
5. Related Lindstrδm Extensions

In this chapter FP+C is shown to be more expressive than the natural ex-
tensions of fixed-point logic by cardinality Lindstrδm quantifiers.

• Section 5.1 introduces a structural padding technique that is suitable for
the proof of this separation result. More generally, this technique serves to
expose weaknesses of quantifier extensions in the case that these quantifiers
do not have the right scaling properties with respect to certain extensions of
structures.

• This technique is applied in Section 5.2 to show that FP(Qcard) cannot
express all FP-hC-definable boolean queries. The same applies to FP(Q~rd)
with quantifiers for all cardinality properties based on the counting of equiv-
alence classes. In fact the separation even establishes that not all of FP* can
be captured by these quantifier extensions.

• In Section 5.3 we apply the padding technique to derive corollaries concern-
ing the weakness of two other quantifier classes. The classes of all properties
of rigid structures and that of all properties of sparse structures, respectively,
are shown to fall short of FP* and in particular of PTIME.

In the previous chapter FP+C has been characterized as the natural ex-
tension of fixed-point logic that incorporates expressive means for dealing
with cardinalities and corresponding arithmetic. Recall that a main feature
of the formalization was the introduction of a second, arithmetical sort. This
type of a functorial extension — based partly on the manipulation of the
structures under consideration — is intuitively different from the established
formalism for extensions in abstract model theory, namely that of Lindstrδm
extensions or extensions through generalized quantifiers. Can this difference
in appearance be substantiated in more rigorous terms? There is some sense
in which this cannot be achieved: it is a known fact that the Lindstrδm
approach to extensions of logics is sufficiently general to describe any rea-
sonable extension of first-order logic, more precisely any extension with the
appropriate closure properties. No doubt therefore FP+C is equivalent with a
Lindstrδm extension of first-order logic, and also with a Lindstrδm extension
of fixed-point logic. As FP+C is a logic with recursive syntax and semantics
these Lindstrδm extensions can trivially be chosen to use recursive families
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of quantifiers. That one is forced to consider extensions by infinite families of
quantifiers follows with an argument of Dawar and Hella [DH94] that applies
to show that FP+C cannot be equivalent with a finite Lindstrδm extension
(see Theorem 5.9 below). The standard modelling of a logic £ D FP with
the right closure properties as a Lindstrδm extension essentially turns each
individual ^-definable class into a quantifier. Clearly this is unsatisfactory:
the resulting presentation of FP+C as a Lindstrδm extension of FP is quite
artificial. It is not at all clear, however, which kinds of Lindstrδm extensions
should be considered natural Two different types of criteria come to mind.

Syntactic criteria. One may consider certain uniform sequences of quan-
tifiers. These are meant to adjoin the same structural property in varying
context. Uniform sequences as considered for instance in [Daw95a] consist of
all powers of a given quantifier and capture one structural property across all
arities, or as applied to interpreted structures in any power. Compare Sec-
tion 1.6.2. The usual way in which the transitive closure operator is adjoined
to first-order logic to get transitive closure logic provides a natural example.
Transitive closures are made definable for binary relations interpreted in any
power of the universe.

While FP+C cannot be a finite extension of FP it is conceivable that it is
obtained as an extension by finitely many uniform sequences of quantifiers.
Indeed, it follows from Dawar's work that a class or logic, that is recursively
presented (in some sufficiently strong sense; compare remarks in connection
with Definition 1.7) and has natural closure properties, is equivalent with an
extension of FP and even of first-order logic by just a single uniform series
of quantifiers. In the general construction the quantifier giving rise to such a
sequence embodies an enumeration of all queries that are to be captured. In
special cases, as for instance for FP itself one may also abstract such a quan-
tifier from typical and natural problems that are complete under appropriate
logical reductions, cf. [Dah87, Gro95]. Whether such natural problems exist
for FP+C, relative either to FP or to first-order, remains open.

Semantic criteria. One may also impose purely semantic conditions on the
quantifiers adjoined. The investigations of this chapter are of this kind. In
connection with fixed-point with counting there is an obvious issue in this
line:

Can FP+C be obtained as an extension of FP by cardinality Lind-
strδm quantifiers, i.e. by quantifiers whose semantics is entirely de-
fined in terms of cardinalities of predicates?

Indeed, FP with the class of all PTIME cardinality Lindstrδm quantifiers
is the natural a priori candidate to capture a counting extension of FP in
the Lindstrδm formalism. Compare Definitions 1.52 and 1.54 for (quotient)
cardinality quantifiers.

The main point of this chapter is that even the extension of FP by all
cardinality Lindstrδm quantifiers does not comprise all of FP+C, in fact not
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even all of FP*: FP(Qcard) 2 FP* Admitting further all quantifiers that
capture cardinality properties in quotient interpretations — for the count-
ing of equivalence classes rather than tuples — does not help either, even

Theorem 5.1. FP+C g FP(Qcard). In particular the extension ofFP by all
PTIME cardinality Lindstrδm quantifiers is strictly weaker than FP+C. These
separations also hold for FP(Q~rd), the extension by all quotient cardinality
Lindstrδm quantifiers.

