such trees in our proof that Kc is iterable.
This is because the proof of the Dodd-Jensen lemma (5.3 of [FSIT]) involves
non-normal trees.

We shall say that T is simple iff for all sufficiently large /c, γCo\(ω,κ) μ Ί

has at most one cofinal wellfounded branch. (This diverges slightly from the
terminology of [FSIT].) We shall need a relative of this notion.

Definition 2.1. Let T be a tree on M. of limit length, and a £ OR. We say
T is Oί-short iff for all sufficiently large K

yCol(ωtκ) μ Ί has no CQβnal branch b such ihat

OL is isomorphic to an initial segment of ORMb .

The next two lemmas come from the uniqueness theorem of §2 of [IT],
See also Theorem 6.1 of [FSIT]. Their formulation also owes a lot to work of
Woodin, and to the Π\ mouse condition of §5 of [IT].

Lemma 2.2. Let M be l-small and T an iteration tree on M, and let λ <
Ih T. Then for some a £ OR, T \ λ is a-short.

Proof. Assume not. Let

δ = sup{//ι Ej I β < λ} ,

E =
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(so that E= common value of EM*> \ <5, for all cofinal, possibly generic,
branches bofT \ λ). Our hypothesis implies that Vα G OR, there are possibly
generic cofinal branches 6 φ c of T \ λ such that α is in the wellfounded

parts of both Mb and Mc. Hence so is La[E\. By §2 of [IT] or 6.1 of [FSIT],

L[E] t= 6 is Woodin. But now E= EM* \ <5, and El[ has length > δ. It
follows that M\ is not 1-small, a contradiction. D

We do not get from 2.2 that Ί itself is α-short for some a G OR. But the
proof of 2.2 gives at once:

Lemma 2.3. Let T be an iteration tree of limit length on a premouse M.
Then either T is a-short for some a G OR, or there is a proper class inner
model with a Woodin cardinal.

The next lemma explains the importance of these uniqueness facts in our
proof of iterability. It shows that the existence of a "bad" tree on M reflects
to the existence of a bad countable tree on a countable λf X M.. Part (a) of
the lemma is due to Woodin and the author independently; part (b) is due
essentially to Woodin.

Let us use "putative iteration tree" for a system having all the properties
of an iteration tree, except that its last model, if it has one, may be illfounded.

Lemma 2.4. Let T be a putative iteration tree on a 1-small premouse M
such that T \ λ is simple for all λ < Ih T. Suppose that either (a) (T \M)^
exists, or (b) There is no proper class inner model with a Woodin cardinal.
Suppose also that either T has a last, illfounded model, or T has limit length

and for all sufficiently large K, γ^°\ω^) ]p T has no cofinal wellfounded
branch.

Then there is a countable λf ^ M and a countable putative iteration tree
U on λf such that II \ λ is simple for all λ < Ih U and either U has a last,
illfounded model, or U has limit length but no cofinal wellfounded branch.

Proof. We give the proof under hypothesis (b). We also assume Ih T is a limit
ordinal, and leave the contrary case to the reader.

By 2.3 we can fix a G OR such that for all λ < Ih T, T \ X is α-short. Let
θ be large enough that T,ΛΊ, a G VQ and Ve satisfies a reasonable fragment
of ZFC. Lowenheim-Skolem gives us a countable transitive H and embedding

such that for some

So λf X M via 7Γ \ λf. Also, U is a countable iteration tree on λf of limit
length. Now H \= U \ X is a short, for all λ < Ih U. But this notion is
sufficiently absolute that U \ λ truly is α short, for all λ < Ih U. [Let x be a
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real which is a member of H ̂ °^(ω^)t κ sufficiently large, and codes (M,U, ct).

Being a short is a Π\ property of x, and so absolute to H^°^ω>κ\]
Now H \= U \ λ is simple, Vλ < Ih U. Since U \ \ is ά short and ά £ #,

this is absolute, and thus U \ \ truly is simple for all λ < Ih U.
Similarly, if U has a cofinal wellfounded branch 6, then OR/^6 < ά, and

thus U has a cofinal wellfounded branch in #^°l(ω,«) where K = (card(Λf))
card(W) δί)H . So U has no cofinal wellfounded branch.

