
2. The Games and Their Analysis

This chapter serves to review the Ehrenfeucht-Fraϊsse style analysis of the
logics L^ω and C^ω by means of the corresponding pebble games. Emphasis
is on the games and their algebraic analysis rather than on the more syntactic
descriptions in terms of Hintikka formulae and Scott sentences. The main
result of this algebraic analysis is a definable ordering with respect to types.
We obtain ordered representations of the quotients Tp£(2t; k) = Ak/ =c for
C = L^ω or C^ω on finite relational structures 21.

• Section 2.1 contains the definition of the games and the statement and
proofs of the corresponding Ehrenfeucht-Fraϊsse theorems which here are due
to Barwise [Bar77], Immerman [Imm82], and Immerman and Lander [IL90],
respectively. We present some typical examples that apply the game charac-
terizations to derive non-expressibility results. Most notably a construction
due to Cai, Furer and Immerman proves that the logics C^ω form a strict
hierarchy with respect to k.

A refined analysis of the games shows that =c°°" and =°^, and similarly

=Looω and =L"», coincide in restriction to finite structures.

• In Section 2.2 we review the colour refinement technique for graphs and
discuss some variants and their definability properties.

• Ideas related to the colour refinement are employed in Section 2.3 to
introduce the ordered quotients with respect to C^- or Lj^-types through
a fixed-point process for the classification of game positions.

2.1 The Pebble Games for L and

The setting for the games is the usual one for comparison games. There
are two players denoted I and II for first and second player. The game is
played on a pair of finite structures 2t and 21' of the same finite relational
vocabulary τ. In the k-pebble game there are k marked pebbles for each of
the two structures. Let both sets of pebbles be numbered 1, . . . , k. A stage of
the game, or an instantaneous description of a game situation, is determined
by a placement of the pebbles on elements of the corresponding structures.
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Formally a stage is given by a tuple (2l,α;2t',ά'), with α G Ak and a1 G A'*
denoting the current positions of the pebbles. A position describes a pebble
placement over one of the structures. The position over 21 for instance in
stage (2l,α;2l',α') is (21, α). Formally a position is an element of fin[τ;fc]: a
structure with a designated fc-tuple of elements. A stage in the game is a pair
of positions, or an element of fin[τ; k] x fin[τ; k].

In each round of the game exactly one pair of corresponding pebbles is
repositioned in the respective structures. This repositioning is governed by
an exchange of moves between the two players. The game for Lk and that for
Ck differ with respect to the rules for this exchange.

The single round in the L*-game.

I chooses a pebble index j G {!,...,&} and moves the corresponding
pebble in one of the structures to an arbitrary element of that structure,
for instance to b G A.

II responds by moving the corresponding pebble over the opposite struc-
ture to an arbitrary element of that structure, here to some b1 G A1.

If this exchange is carried out in stage (2t,ά;2t',α') then the resulting stage
after this round is (2l,α-;2l',ά'—). We write α- for the tuple α with j-th
component replaced by b.

The single round in the Cfe-game.

I chooses a pebble index j G {!,...,&} and a subset of the universe of
one of the structures, say B C A.

II must choose a subset of exactly the same size in the opposite structure,
here some B1 C A1 with \B'\ = \B\.

I now places the j-th pebble within the subset designated by II, here on
some b1 G B'.

II responds by moving the corresponding pebble over the opposite struc-
ture to any element within the subset designated by I, here to some
beB.

If this exchange is carried out in stage (2t,ά;2l',ά') then the resulting stage
is(2l,α*;2l',ά'^).

In both cases the game may continue as long as player II can maintain
the following condition:

The mapping associating the pebbled elements in 21 with those in
(W) 21' must be a partial isomorphism, i.e. atp2l(ά) = atp2l/(α/) for the

current positions (21, α) and (21', α').

I wins the game as soon as II violates this condition, and also if II cannot
move according to the rules as may happen in the C*-game owing to different
sizes of the two structures.

Player II has a winning strategy in the infinite game on (2t,α;2l',ά') if II
has a strategy to maintain condition (W) indefinitely in the game starting
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from stage (2l,α;2l',ά'). Similarly we say that II has a winning strategy for
i rounds in the game on (2l,ά;2l',ά') if (W) can be maintained by II for at
least i rounds starting from (2t,a;2l',a'). More formal characterizations are
developed in an inductive fashion below.