It follows with Lemma 1.55 that the extension FP(Qmon) of fixed-point
logic by the class of all monadic Lindstrόm quantifiers does not contain
PTIME, and that similarly all quantifiers obtained from monadic ones through
generalized interpretations cannot suffice. The latter extension is in fact
equivalent with FP(Q~rd) by Remark 1.56. We mention in this context the
work of Kolaitis and Vaananen [K Va95] on extensions of the L^ω by monadic
quantifiers that bind single formulae (simple monadic quantifiers). Using so-
phisticated combinatorial techniques they obtain interesting separation re-
sults within the realm of monadic quantifiers, for instance that the Hartig
quantifier is not expressible in any extension of L^ω by finitely many simple
monadic quantifiers.

The present results are obtained with a technique that resembles so-called
padding arguments in complexity theory. Intuitively the situation of Theo-
rem 5.1 can be understood through the following. With FP+C the results
of counting operations can be processed recursively, and this FP-recursion
(over the arithmetical sort) is full PTIME recursion in terms of the size of the
universe. The FP-recursion captured by any sentence in an extension of FP
by C^ω -definable quantifiers, on the other hand, is polynomially bounded in

the size of the quotient of the fc-th power of the universe with respect to =°
for some k. The latter is the size of the relational part of ICk . (This situation
is reminiscent of that exhibited by FP; there a gap between the size of 21
and of ILk (21) accounts for the complexity behaviour described in the second
theorem of Abiteboul and Vianu.)

In the case of cardinality Lindstrδm quantifiers this gap can be manifested
unconditionally to obtain the desired separation. The structures employed in
these arguments are trivial extensions of ordered structures, with an increase
in the size without any gain in internal relational structure, just as in padding
arguments. FP with cardinality Lindstrδm quantifiers is shown to have not
the right scaling properties with respect to such extension.

5.1 A Structural Padding Technique

We consider functors that scale finite structures in size without otherwise
adding structural complexity. Taking the disjoint sum with a pure set is a
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typical example. This operation increases the size but as for definable predi-
cates, nothing is gained. We formalize this as follows. Consider a functor

Γrfmfr] x ω —> fin[τ].

The second argument of Γ will serve as a scaling parameter for the desired
extensions. The main example below is that of Γ(2l, n) being a trivial product
of 21 with the pure set n = {0,... ,n — 1}. Assume further that for each r
there is an encoding scheme that maps r-ary predicates R over Γ(2l, n) that
are closed under automorphisms of Γ(2l, n) to tuples of predicates [R] on 21.
We want to regard [R] as an encoding or a pull-back for the values of global
relations over the Γ(2t, n).

Definition 5.2. A good encoding scheme for Γ is a mapping [ } sending
automorphism invariant R on .Γ(2l,n) to tuples [R] = (Rl,...,Rl) on 21,
such that (21, [R]) andn determine ( Γ(2l, n),Λ) up to isomorphism, and such
that

(i) [ ] is monotone: RI C R2 implies R{ C R^ for i = 1,... /.
(ii) [} is compatible with first-order definability in the following sense: if R

is first-order definable from some global relations RI , . . . , Rk over the
-Γ(2t, n), then the encoding relations [R] for R are first-order definable
over the 21 from the encodings [Ri] of the Ri.

More precisely, (ii) means, that for first-order formula φ(X\,... ,-Xfc,x)
there are first-order formulae φ\ such that for all sufficiently large n and for
all .Ri,.. ., Rk that are automorphism closed over Γ(2l,n):

[y>[Γ(a,n),Λι, . .,Rk}] = (φί [», [R,],..., [Rk]])^^ -

Note the uniformity with respect to n that is expressed in this notion.
We shall below need to extend the notion of good encodings to allow for

parameters in the Γ(2t,n), see Definition 5.4.
Consider two examples: the disjoint sum and the trivial product with the

pure set n.
(21,n) i—> aύn, and

(21, n) i—> 21 ® n.

• aϋn: if a = (A,R?,...,Rf) then aύn = (AUn,JR?,.. .,Λ*) is the
disjoint union with the set n.
• 21 0 n: the universe of 21 (g) n is the product A x n. Let πi: A x n -> A
and π2: A x n -» n denote the natural projections to the factors as well as
their extensions to higher powers as for instance in πi: (A x n)r -> Ar. Then
21 <g) n = (A x n, Λf <8> n , . . . , R f <g> n), where Rf®n = πf1 (Λf).