The proof under hypothesis (a) is similar. Where in case (b) we used α-
shortness and Π\ absoluteness, we use (T^M)^ and Π\ absoluteness. [We

have π : (U.λT)^ -> (T,Λ4)«, and this guarantees (U,λf)*H = (ZΛ-Λf) 1.
That in turn implies H[G] is correct for Π\ statements about x, where x
is a real coding (U,λf) in H[G], and G is generic /H for Col(ω,/c), K: =
(card (U) caxd(λί))H .] D

Remark. If /c = card(T) card(A^), then V0 > K, T has a cofinal wellfounded

branch in FCo1^'^ iff T has a cofinal wellfounded branch in yCo!^,*). In
particular, if ω = card(T) - card(ΛΊ), Ί has such a branch in γC°^ω^ iff T
has such a branch in V.

We are ready to state the main result of this section, which concerns the
iterability of countable elementary submodels of Kc and its levels. Although
we could prove that such structures are iterable with respect to arbitrary
trees, to do so would add a layer of notational fog to the proof for normal
trees. We shall therefore prove just the iterability we need, which is iterability
with respect to linear compositions of normal trees. We call these trees almost
normal. More precisely, suppose (Ta | α < /?) is a sequence of normal trees
such that TO is on ΛΊ, Ta+ι is on the last model Λ4^ of Ta for all a + 1 < /?,
and Tχ is on the direct limit of the Λ4^, for α < λ , i f λ < / ? i s a limit. We
can form an iteration tree U by "laying the 7^'s end-to-end". We say U is
generated by (Ta \ a < /?), and call a tree U generated in this way almost
normal. Such a composition U will generally not be maximal, even if the Tα's
are maximal, since maximality requires going back to the earliest possible
model. We say U is almost k-maximal iff TO is ά-maximal, and Vγ < β (TΊ is

.;' -maximal, where j = degTa(M^) for all sufficiently large α < 7.

Theorem 2.5. Let P X ί*(Λ/i) for some k,θ, and P be countable. Let T
be a countable, almost normal, almost k-maximal putative iteration tree on
P such that T \ X is simple for all λ < Ih T . Then either Ί has successor
length, and its last model is wellfounded, or T has limit length, and T has a
cofinal wellfounded branch.

Sketch of Proof. We shall give the proof in a special case which highlights the
new ideas.

The simplifying assumptions we make are: T is normal and ^-maximal,
and

(1) T has length ω,
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(2) k = ω\ moreover P is passive and P |= ZF~, and there is no dropping
onT,

(3) Letting Pi be the ith model of T, and V{ the sup of the generators of

Eΐ>
Pi |= strength(£/ ) > ι/<,

moreover, z/t is a limit ordinal.
As z/i is a limit ordinal, jjl is either type I or type III, where β = //ι E1?".

This implies that ι/t is a cardinal of J^1, and therefore, by our strength
assumption in (3), V{ is a cardinal of Pi.

We have made assumptions (2) and (3) in part to avoid any need for
"resurrection" (cf. §12 of [FSIT]) in the construction to follow.

By (2), pω(Pi) — ORPt for all i £ ω, all ultrapowers on T are Σω (satisfy
the full Los theorem), yet are formed using functions which belong to the
model in question. It may seem that these assumptions just resurrect the
"coarse structure" setting of [IT], but in fact they do not. For one thing, we
don't have Ί G PQ.

Because ρω(P) = ORP, £ω(λfθ) = λfβ Fix an elementary π : P -> Λ/0. We
shall show that there is a cofinal branch 6 of T and elementary σ : Pb —»• λίe
such that

commutes.
Let U be the tree of attempts to build such a branch b and embedding

σ. More precisely, let τ : P — » Q be elementary; we shall define a tree U =
£/(r, Q) which tries to build (6, σ) such that σ :Pι> -+ Q and r = σ o i^"6.

Fix an enumeration

. onto

such that ^((βjz)) is infinite for all (e,z) such that x G Pe We then put

(a)

(b) (Pβfc, a?0, . . . , x jb) Ξ (Q, j/o, - - , y*), where V i < *

(i) t(t) = (e, x) for β <E [0, et ]τ implies xf = i£βfc(ίr),
(ii) t(i) = (e, x) for e jί [0, e, ]τ implies X j = 0,
(iii) t(i) = (0, x) implies y, = r(x).