Intuitively the ability of player II to respond to challenges of I is a measure
for the similarity of the underlying positions. In each individual round II must
preserve atomic indistinguishability of the resulting positions (VF), otherwise
the game is lost. The ability to maintain (W) for longer sequences of rounds
and in response to any manoeuvres of I requires a higher degree of similarity
of the initial positions. The point of the above rules for single rounds is
that they make the games adequate for L^x>ω and C* ,̂, respectively. The
following two important theorems state that the degree of indistinguishability
corresponding to the existence of a strategy precisely is equality of types in
the respective logic.

Theorem 2.1 (Barwise, Immerman). Let 21 and 21' be finite structures
of the same finite relational vocabulary. Player II has a winning strategy in
the infinite Lk-game on (2t,α;2l',ά') if and only if the the positions (21,ά)

and (21',ά') cannot be distinguished in L^ω, i.e. if (21, ά) =Loou, (21',α').

Theorem 2.2 (Immerman, Lander). Let 21 and 21' be finite structures of
the same finite relational vocabulary. Player II has a winning strategy in the
infinite Ck-game on (2t,α;2t',α') if and only if the the positions (21,ά) and

(21', ά') cannot be distinguished in C^ωf i.e. if (21, α) =c<*><* (21', α').

From the analysis of the games it will further follow that the conditions
in Theorems 2.1 and 2.2 are also equivalent with indistinguishability in the
finitary logics L*w and C*ω.

Corollary 2.3. Let r be finite and relational. The following are equivalent
for all (21,ά), (21', α') G finjr; k}:

(i) Player II has a strategy in the infinite Lk-game on (2l,α;2t',ά').

(ii) (21, α) =L~« (21',ά'), i.e. tp£~" (ά) = tp|~" (α').

(Hi) (21,ά) =*i« (21',α'), i.e. tp?" (α) = tp£r" (of).

In particular any L^-type over finfr] is fully determined by its L^-part.

Corollary 2.4. Let τ be finite and relational. The following are equivalent
for all (2l,o),(2l',α') € fin[τ;fc]:

(i) Player II has a strategy in the infinite Ck-game on (St,α;Sl',α').

(ii) (α,δ) =c~» (21', αO, i.e. tp£~"(s) =tp^(α')

(Hi) (a,S) =<&, (α',31), i.e. tpf"(δ) =tp^(α').

Each C^oω-type is fully determined by its C^ω-part over fin[τ].
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With these equivalences proved, we shall simply speak of the Lfc-type and

C^-type, and write for instance tp£fc (ά) and tpg (a) for these; and also =L

and =c for the corresponding notions of Lk- and <7fc-equivalence.
The following section is devoted to applications of the game characteriza-

tions. In the consecutive sections we shall then present a detailed theoretical
treatment for the case of the Cfe-game. In Section 2.1.2 a direct and straight-
forward proof of Theorem 2.2 is presented. Section 2.1.3 presents a deeper
analysis of the Cfe-game, proving among other things Corollary 2.4. The anal-
ogous treatment for Lk is easily obtained along the same lines through obvious
simplifications; this is summed up in Section 2.1.4.

2.1.1 Examples and Applications

We present examples that employ Theorems 2.1 and 2.2 to show inexpress-
ibility in £,*,„ or C^ω.

Example 2.5. As a trivial application of the I/fe-game we find the following.
Any two fc-tuples α and α' over two plain sets A and A1 of size at least k
are L^oω-equivalent if and only if they have the same equality type: eq(α) =

eq(α') ^ tp*£ (α) = tp^ (α') if \A\,\A'\ ^ k. It follows that L^ω cannot
distinguish between any two plain sets that have at least k elements. In
particular the L^ω form a strict hierarchy in expressiveness: Ll

OQω £ l^oω £
C L^oω. The same applies to the corresponding fragments of first-order

logic: Ll

ωω £ Llω £ C Lωω.

The following simple and elegant example is taken from [IL90].

Example 2.6 (Immerman, Lander). Consider the following two coloured
directed graphs with six nodes each. <5 = ({0,.. . ,5},E,U r ,Ub,U 9 ). The
colours are interpreted Ug = {0,3} for green, Ur = {1,4} for red and
Ub = {2,5} for blue. The edge relation E of (5 connects the nodes 0,..., 5 in
cyclic fashion. & is the same as 0 as far as its universe and the colours are
concerned. With respect to its edge relation E1, however, <&' splits into two
disjoint cycles 0,1,2 and 3,4,5 respectively. Compare the sketches in Fig-
ure 2.1. Note that these two graphs realize exactly the same atomic 2-types,
Atp(<&;2) = Atp(<S';2). Furthermore we observe that each of these atomic
2-types is realized exactly twice in each structure.

We claim that 0 and & are indistinguishable in C^ω. In this special case
it can be shown that player II actually has a strategy to maintain atomic
equivalence of positions. By Theorem 2.2 this implies that (a\,a<2) from 0
and (αi,^) from ®; are C2-equivalent if they satisfy the same atomic type.