Good encoding schemes are available for both functors. Consider the triv-
ial product with n. Clearly a tuple b e (A x n)r is described up to automor-
phisms of 21 (g) n by the pair (πι(6),eq(π2(6))) consisting of its projection to
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21 and the equality type of its projection to n. Let R be an r-ary predicate
over 21 ® n that is closed under automorphisms of 21 <8> n. Then Λ is faithfully
encoded by the tuple

where #e = (πι(5) | b E Λ,eq(π2(ϊ)) = e}.

Actually R is easily reconstructed from the Re as

Λ = {b I ττι(5) € Re for e = eq(π2(S))}.

Monotonicity and compatibility with first-order transformations can be
checked immediately. For instance, if R = {x \ 3yRιxy}, then Re is the union
over all sets {x \ 3y(xy € flf')} where e' extends e to r + 1 variables.

For trivial sums with n, a similar decomposition of predicates with respect
to equality types of those parts of tuples that lie outside A would be a natural
encoding. The universe A of 21 is not definable as a subset of A ύ n, however,
so that the decomposition should be applied with respect to the parts lying
outside the field of the Rf . We leave out the details, since in the explicit
arguments of this chapter we choose to work with trivial products.

Since good encodings uniformly translate first-order manipulations on
global relations to first-order manipulations on their encodings we have the
following pull-back for fixed-point logic.

Lemma 5.3. // there is a good encoding scheme for Γ:fin[τ] x ω ->• fin[τ],
then FP over the Γ(9L,ri) is captured by FP over the 21 themselves. This
means, in the case of boolean queries, that for any sentence φ £ FP[τ] there
is a sentence φ* € FP[τ] such that for all sufficiently large n

Γ(Λ,n)\=φ ^=* 21 μ<^.

Proof. Inductively it suffices to show that also FP-applications can be sim-
ulated at the level of the encodings [R]. Consider the formula FPχt %φ(X,x)
where we assume that x contains all free first-order variables of φ (compare
Lemma 1.28). Suppose that ^J,...,^ are such that for all automorphism
invariant P over Γ"(2l, n) (with sufficiently large n)

Then the encoding tuple \FPχ χ φ(X, x)] for FPχtχψ(X, x) is obtained over
21 as the simultaneous fixed point determined by the system φl^...Jφ[t (when
appropriately initialized to [0]). Compare Example 1.27 for fixed-point sys-
tems, and the proof of Lemma 2.22 about initialization. G
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If Γ scales the size of the Γ(2l, ri) with n then the lemma implies that the
power of FP does not correctly scale with the size of the Γ(2l, n), since FP-
recursion on Γ(2t, n) collapses to FP-recursion on 21 in a manner independent
of n. Our aim is to extend this phenomenon to quantifier extensions of FP.

Consider a Lindstrδm quantifier Q of type σ = {#1,... ,-R&}. Without
loss of generality we may assume that applications of Q are in the following
normal form:

V(z) = Q(x(i);^(z,xw))i=1> k.

While the ψi[Γ(%i,n)] are invariant under automorphisms and therefore cov-
ered by our encoding scheme, this need not be true of the predicates

^[Γ(a,n),c] - {be r(a,n) | r(a,n) N<^M}

for fixed parameters c. But Q is applied to predicates of this type in the
evaluation of φ over Γ(2t, n). Note that the resulting predicate

</>[Γ(2t,n)] = {c € Γ(a,n) | Γ(Sl,n) N Ψ[c}},

however, will again be automorphism invariant over Γ(2l,n).
In order to deal with the intermediate predicates ψi[Γ(%i, n), c] we consider

an extension of our encoding schemes that covers such fibres of automorphism
closed predicates. For predicates R and parameter tuple c let R\c denote the
fibre of R over c:

R\c={b\Rcb}.

Definition 5.4. A good encoding scheme with parameters for Γ extends
a good encoding scheme to a mapping [ ] that encodes parameter defined
fibres of automorphism invariant R over Γ(2t, n) through tuples of predicates
[R]ζ = (Rl,..., Ri), such that

(i) (a, [R]ζ) and n determine (Γ"(2l, n),β|c,c) up to isomorphism,
(ii) the [R]^ are uniformly first-order interdefinable with [R] over a. there

is an l-tuple of first-order formulae χ such that
(a) {[R], I c G Γ(a,n)} = {χ[a, [fl],α] | α € a}.
(b) for automorphism closed P over Γ(2l,n), [P] is first-order definable

from the set of those a for which χ[2t, [R],a] G {[R]s \ c G P}.

For Γ(2t, n) = 210n such an extension of the encoding scheme considered
above is obtained as follows. For R of arity t + r we used [R] = (R€)eeEq(t+r)-
This extends to cover encodings of R\c with parameter tuples c of arity £, if
we choose for [R]δ the tuple of predicates

Rl -= (πι(c,5) 5 G B|c,eq(π2(c,5)) = e},

for e G Eq(£ + r). Rϊ can be non-empty only for those e that extend eq(π2(c))
to t + r variables. Note for (ii) above that, for such e, each Rl is first-order
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interdefinable with πι(c) and the fibre of Re at πι(c). Therefore, [R]^ is first-
order definable in terms of [ίZ], πι(c) and eq(π2(c)).