Remark. (x0) - - , #*} in (b) is determined by (e0, . . . , e*).
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Let U = U(τ^Q) and i G ω, and suppose we are given an embedding
σ : Pi — » Q such that r — σ o fζ^ . From σ we get an initial segment of a
branch ofW(r,Q); let

P(», σ, r, Q) = ({e0, . - . , e j b ) , (y0, . . . , y*))

where (eo, . . . , ejt) is the increasing enumeration of [0, z]τ and letting (x0) - - , £k
come from (eo, . . . , βk) as in the definition of £/(τ, Q), we have yj = σ(xj) for
all j < k.

Theorem 2.5 is proved if we show that Lt(π,Afe) has an infinite branch.
Let us assume otherwise toward a contradiction.

By "coarse premouse" we mean a premouse in the sense of [IT]; that is,
a structure M = (M, G,5), where M is transitive which is power-admissible
and satisfies choice, the full collection schema for domains C Vjf* , and the full
separation schema. We also require that ωM C M, and that δ be inaccessible
in M. Write δM = δ.

Let

C = (Λ/H £ < 7) (7 < β)
be the construction done in §1. Notice that C is definable from no parameters
over VΩ (Here 7 is the first place < Ω where the construction breaks down,
if any, and 7 = Ω otherwise. Thus θ < 7.) It follows that if Έ, = (R, G, δ) is
any coarse premouse, then Cί̂  makes sense: we interpret the definition of C
inside V™.

If Ti is a coarse premouse, then a cutoff point of Tl is an ordinal ξ such
that <5π < ξ < ORπ and (V^π, G, <5π) is a coarse premouse.

We now define by induction on i triples (^iyQi,Tli) with the following
properties:

(1) Hi is a coarse premouse,
(2) Qi is an "N-modeP of the construction C^1 , moreover πt : Pi — » Qt

elementarily,
(3) for all j < i, Tlj agrees with 7^-, through TTJ(Z/J),
(Recall that z/j = v(E?) = strict sup of the generators of Ej ' . We say

coarse premice Έ, and S agree through 77 iff V™ = Vf.)
(4) for all j < i, π< f ι/j = π; f Vj\ moreover Qj agrees with Qi through

πXi/ί),
(Ordinary, "fine" premice Q and 71 agree through η iff

(5) Let W = Ufa o f^,., Qt ) and

(So W is a tree in 72.,- and p is a node of ZY.) Then ZY is wellfounded, and the
order type of the set of cutoff points of 7£t is at least \p\Ui

(6) i f i > 0, thenT^ €ft , -ι.
Clause (6) gives us the desired contradiction.

Base step: Set
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TΓo = 7 Γ ,

QQ = λfβ

By assumption, U — W(πo, Qo) is wellfounded. Set

where £ is the |W|th ordinal a> Ω such that (Vα, E, ί?) is a coarse premouse.

Our applicable induction hypotheses, namely (1), (2), and (5), clearly hold.

Inductive step. We are given ((τrj,Qj,ftj) \ j < i) Let j = T-pred (i + 1),

and set

Q; |= ZF~ , so the ultrapower is formed using functions belonging to Qj.
Notice that the ultrapower makes sense. For set k — crit Ej and K =

πi(κ). Let E — πi(El). The rules for iteration trees guarantee k < ι/j.
Induction hypothesis (4) states that πz \ ι/3 = πj \ ι/j] thus K < TTJ(Z/J).

But 7Γj(i/j) is a cardinal of Qj, and Qi agrees with Qj through ?TJ(I/J). Thus

P(κ)Qι C Qi, and the ultrapower makes sense. (We may have subsets of K in
Qi but not Qj] 7Γj(i/j) may not be a cardinal of Qt . So E1 may measure more

sets than necessary.)

Let σ : Pi+i — »• Q^+1 be given by the shift lemma:

We have that σ is well defined and elementary, that Q( +1 agrees with

through all η < Ih E, that σ f //ι #?" = πt f //ι £??", and that σoi^i

where i^ : Qj — > Q( +1 is the canonical embedding.
The following little lemma will be useful.

Lemma 2.6. Suppose J~ η is an initial segment of Mη such that

V/c < ωβ[(Afη \= K is a cardinal) Ό (Jβ η \= K is a cardinal)]

then there is a ξ < η such that J~ η = Λ/^.

Proof. We may assume ωβ < OR Π λfη .