0 =°2 & follows by Lemma 1.34 since Atp(0;2) = Atp(®';2) now im-

plies Tpc2(<&; 2) = Tpc2(0;; 2). Before exhibiting a strategy for maintaining
atomic equivalence, let us state the following consequences.
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(i) The transitive closure of a binary relation is not definable in C^ω. If
the transitive closure of the binary relation E were definable by some
formula φ(x,y] of C^ω[E] then the C^ω[E]-sentence χ := VxVyφ(x,y)
would distinguish 0 from 0'.

(ii) Transitivity of a binary relation is not C^oω-definable and the class of all
equivalence relations is not C^ω-definable. C2-equivalence of 0 and 0'
directly implies C2 -equivalence also of those structures obtained from 0
and 0' by removing the colours and replacing the edge relation E by its
reflexive and symmetric closure, which is atomically definable from E.
From & we thereby obtain an equivalence relation, not from 0. Note
that transitivity and the class of equivalence relations are first-order
definable with 3 variables.

Let us return to the claim that II can maintain atomic equivalence. A
strategy for player II is extracted from the following observation. Let α £ 0
and a1 € 0; be of the same colour. Then there is a unique bijection π from
0 to 0; that maps α to a' and preserves colours as well as edges that are
incident with α or α'. This is checked directly; if without loss of generality
we consider the case α = α', then the identical mapping on {0,..., 5} is as
desired.

Suppose now that in the current stage (0,αι,α2;0',αi,α2) of the game
atp$ (αi, 02) = atp0/ (a(^a'^). We want to show that II can defend this prop-
erty against any challenge by player I. Assume without loss of generality
that player I chooses to play with the second pebble. Let π be chosen with
respect to a\ and a( as above. Let then II play according to π: if for instance
1 proposes B C {0,..., 5} as a subset of 0 then II responds with B' = π(B)
and upon any choice for 6' € -B' by I player II may answer with π~1(6/) G B.
The defining condition on π guarantees that atp0(αi,6) = atpβ/ (αi,b').
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The next example gives an account of the essential features of the
construction by Cai, Fϋrer and Immerman of non-isomorphic but C^ω-
equivalent finite graphs [CFI89]. We shall later also apply the result of these
considerations — Theorem 2.9 below — to show that the counting extension
of fixed-point logic does not capture PTIME. See Corollary 4.23 of Chapter 4.

The construction uses certain highly symmetric graphs with a parity-
sensitive automorphism group. These "gadgets" were first employed by Im-
merman in [ImmSl] to prove lower bounds on the number of variables needed
for expressing certain reachability properties in graphs (without counting
quantifiers) .

Example 2.7 (Immerman and Cai, Purer, Immerman) . Main build-
ing blocks for the construction are the following gadgets. Fix some ra ̂  2. Let
P(rri) denote the power set of the set m = {0, . . . , ra — I } . We identify P(m)
with the set of functions s:m -* {0,1}. Let # be the following undirected
graph with node set H = I\J O where / = P(m), O = m x {0, 1}. The names
/ and O stand for inner and outer nodes, respectively. The edge relation of
# encodes the role of the inner nodes as subsets over m: s £ / = P(m) is
joined exactly with all pairs (it, s(u)) G O for u E m. For each u £ m we refer
to the two nodes (ιt,0),(u, 1) as a pair of corresponding outer nodes. The
outer nodes of £j will serve as ports for gluing several copies of .fj together.
The crucial properties of the resulting graphs exploit the behaviour under
automorphisms of # that exchange pairs of corresponding outer nodes. Each
t Cm induces an automorphism 74 of 5} that is determined by its behaviour
on outer nodes

where 0 is addition modulo 2. Note that 74 preserves the set of inner nodes
and also each pair of corresponding outer nodes set- wise. On the outer nodes
it swaps exactly those pairs of corresponding outer nodes (ιt,0),(u, 1) for
which u £ t. Inner nodes are mapped according to s •-> s 0 t where 0 applied
to the functions s and t is pointwise addition modulo 2.

We now split the set / of inner nodes into two disjoint subsets /* := {s C
m I \s\ = zmod2}, for i = 0, 1. Note that 74 preserves the subsets /* if and
only if \t\ is even. For odd \t\ on the other hand jt induces a bijection between
7° and/1.