For quantifier applications ψ(z) = Q(^*^;^t(^>^^))t=i,...,fc it remains to
capture the semantics of Q over Γ*(2l, n) in terms of the encodings of the
fibres y?i[Γ(2l,n),c] = ^[Γ(2l, n)]|c over the base structure St.

Assume that this is possible. Then one can pass from the encodings of
the φi[Γ(t&,ri)] to the encodings of all ψi[Γ(%i,n),c], through a first-order
variation of the parameters in the χ according to (ii) (a) in Definition 5.4.
If it can be determined in terms of these, whether (Γ(St,n), (ψi[Γ(9ί,ri),c]))
is in <3, then (ii) (b) serves to obtain the encoding of ψ[Γ(9L,ri)] from the
collection of those choices of parameters for which this is the case.

Quantifiers, and in particular cardinality quantifiers, cannot be expected
to display an independence of the scaling parameter n as expressed for FP
in Lemma 5.3. But the n-dependence of quantifiers Q can be isolated in a
non-uniform way.

We now fix some Γ and a good encoding scheme R ι-» [Λ], with parameter
extensions Λ,c H» [/?]g for Γ. Let Q be a Lindstrόm quantifier of type σ =
{Ri, . . . , Rk} Introduce a series of quantifiers Q% where

Γ-ί(
n-{ (

(Γ(*,n),R(\c,...,R'k\c)\σ G Q,
the β/ ~_closed on

Here the R( are of arity t + r< if the arity of βi is r$ and if parameter
tuples of arity t are considered. The type of the Q^ is that obtained from
the encoding scheme jR,c \-ϊ [R]δ applied to the R\. This type accordingly
depends on the arity of parameter tuples c that are admitted; we suppress
this dependence in our notation.

Let Q* stand for a quantifier symbol of appropriate type, i.e. a syntactic
object that behaves just like one of the Q^. With the arguments from above,
the following extension of Lemma 5.3 is obtained:

Lemma 5.5. For any sentence φ G FP(Q)[τ] there is a sentence y?*(Q«) G
FP(Q*)[τ] such that for all sufficiently large n

Γ(<Ά,n)\=φ <=* *!=¥>,(<#),

where φ*(Qn) *$ th>e sentence y>*((?*) with the semantics ofQ^ for the dummy
quantifier Q*.

The claim applies similarly to families Q of quantifiers. A separation of
FP(Q) from a logic £ can be achieved if it can be shown that the complexity
of the quantifiers Q^ falls short of the complexity attainable in £ on the
Γ(2t,n) for large n. Since we pass from formulae φ G FP(Q) to a family of
formulae </?*(Qn) with an a priori non-uniform dependence of the semantics
of the Q£ on n, these arguments are adapted to non-uniform complexity
considerations.
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We apply this strategy to C = FP* in a context in which FP* over the
Γ(2l, n) captures full PTIME. We shall also use that |Γ(2l, n)| ^ n and that 21
itself and n (as a number in the second sort) are uniformly FP*-interpretable
over Γ(2l,n)*.

We show that this is the case for trivial products Γ : (21, n) >-»• 21 0 n, if 21
is linearly ordered. Let < be the symbol for the linear ordering on 21 G ord[r].
Denote by ̂ a the corresponding ordering in the sense of ̂  on 21. Then <a®n
is a pre-ordering on A x n whose equivalence relation is =a®n, the quotient
interpretation of equality on A over the product A x n. Note that =5l<8>n and
^α®n are definable on 21 0n from the given <a®n according to (α,α;) G ^m

®π «» 21 <8> n \= -«α' < α and (o, α') G =a®n o> 21 ® n \= ->α' < o Λ ->α < α'. It
follows that 21 G ord[τ] is interpreted over 21 <8> n as a quotient with respect
to =a<8)n — even in a first-order definable manner.

It follows further that 21 and n and an ordered version of 21 0 n are FP*-
interpretable over the second sort of (21 Θ n)*, whence FP* captures PTIME
over the 21 <8> n for 21 G ord[τ].

To make a comparison between the complexity of queries over the Γ(2t, n)
and that of their non-uniform description over the 21 precise, we introduce
the notion of a pull-back with respect to a function 7. This function 7 serves
to couple the scaling parameter n of Γ to the size of 21.