Let ξ < η be least such that J- n is an initial segment ofλfξ. Clearly, if ξ is

a limit then Jβ η = Λ/ξ, and we are done. Therefore we suppose ξ = τ+l. We

also suppose Jβ η φ Λ/V+i , and this implies that Jβ η is an initial segment

of MT- Since Jβ η is not an initial segment of Λ/V, and Mr = ίw(^/τ), we

have from the proof of Theorem 8.1 of [FSIT] that pω(λfτ) < OR** and
J\fτ \= pω(λfτ)

+ exists, moreover ωβ is strictly larger than (pω(

Now let δ = mf{pω(λfθ) \ r < θ < η}, so that 6 < ρω(λfτ) and

(pw(^r)+) Vr < ωβ. Then (<5+)^ is a cardinal of Mτ (by §8 of [FSIT]), and
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thus it is a cardinal of Jβ

 η . On the other hand, the defining property of δ

guarantees (6+)^r is not a cardinal of λίη. This contradicts the hypothesis
of 2.6. D

Since E is on the Q; sequence, E = E$l where β = Ih E. Let Qt = Λ/^'.

Lemma 2.6 then gives us a ξ < η such that J?1 = Λ/^* . (We apply 2.6 within
7£;. Our simplifying assumptions tell us that 7Γi(ι/t ) is the largest cardinal of

Jβ η , and πt (z/i) remains a cardinal in Λ^. Thus 2.6 applies.)

Remark. Without our simplifying assumptions we don't get that 7Γ;(z/t ) is a

cardinal of Q, , and therefore there may be no ξ such that j9l = J\Λπ' . At this
point in the general argument we need to resurrect a background extender
for E by inverting certain collapses.

If we were in the situation of [FSIT] we would now have a "background
extender" F for E such that Ult(7£, ,F) makes sense. We would let 7£ +1 =
Ult(7£j,F), and then take TJ +i to be the collapse of a suitable hull of a
suitable cutoff point of 7£[ +1 . Qt+ι would be the image of Q( +1 under collapse.

Now, however, we have no such F (after all, Vκ_^l — Vκ+\ , so F would be a full
extender in Ίli). So instead we get a suitable background certificate (AT, F) for

E in Tί{. Since N is large enough, and in particular V* 3 — V™1 C N, we can
take an analogue of the hull producing 7£, +ι and Q, +ι "almost everywhere"
below K. We get 7£i+ι(ύ), Qt +ι(ϋ) for ί& are ϋ, for a suitable 6. We then let
fci+i = [&,λϋfti+ι(ϋ)]£ and g<+1 = [

Let

Since A is a countable subset of Hi , .4 G 7£i and is countable in 7£t . Also

-4 C Un<ω ̂ (W1)^' » where -Λ/f § = Jβ' E is the last extender of Λ/f ,
so we can let

Hi |= (N, F) is an ^-certificate for tff1 .

Since "Ult(7V,F) C Ult(^V,F), πt f ι/< G Ult(7V,F). Let us pick an F
support 6 and functions \ΰ - 7rj(u), \ΰ z/(w) such that

We may assume that 7Γj(ΰ), z/(u) G V^ for all w.

Claim. For F& a.e. ΰ, there are in V** \ a coarse premouse 7^, an "ΛΓ model"
Q of C^ , and an elementary embedding π : PΪ+I — * Q such that

(1) % = %, and J«fl) = J«ij

(2) 7Γ ί Vi = Ti(«),

and
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(3) letting U - W(πot^ i + 1 ,Q) and p = p(i + l , π , π o i£ί+1,Q), we have:
U is wellfounded, and there are in order type at least \p\u cutoff points of 7£.

Proof. Fit measures the set of such ϋ, as the quantifiers in its definition range

over V? , and J$ G N. Let ΰ G X if and only if ϋ G M |δ | and the claim fails

for ΰ, and suppose toward a contradiction that X G F&.

Fix an enumeration 7^ +ι = {xn | ft < ω} of P +I. For n < ω let

σ(a?n) = [cn,/n]^J ,

where cn G [^*(^t)]<α; an(^ Λ» £ Or If χn < Vi, so that σ(xn) = τr;(zn), then
we choose cn = {?Γi(xn)} and fn = identity function.

Subclaim A. There is a set Yn G FCoϋ...ϋCn

 sucn that if t : (Ji<n c* ~^ κ ιs

order preserving, and ί" \Ji<n c, G yn> then

Proof. Note (P<+ι,xo *n) Ξ (Q{+ι,σ(x0), ,σ(xn)). Now let Q{+1 μ
^>[σ(xo)) ) σ(#n)] By Los' theorem there is a set Y^ G -f7c0u ucn such

that if ί : (Jt<n c* -̂  « is order-preserving and *"Uί <nc* ^ ^n** ^en ̂ ' N
<£>[/o(<"co), . .T, /n(t/;cn)]. We can choose Y* G ran π; l)ecause {/0, . . . , fn} C

ran π, . Thus Y* G >t, and hence Y* G FC o U..U C n. Let Yn = Π^,^; this

works because FCoU...UCn is countably complete. D

Subclaim B. If xn < z/, , then there is a set Zn G ίcnufc such that Ίft : cnU6 — *• K

is order preserving and t"(cn\Jb) G ̂ n, then ττί(ί//6)(xn) = fn(t"cn) < v(t"b).

Proof.

Ult(ΛΓ, F) N [6, λδ π, (ti)]?(xn) - [cn> /n]£ < [6, λfi - ι/(ύ)]£

(noting that [cn,/n]^ = [{ττi(xn)}, identity]^ = πt (xn) since xn < ι/t ). The
subclaim now follows from Los' theorem for Ult(7V, F). D

Subclaim C. lϊxn = «Ji+ι(2/)> then there is a set Wn G FCn such that whenever
t"cneWn,fn(t"cn) = ^(y).

Proof.

By Los' theorem for Ult(Qj, E), there is a set Wn G ̂ Cn as desired. But we

can assume Wn G ran πy, so that Wn G >!, and thus Wn £ FCn. Ώ

Since F is countably complete, we can find
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t : [J cn U 6 —»• K
n<ω

order preserving such that t"b G ,̂ and t" |Jί<n c; G Yn, and t"(cn U6) G Z
and i"cn G Wn, for all n < ω. Letting

!K*n) = /n(*"Crι),

V> : Pi+i —>• QJ elementarily, and ^ ί ι>< = ^(^'fr), and πj = ψ o i?i+1. Let

and

so that by induction 7£j has at least \p\u many cutoff points. Let

One can check easily that g is a proper extension of p in ZY; this is true because

jTi + I and πj = ψ o «J}+ι Thus there is an η G OR^J such that

η = \q\uih cutoff point of Hj.

Set

72. = transitive collapse of closure of Vv^,,^ U {Qj}

under Skolem functions for V^3 and ω-sequences

Q = image of Qj under collapse,

7Γ = image of φ under collapse .

(Since ω*R, C 72, T and ψ belong to the uncollapsed hull. So also do U, p, and

<?•)
Clearly (Q,7e,τr) G V*J = V* . Moreover, (Q,ft,π) witnesses the truth

of the claim for ΰ = t"b G X.
For (2): ψ \ V{ — π \ V{ because we put all of z/(ί"&) into the hull collapsing

to π, and ψ(xn) < ι/(t/;6) for xn < i/j by β. But ^ f i/. = πt(t/x6) by 5, as
we observed earlier.

For (3): Since KJ = ψ o fT i+1, π,- o ̂  - φ o i£ί+1, and

moreover V^ J has at least \q\u cutoff points. This is first order, so 7£ has at
least \q\if cutoff points, where q = collapse of q and U = collapse of U. Since

U = U(π o ij£ί+1, Q) and q = p(i + 1, π, TT o i^f+1, Q), we are done.
This proves the claim. Π
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By AC in TV, we have a function

denned F>, a.e., said function in N, picking witnesses to the claim. Let

nί+ι = [b, λΰ fc(δ)]£ ,

Qί+1 = [b,\ϋ Q(ΰ)]$,

and
τrx +ι = [6, λϋ τr(ϋ)]£ .

By (1) of the claim, V%% = V™^'F) = V^y So Ki+l agrees with

Kk, k < 2, as desired. By (2), τrt +ι ί z/, = π, f z/z . To show that <3ί+ι agrees
with Qt below τrt (z/t ), we argue as follows. Let 7 < ττt (ι/, ). Since Qi agrees
with Q(u) below z'(ϋ), for F& a.e. ϋ, we easily get

jQt+ι = [{τ}} flN ? where j(α) = jg. for all α < « .