Definition 5.6. Let Γ:fin[r] x ω -> fin[τ] and j:ω -> ω. If 1C is a boolean
query on fin[τ] then the following class is the pull-back of 1C under Γ and 7:

/CΓ,7 := J2l G fin[r] Γ(2t,7(μ|)) G

A pull-back of a quantifier Q of type σ = {Λi, . . . , Rk} with respect to Γ and
7 (and associated encoding scheme) is a quantifier

Iff]}
c> . . . , [Hk\-c)

Γ-

Lemma 5.7. ^ssitrae ίΛαί Γ is such that |Γ(2l,n)| ^ n and that 21 and n
are uniformly FP* -interpretable over Γ(2l,n)* /or 21 G ord[r]. Γften ί/iere 15
for every recursive query /Co on ord[τ] o c/α55 /C which is FP* -definable over
(Γ(2l,n) I 21 G ord[τ]}, sucft that /C0 w ίfte pull-back of 1C under Γ and 7,
for all sufficiently fast growing 7.

Sketch of Proof. Let /Co C ord[τ] be recursive. It follows that there is a func-
tion 7 whose graph is in PTIME and such that membership of 21 in /C0 is
decidable in time 7(|A|). For instance 7(m) could be the step counter for the
consecutive simulation of some algorithm for /C0 on all 21 over universe m.
Put
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We observe first that the class {Γ(2l,ra) | 21 G ord[τ],n ^ τ(|A|)} is FP*-
definable over {Γ(2l,n) | 21 6 ord[τ]}: n and \A\ are available over the second
sort by the assumptions on Γ, and the graph of 7 is in PTIME.

21 is FP* -interpreted over Γ(2l, n)* by assumption on Γ, and 21 € /Co is
decidable in time 7(|A|) by the choice of 7. It follows that /C is FP*-definable
over {Γ(2l,n) | 2lEord[τ]}.

But /Co = /Cr,7 by construction. Observe that 7 may be replaced with
any other function 7' that grows at least as fast as 7: /Co = JCr,<y' for any 7'
such that 7/(m) ^ 7(̂ 1) for all m. D

So the pull-backs of FP* -definable queries are of arbitrarily high com-
plexity. In the next section we shall see that in contrast the pull-backs with
respect to Γ(2l,n) = 21 <8> n of FP(Qcαrd) -definable queries are in PτiME/poιy

— polynomial time with non-uniform polynomial advice.
Recall the definition of PτiME/poly from complexity theory. A class /C of

ordered r-structures is in PτiME/poly if there is an advice function T defined
on ω with values that are polynomially bounded in size and such that mem-
bership of 21 in /C can be decided in polynomial time upon input (2t,T(|A|)).
PτiME/poly may equivalently be characterized by computability in polyno-
mial size families of boolean circuits. In any case, standard diagonalization
techniques based on counting arguments show that PτiME/poιy is strictly
contained in the class of all recursive sets. See for instance [Weg87].

A Lindstrom quantifier is in PτiME/poly if there is a polynomially size
bounded advice function T such that the class of pairs

is in PTIME. Think of T(n) as a polynomial size table encoding the seman-
tics of Q over size n structures. FP(Q) -definable queries can obviously be
evaluated in PτiME/poιy if Q is in PτiME/poIy.

Putting the results of the above considerations together we obtain the fol-
lowing general statement. It will be applied below to the functor Γ: (21, n) ι->
21 ® n.

Proposition 5.8. Let Γ:fin[τ] x ω -» fin[τ] be a functor that admits a good
encoding scheme with parameters. Assume that Γ is such that |Γ(2l, n)| ^ n
and that 21 and n are uniformly FP* -interpreted over Γ(2l, n)* for 21 € ord[τ].
Suppose further that for all quantifiers Q € Q and for sufficiently fast growing
r ω -> ω the pull-backs Q^ are in PτiME/poly. Then FP* g FP(Q).

Proof. Under the assumptions on Γ we may apply Lemma 5.7 to find that any
recursive query on ord[τ] is the pull-back of some query that is FP*-definable
over (Γ(2l,n) | 21 G ord[τ]}. The complexity of pull-backs of FP(Q)-defmable
queries is at most PτiME/poly by Lemma 5.5 and the assumptions on Q. D
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5.2 Cardinality Lindstrόm Quantifiers

Before applying the techniques prepared in the previous section to the proof
of Theorem 5.1, we show in an aside that no finite collection of generalized
quantifiers can capture FP+C. The argument is an adaptation of the proof
by Dawar and Hella [DH94] that no finite extension of FP captures PTIME.

Theorem 5.9 (Dawar, Hella). For any finite set Q of PTIME Lindstrδm
quantifiers: FP+C g FP(Q).

Proof. We consider FP+C and FP(Q) over pure sets (r = 0) and show that
over these FP+C g FP(Q). Because over pure sets FP+C = FP* we even
show that FP* g FP(Q). Obviously FP* captures PTIME over pure sets.

Consider now definability in FP(Q) for finite Q over pure sets. By in-
variance under automorphisms, any predicate definable over pure sets has
to be quantifier free equality definable, or a union of equality types. In each
bounded arity k there are only finitely many equality types, so that it follows
(with an argument strictly analogous to that in Corollary 1.32) that over the
empty vocabulary FP(Q) = Lωω(Q).