Now clearly / 6 Q», and the coherence condition on E, which is on the Qi
sequence, gives

But then the agreement between E and F guarantees J\ Λ t + 1 = J^1. (It
is enough to see that if βo < βι < ωγ and φ(vQ,v\) is a formula, then

jf'+l \= <p[βΌ,βι] iff Jfl \= φ[βo>βι], because there is a uniformly definable

surjection of ωj onto jQ . Let us assume /?0 < βi < 7 and t+1

Then for ^{^0,^,7} a.e. w, J^1 ^= ^[^o, ̂ ι] The set of such ΰ is in .4, and so
is measured the same way by E{β0tβίtΊ}.)

The remaining induction hypotheses for our construction are easy to
check. This completes our proof of 2.5 under the simplifying assumptions
(l)-(3) above.

We now sketch how to do without our first simplifying assumption, that
lhT = ω.
' We call a sequence ((TTJ, Qj,7£j) | j < i) satisfying our inductive hypothe-

ses (l)-(4) an enlargement of T. Suppose we are given a simple T of length

ω 4- 1 and want to construct an enlargement ((^j^Qj^j) \ j < i) of T. Let
us assume that our simplifying assumptions (2) and (3) hold of T. Let Pj be
the jth model of T. We are given by hypothesis

τro : 7>o -> Qo

where

Qo = .Λ/i , the flth model of Cv

and TΓo is elementary. For any r : P — »• Q let
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U(τ,Q) = tree of attempts to build a pair (c, σ), where c is

a cofinal branch of T f ω, c φ [0, ω]τ , and r = σ oιζc.

Note because T is simple, U(τ, Q) is wellfounded for all τ, Q. For j £ ω
such that j ^ [0,u/|τ, and ψ : Pj —»• Q such that

commutes, set

P(j) V3) r> Q) = canonical initial segment of length \{k | kTjk-ιkTω}\

of a branch of U(τ} Q) given by (j, φ) .

We define by induction on i < ω enlargements ε% of T \ i + 1. There are
two cases.

Case l.i+lφ [0,ω]τ.
In this case we proceed exactly as we did in the construction given in the

length ω case. Let

Letj = Γ-pred(i+l). LetW = ZY(fljθ^,<3; ) andp = p(j, ?TJ , TT, <n'ζ , Q; ) . Our
inductive hypotheses guarantee that Ίij has |p|i/ many cutoff points. Arguing
as before, we get a background extender F for TΓ* (£"?"), and for F& a.e. ΰ an
embedding ^ ^t+i — *• Qj such that π3 = ψ o i^+1 and t/> f z/j = πj(ΰ) f i/f.

(Here [6, λΰ τr;(ϋ)]£ = π, f ι/, .) We then set g = p(i -f 1, V5, ?TJ o ij^ , Qj).)
Since i -f 1 §ί [0,ω]τ, ί extends p in W . Thus, for F& a.e. ϋ, we are given a

cutoff point of 7£j at which to take a hull.
As before, we do this and collapse, producing 7£(ϋ), Q(ΰ), π(ύ). We then

take Λi+ι = [b,Xm(ΰ)]$, Q, +ι - [6,AuQ(iZ)]£, πi+ι - [6, λϋ - π<(iϊ)]^. Set

2. f + 1 G [0,u;]τ.
Again, let Γ = ((^,Qj,^) | j < i), and let j = Γ-pred(ί + 1). Arguing

as before, we get "measure one many"

Ψ : P<+ι -* Qj

such that 7Γ j = ψ o ij*t +ι. In this case, we are not given an ordinal at which
to take a hull; we're on the wellfounded branch of T and so don't expect to
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get such ordinals. Along this branch, we shall realize the models of Ί back
in V; that is, we take

= QJ,
7Γ;+1 = Ψ ,

for a ^ chosen to meet certain "measure one" conditions. (Thus by induction,
ftf+ι = (V£,e,β),Q. +ι =-Λ/i, and πf+ι o i£ί+1 = π0.)

In order to do this, we must redefine (πk>Qk,'R>k) f°Γ j < fc < i, as
otherwise our inductive hypotheses on agreement will fail. (After all, if k =
crit Ej } then KJ(K) = ψ o ij^t +1(/c) > Ψ(k) )

First, we find new K,Q'fc,ft'fc) for j < k < i such that K,^,^) G

Ult(JV, F). (As in case 1, ( N , F ) is a ran π;- certificate for J '̂ where β —

lh(πi(E?)).) For this, we must suppose that our induction hypothesis on the
number of cutoff points gives us, for each k s.t. j < k < i, a cutoff point ηk
of 7£fc which we can now afford to drop to. Let G be the finite set of relevant
parameters, and