Consider a single quantifier Q G Q and without loss of generality assume
that its type consists of a single relation R of arity r (tuples of predicates
can be encoded into single predicates by first-order means, and corresponding
transformations of Q do not affect polynomiality).

Let L^ω(Q) be that syntactic fragment of Lωω(Q) which uses only first-
order variables xi, . . . , # & . In L%ω(Q) over pure sets, Q can only be applied
to r-ary predicates that are quantifier free equality definable (with parame-
ters) in at most k variables. Up to logical equivalence there is a finite list of
quantifier free equality formulae Xj (x, xr) in variables x\,..., Xk that provide
such definitions. Let the Xj be of the form

χj(x,x'}=θj(x}^ηj(x,xl},

with x and x' disjoint, x1 of arity r, and with θj specifying a complete equality
type in the parameters x. Then the semantics of Q in L%ω(Q) is exhaustively
described over each individual set n by a finite table T(n) that encodes the
behaviour of Q on the Xj[n], Let T(n) be the finite list of indices j for which

(n, {ra' I n \= Xj[m,m']}) G Q for eq(m) = θj.

There are only finitely many possibilities ϊ\,.. . ,T/ for this entire table.
For any fixed value Γ» the quantifier Q in L%ω(Q) becomes uniformly first-
order definable over all n with Γ(n) = T<. A formula ξ(x) = Q(xl',φ(x,xt))
is equivalent over all n with T(ri) = Γ» with the disjunction

&(*):= V (



5.2 Cardinality Lindstrδm Quantifiers 125

It follows that Q can be eliminated (in L^ω(Q) over pure sets) at the cost
of introducing cardinality quantifiers Qι of type 0 according to

Qi:={A\T(\A\) = Ti}.

For then, ξ(x) as above becomes equivalent with Vi(Φi Λ&(^)) This carries
through inductively to eliminate all occurrences of Q.

If the complexity of the original Q is in PTIME of degree d, and if d ^ r,
then the tables T(n) can be computed in PTIME of degree d, too. This is
because a standard representation of each (n, {ra' | n \= %j[ra,ra']}) may be
constructed in time O(nr). Therefore, also the Qi are in PTIME of degree d.

Thus, for any finite set Q of PTIME quantifiers there is some d, such
that over the empty vocabulary L^ω(Q) = L^ω(Q') for some finite set Q1 of
quantifiers of type 0 whose complexity is in PTIME of degree bounded by d.
For d we may take the maximal degree in a set of polynomials that bound
the complexities of the Q £ Q. Note that Q' depends on fc, but the bound d
does not.

That the quantifiers in Q1 are of type 0 means that their semantics only
depends on the size of the universe. Let φ G L^ω(Q') be a sentence. Then
there is some m such that n \= φ Ό n1 \= φ for all n,n' ^ ra which satisfy
the same Q £ Q' . Asymptotically therefore, and over the empty vocabulary,
any boolean query in L^ω(Q') is equivalent with a boolean combination of
quantifiers Q G Q', and therefore its complexity is of degree bounded by d.
Now, since over pure sets

FP(Q) can only define boolean queries whose complexity is of a constantly
bounded degree. It is obvious on the other hand that no such restriction
applies to FP* over pure sets, because there are numerical properties of ar-
bitrarily high polynomial degree in PTIME. D

5.2.1 Proof of Theorem 5.1

Plain cardinality Lindstrom quantifiers. Consider first the case of
FP(Qcard). Γ: (21, n) ι-» 21 ® n is now fixed. We want to show the following
for all 7: ω — ϊ ω.

For any Q G Qcard , the quantifiers Q^ — the pull-backs of Q from
(*) 2l07(|A|)to2t — can be encoded in polynomially size bounded tables

Γ(|A|). In other words: each Q^ is in PτiME/poιy.

Recall Definition 5.6 for the Q^. By Proposition 5.8, (*) suffices to prove
that part of Theorem 5.1 that deals with ordinary cardinality Lindstrom
quantifiers.
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For the proof of (*) first observe that the Q^ for Q G Qcard are themselves
in Qcard Recall that we write TT* for the projections to the factors in 2l<8>n. The
extended encoding scheme R, c *-» [R]s for the fibres of £+r-ary automorphism
closed predicates R with parameter tuples c of arity t , takes for [R]5 the tuple
of predicates

Rl = (πι(c,5) I be Λ|c,eq(π2(c,6)) = e}, e G Eq(ί-hr).

If Λ|c is non-empty, then the β§ determine πι(c) and eq(π2(c)). c itself is
then determined up to an arbitrary choice of πz(c) that realizes eq(π2(c)).
Up to this choice, the fibre R\c can be recovered from the encoding as

R\c = \Je{b G (A x nγ τπ(c,6) G Λ*,eq(π2(c,6)) - e}.