Tl'k = collapse of Skolem closure of G U V^k) inside

Q'k = image of Qk under collapse,

TrJ. = collapse o πfc ,

Now (πj., Q^H'jg) is coded by a subset of V^ϊ x belonging to Hk Let us
add to our inductive agreement hypotheses

(As our background extenders are "i/ + 1" strong, this is consistent with the
construction in Case 1.) It follows that V^(

fc

ί/fc)+1 C Ult(7V,F), where (N,F)

is the background certificate in 7£f for πi(E^). Let for j < k < i,

Then using {(?ri(u),7Jj.(u)) | j < k < i) in the same way that we used 7r, (t/)
in Case 1, we can define additional measure one sets for F so that by meeting
them we guarantee that

is an enlargement with the desired properties. (Notice that if k < j, then
ί/fc < k since j = T-pτed(i + 1) and k = crit E1^. But then «J"<+1 ί ^fc =

identity, so V Γ ̂  = (Φ ° *^<+i) ί ̂  - πj Γ ̂  = ^k \ "k- This is why we do
not need to re-define Sl \ j.)
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The existence of the cutoff point ηk of 7£fc, for j < k < i, is not a problem
because for each k £ u>, only one such cutoff point is used. (It is used at stage
i + 1, where i is least such that k < i and i + 1 £ [0,ω]τ.)

Let now, for fc E ω

fjj? — eventual value of £]. as i —> ω .

The eventual value exists since in fact Sl

k changes value at most once. Set

Hω

ω - K% = common value of Tl] , for j G [0, ω]τ and i > j ,

= Qo = common value of Q^ , for j £ [0, ω]τ ,

(Here £? = (π<f ,Q<f,K<f).) Then £ω = (Or£,Q£,fc£) | t < ω} is the desired
enlargement of T.

The extension of this method of enlargement to arbitrary simple countable
trees involves only more bookkeeping. The reader can see similar bookkeeping
problems handled in [IT]. In one respect, in fact, what we are doing now is
simpler than what is done in [IT]. In the present construction, all models
at the enlargement level, i.e. all 72^ 's, are ω-closed. This is true even for
β > ω. The construction of [IT] did not have this property, and that led to
complications.

The techniques of §12 of [FSIT] allow one to drop our simplifying assump-
tions (2) and (3). This completes our sketch of the proof of Theorem 2.5. D

Putting together Lemma 2.4 and Theorem 2.5, we get

Corollary 2.7. Suppose there is no proper class inner model with a Woodin
cardinal; then for all η < Ω and k < ω, ίjb(Λ/^) exists and is k-iterable.

Proof. The reader can find Ar-iter ability defined in 5.1.4 of [FSIT]. Roughly
speaking, it means: iterable with respect to simple, ^-bounded iteration trees.
The existence of €jb+ι(Λ/"^) comes from the fc-iter ability of ^(Λ/i;) via The-
orem 8.1 of [FSIT]. (The Strong Uniqueness theorem, 6.2 of [FSIT], is used
here to show that the iteration trees arising in the proof of 8.1 are simple.)
So we need only show that if (£fc(-Vrj) exists, then it is fc-iterable.

Let T on (tjg(λίη) be almost normal and fe-maximal, and T \ λ simple for
all λ < Ih T. Suppose Ih Ί is a limit; the case Ih Ί is a successor is similar.
We want a cofinal wellfounded branch of T, and from 2.4 and 2.5 we get

such a branch in v^oKω»Λ) for all sufficiently large K. So if T is simple, we
are done. If not, then letting M — ^(Λ/^), we have δ such that M \= δ is
Woodin, and pk+ι(Λ4) > δ. Let (τ,e} be lexicographically least above (r?,&)
such that <te(NΊ) \= δ is not Woodin, or pe+ι(ΛfΊ) < δ. Such a pair (7, e)
must exist because otherwise δ is Woodin in a proper class inner model. M
is an initial segment of (£e(jV7), and all extenders from the .M-sequence have
length < έ, and δ is a cardinal of <te(λfΊ). So T lifts to a j-maximal iteration



The Core Model Iterability Problem 23

tree T* on <te(NΊ). Since T* is simple, it has a cofinal wellfounded branch in
V, and thus so does Ί'. D

Corollary 2.8. If there is no proper class inner model with a Woodin cardi-
nal, then Kc = MΩ exists.

From 2.7 we get that if there is no proper class model with a Woodin
cardinal, then player II wins the full iteration game on any <tk(Afη) His win-
ning "iteration strategy" is just to pick the unique cofinal wellfounded branch
(after perhaps extending CfcOΛ/i,) to some larger Ce(W7).) The existence of
iteration strategies is more important than their nature, and indeed once one
gets to premice which are not 1-small, there may be more than one cofinal
wellfounded branch from which to choose. In order to state the results of §3
- §5 in their proper generality, we make the following definitions. Since we
require only normal, ω-maximal trees in §3 - §5, we restrict ourselves to these.

The full iteration game Q(M, θ) of §5 of [IT] has an obvious counterpart
β*(M,θ) for "fine-structural" premice. In {7*(Λf,0), I and II build together
a normal, ω-maximal tree Ί on M. At move a + 1 < θ, I picks an extender
E% on the M % sequence such that 7 < a =» Ih E^ < Ih E%. The rules for
ω-maximal trees then determine a β < α such that β = T-pred(α-fl), and an
initial segment ΛΊ*+ 1 of ΛfJ and k < ω such that Λ4 J+1 = Ultfc(Λ'fJH_ 1, Ej).

If Λ4β+ι is illfounded, the game is over and I has won. At move λ < 0, where
λ is a limit, II must pick a cofinal branch b oΐT \ X such that Dr Π b is finite
and M^ is wellfounded; if he fails to do so, then I wins. If he succeeds in
doing so, we set M*χ = Λίf and continue play. If I does not win G*(M,Θ)
at some move α < θ for one of the reasons just given, then II wins.

We also want to consider a variant of this game which allows almost
normal iteration trees to be played. Let G*(M, (ω, θ)) be played as follows.
There are ω rounds. Round 1 is just a play of G*(M, 0), except that I must
say "exit" at some move α + 1 < θ. (If he doesn't do so, and II doesn't lose
Θ*(M,Θ), then II has already won β*(Mt(ω,θ)) after round 1.) If I says
"exit" at α 4-1, then play moves to round 2, and in this round I and II play
β*(M%l

tθ), where Ύ\ is the tree produced in round 1. Once again, I must
exit at some /? + 1 < 0, etc. If no one loses during the ω rounds, then we say
that II has won G*(M> (ω, θ)).

Definition 2.9. A premouse M is θ-iterable iff II has a winning strategy
in G*(M,Θ). A winning strategy for II in ζj*(M,θ) is a θ-iteration strat-
egy for M. Similarly, M is (ω,θ)-iterable iff II has a winning strategy in
(/*(ΛΊ,(u>,0)) and we call such a strategy an (ω,θ)-iteration strategy.

An obvious copying construction gives

Lemma 2.10. If M -< λί and λί is θ-iterable, then M is θ-zterable. Similarly,
^λί and Λf is (ω, θ) iterable, then so is M.

From 2.7 we get
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Theorem 2.11. Suppose there is no proper class model with a Woodin
cardinal; then Kc is (ω, θ)-iterable for all θ.

We shall only make use of the (ω, Ω -f l)-iterability of Kc. We can prove
this without assuming there are no proper class models with a Woodin cardi-
nal, but using instead the measurability of Ω and assuming Kc \= there are
no Woodin cardinals. More precisely, we use that A* exists for all sets A £ VΩ
in order to see that Kc is well-behaved with respect to trees T £ VΩ (using
2.4 (a)), and then the weak compactness of Ω to see that K° is well behaved
with respect to trees of length Ω. We use that Kc \= there is no Woodin
cardinal to show that the appropriate trees are simple, and thus have not
just generic branches, but branches in V. In a similar vein, one can omit the
hypothesis "there is no proper class model with a Woodin cardinal" in 2.8,
by using the measurability of Ω. We have stated 2.8 and 2.11 as we have in
order to point out what can be proved without using the measurability of Ω.

Most of the rest of this paper makes heavy use of Theorem 1.4, and we
certainly do not know how to avoid' the measurability of Ω as a hypothesis
in that theorem. So we shall take "Kc \= there is no Woodin cardinal" as
our non-large-cardinal hypothesis, when we need one, instead of "there is no
proper class model with a Woodin cardinal". We shall use:

Thorem 2.12. Suppose Kc \= there is no Woodin cardinal] then Kc is (ω, Ω-\-
1)- iterable.