Therefore

where ve is the counting function whose value on n is the number of realiza-
tions of e over n that extend any fixed realization of eq(π2(c)).

Suppose for instance Q is of type {#ι}, RI of arity r, and based on
the numerical relation 5 C ω2. Then, for automorphism invariant R and
parameters c,

(Axn,R\c)<ΞQ if (μ|n,|β|c|) G5
and

μ,[Λ]e)eQ£ if

This latter condition constitutes a cardinality quantifier Q of the type of
the encoding [R]ζ over the base structures 21. The same applies without any
changes to cardinality quantifiers Q of more complex types.

It is obvious, finally, that the semantics of cardinality quantifiers can be
fully encoded in polynomial size tables. Let the arities ii^Q be bounded by f
and let 5 be the numerical relation for Q. To evaluate Q over ^structure of
size m, one need only know 5 \ {0, . . . , raf }. This restriction of 5 is naturally
encoded in a polynomial size table. This finishes the proof of Theorem 5.1 as
far as FP(Qcard) is concerned.

The following discussion shows how to extend the argument to FP(Q~rd)
where counting of equivalence classes is involved. This is based on a slightly
more technical analysis of the encodings.
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Quotient cardinality quantifiers. We claim that also for a quotient car-
dinality quantifier Q G Q~rd the pull-backs Q^ of Q from 2t <g> 7(|A|) to 2t
are in PτiME/poly, or encodable in polynomially size bounded tables T(|A|).

In order not to get overburdened by technical details, let us consider
the special case of a parameter free pull-back. This is the case of a pull-back
quantifier Q^ that captures the counting of equivalence classes over 2t®n with
respect to an equivalence relation R that is interpreted without parameters.
The technical lemma on equality defined equivalence relations, that governs
this case, may be extended to the general case with parameters in order to
prove the full claim.

In the parameter free case we deal as above with the encoding scheme
that is based on the mapping

Π: (A x n)r —> Ar x Eq(r)

b

Lemma 5.10. Let R C (A x n)2r be closed under automorphisms o/2t <8> n
and assume that R interprets an equivalence relation on the r-th power of
A x n. Let αo G Ar , eo G Eq(r). Then the following are satisfied:

(i) the index of the restriction of R to 77~1(αo,eo) is of the form p(n)/rl
where p is a polynomial of degree at most r and with coefficients in
{0, . . . , (r!)2}. These coefficients can be determined from the encoding
[R] = CRe)eeEq(2r) on 2t in PTIME.

(it) if P C (Ax n)r is an automorphism closed predicate on 2t(8m, then the
index of the restriction of R to P is of the form q(n)/r\ for a polynomial
q of degree at most r with coefficients in {0, . . . , (r!)3|A|r). Again the
coefficients are PTIME computable from the encodings [R] and [P] on St.

Proof. Assume n is much greater than r.
(i) For the first claim consider any quantifier free equality defined equivalence
relation ~ on the set e0[n] := {ra G nr | eq(ra) = eo}. Without loss of
generality assume that eo is the equality type that forces all r components
of the ra to be distinct. Otherwise the claim is reduced to smaller r. Let
i G {l,...,r} be called free under ~ if there are ra,ra' G eo[n] with m\ $
{mi, . . . ,rar} and ra ~ ra'. An easy automorphism argument that exploits
transitivity and symmetry of ~ shows that, if i is free in ~, then ra ~ ra ™ for
all ra G eo[n] and all ra £ {mi, . . . , rar}. In this case therefore, ~ is reducible
to an equivalence relation ~' on the remaining components that has the same
index as ~: if for instance r is free, let e'Q be the restriction of eo to the first
r — I variables, and put for ra,ra; G ^[n]

m ~* ra' if rara ~ raW for all ra £ m and ra' ̂  ra'.

We may therefore assume without loss of generality that no i is free in ~.
This implies that ra ~ ra' only if ra' = p(ra) for some permutation p G Sr. Let
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G be the normal subgroup (!) of Sr consisting of those p for which ra ~ p(ra).
The index of ~ on eQ[n] is the product of the number (") of different r-element
subsets of n with the index of G in Sr.

The claim about the form of the index as a polynomial in n follows. A
representation of this polynomial by its coefficients is PTIME computable over
the encodings in 21 because the above sequence of reductions is governed by
even first-order definable properties of the given equivalence relation R.
(ii) For a preliminary observation let M C Ar x Eq(r), (α, e) & M. Then
exactly one of the following holds:

(a) any b G Π~l(a,e) is Λ-equivalent with some bι G Π~l(M).
(b) no b G Π~l(ά,e) is ^-equivalent with any 61 G Π~l(M).

Again, a simple automorphism argument proves this claim^ for b,br G
77~1(α, e) there is an automorphism of 21 <8> n which maps b to b1 while leav-
ing Π~l(M) invariant as a set. The distinction between cases (a) and (b) is
first-order in terms of β, Π~l(M) and Π~l(ά,e). It is therefore first-order
and in PTIME also in terms of [Λ], M, α and e over 21.

Let R and P be as required in the lemma. The index
can be determined by going through all (α, e) G Ar x Eq(r) in some arbi-
trarily fixed enumeration as (α, e)i = (α^e^), and summing over the indices
\Π~l(ai,ei)/R\ whenever α; G P€i and case (b) above applies to (ά^e;) with

respect to M = {(α, e)j/ | i' < i}. This proves claim (ii) of the lemma, since

\Ar xEq(r) | ^ r\\A\r. G

With this lemma the quantifier free pull-back of a quotient cardinality
quantifier is seen to be in PτiME/poly as follows. The lemma shows that the
indices over 210 n of ^-closed interpreted predicates with respect to enclosed
interpreted equivalences can be represented as polynomials in n, of constantly
bounded degree and with a range for the coefficients that is polynomially
bounded in \A\ ((ii) of the lemma). All these indices are therefore uniquely
encodable as numbers to base n, of bounded length and with entries corre-
sponding to the above ranges for the coefficients. The numerical predicate S
of Q can therefore — to the extent that matters over structures 21® n with
\A\ = ra — be encoded in tables of size polynomial in ra, with entries to be
understood as (tuples of) numbers expressed to base n.

5.3 Aside on Further Applications

Though not directly related to issues of fixed-point with counting, we present
two other simple applications of the technique developed in this chapter.
Namely we can prove that sparse and rigid quantifiers do not suffice to capture
PTIME.

A Lindstrom quantifier Q is called rigid if all structures in its defining
class are rigid, i.e. possess no non-trivial automorphisms.
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A relational structure 05 is called /-sparse if the number of elements of
B that occur in any of the predicates in <B is at most f(\B\). We call / sub-
linear if f(cn)/n -> 0 for n -»• oo for all c. Q is sparse if there is a sub-linear
function / such that all structures in Q are /-sparse

Let Qsparse and Qrigid be the classes of all sparse or rigid Lindstrδm quan-
tifiers, respectively.

Theorem 5.11. Neither FP(S8parβe) nor FP(Qrigid) comprise all FP*, in
particular PTIME g FP(Q8parse),FP(Qr igid).

Sketch of Proof. The proof is straightforward if we consider once more the
functor Γ: (21, n) ι-> 21 <8) n and the associated pull-backs.

Consider rigid quantifiers first. Let (21® n, c) be such that n exceeds the
arity of c. Then (2l®n, c) has non-trivial automorphisms and no structure that
is interpreted with parameters c over 21 ® n can be rigid. In other words, the
pull-back of any rigid quantifier corresponds to the trivially false quantifier
QΓ = 0 for all sufficiently large n.

Consider now a sparse quantifier and its pull-backs involving parameter
tuples c of arity t. For sufficiently large n, any relation that is interpreted
over (21 <8> n,c) either only contains subtuples of c, or it contains a non-
trivial orbit under the automorphism group of (21 <8> n,c), which grows at
least linearly with n. But for sub-linear / the bound f ( \ A \ n ) grows slower
than n, so that for sufficiently large n, Q can evaluate to true at most on
those trivial structures whose relations consist of subtuples of c. These are
finitely bounded in the size of their relations and in number. In restriction to
their fields, these relations can thus be distinguished up to isomorphism even
in first-order. For sufficiently large n the entire information in the Q£ thus
is, which of these trivial structures are in <2, when embedded in the universe
of size \A\n. Therefore the Q% reduce to cardinality quantifiers of type 0.

We thus find that the pull-backs of FP(Qrigid)-definable classes are FP-

definable. The pull-backs of FP(Q8par8e)-definable classes are definable in
the extension of FP with cardinality quantifiers of type 0 if only the pull-
back function 7 is sufficiently fast growing. In particular the latter are in
PτiME/poly once more. This proves the desired separations. D
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Remarks. In a paper [Ott94] on simple Lindstrδm extensions the above re-
sults (with the exception of the case of sparse quantifiers) have been presented
under a slightly different angle. The emphasis there is on quantifiers that
express simple properties in the sense that these properties themselves are
robust with respect to certain trivial extensions and can be decided in terms
of invariants of sub-exponential range. In the case of counting quantifiers such
invariants consist of numerical functions that count tuples in predicates; their
range is clearly polynomial. I have here chosen to stress the technical basis
of the separation proofs rather than a notion of simplicity. This basis is the
same really for the applications here and in [Ott94], apart from the small
difference that here we work with trivial products rather than with trivial
sums. This variation is motivated by the formally smoother encoding schemes
available over trivial products. The new application to sparse quantifiers is
also due to this change. It relies on the property of trivial products that the
pull-backs of sparse relations are sparse themselves. This is not true for trivial
sums. Conceivably the general technique applies to other natural classes of
quantifiers that might require yet other scaling functors Γ.