Let (5 = (V, £7, ^) be any symmetric connected graph that is regular of
degree m and linearly ordered by ^. Let 0 <8> # be the result of substituting
a copy of φ for each node of <S and joining^puter nodes by a pair of edges in
the natural fashion. In detail let 0 ® jj = (V, E, 4). V = V x H and ̂  is the

pre-ordering induced by ^ on this product. E consists of all edges from the
respective copies of # together with the following new links between outer
nodes. If (v, v') £ E with υ' being the u ih neighbour of v in 0 and υ being the
u'-ih neighbour of υ' (with respect to ^) we include edges between (v, (u, 0))
and (v;, (w',0)) as well as between (υ,(u, 1)) and (υ1, (w',1)). We refer to
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these extra edges as connecting edges. Each edge of 0 thus gets replaced
by a pair of connecting edges. This is sketched in Figure 2.2. We denote by
π: 0 0 ft -)• 0 the natural projection to the first factor. Let Hυ := π~l(v)
denote the subset of nodes of 0 0 # that belong to that copy of # that is
substituted for v.

Fig. 2.2

Let /* C Hv denote the respective subsets of the set of inner nodes within
Hv, i = 0,1. Consider automorphisms of 00# with respect to their behaviour
on the sets /*. If VQ ,..., vι is a simple path in 0 then there is an automorphism
7 of 0 0 ft with the following properties: 7 fixes all Hv for t; ^ VQ, ..., vι
pointwise, 7 preserves the subsets /*. for j = 1,...,/ — 1 and exchanges /J

with Zj. for j = 0, /. Such 7 is pieced together from automorphisms 7* of the
individual embedded ft. For the copy of ft over Vj choose t to be the subset
of m that contains u if the given path connects Vj to its u-ih neighbour in
0. Thus \t\is even for all inner nodes of the path and odd for the end points
of the path.

For U C V let (β0i5)c/ be the subgraph of <&®ί) that results from deleting
all inner nodes in 7j for υ £ C/ and those in /^ for υ #U. Since 0 is connected,
it follows from the above automorphism argument that all the (0 Θ-£))[/ fall
into at most two classes up to isomorphisms. If the symmetric difference
between U\ and U2 is even, then (0 ® S))uι — (<S ® ίJ)z72 We claim that
otherwise indeed (0 0 #)tfι and (0 0 #)c/2 are non-isomorphic. This can be
seen by means of the following numerical invariant on the (0 0#)c/. Suppose
a given graph is isomorphic to some (0 0#)t/. Note that the projection π to
0 and in particular therefore the node sets π~1(v), the sets of inner nodes
in π"1 (υ), and the pairs of connecting edges between outer nodes of different

copies of ft are well defined in terms of the given graph. Let S C E be any set
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of edges that contains exactly one member from each pair of connecting edges
and let N be any set of inner nodes that contains exactly one member from
each π~l (v). Call a connecting edge incident with an inner node if there is an
edge that joins that node with one of the end-points of the given edge. Let i
be the result of counting modulo 2 the number of edges in S that are incident
with TV. We check that i is independent of the choices made. Replacing any
edge in S by its partner edge changes the incidence with TV in exactly two
places. Replacing an inner node of π~l(v) by another one changes incidence
with 5 in an even number of places, since either both nodes are in /£ or both
are in /*. It is immediate, however, that i = 0 on (0 ® #)0 and i = 1 on
(0 ® ί)){υ} for any single node v.

For definite representatives of the two isomorphism types put (0<8>.ί))0 :=
(0 <8> #)0 and (0 <8> -β)1 := (0 <8> fy{υo} where υ0 is the <-least node of 0.
We use such representatives in the simple case that 0 is a complete graph
to obtain the desired separation result. Let £m+ι be the ordered complete
graph over m + 1 nodes:

Denote the above graph # with node set P(m)\Jm x {0,1} by #m to
indicate the dependence on m.

Lemma 2.8. Let % = (&m+l <g> £m)° and a' = (Slm+i ® ftm)l Then for
m ^ 2:

a=c ma' but a^Lm+1a'.

Proof. It is instructive to consider first the case m = 2. An inspection of the
construction in this simple case shows that a is the disjoint union of two
cycles of length 9, each grouped into three groups of 3 consecutive vertices
that belong to the same class of the pre-ordering. a' is a single cycle of length
18 with a corresponding grouping into 6 blocks of three vertices each. If we
replace the classes of the pre-ordering by three monadic predicates ί/r, t/&
and Ug for colours red, blue and green as in Example 2.6 then the relation
between a and a' is the same as between the graphs 0 and 0' in Example 2.6,
only each node of the graphs there is replaced by a path of length 3 to obtain
the present ones. The claim for m = 2 therefore essentially follows from the
considerations in Example 2.6.

We turn to the general case. Let the natural projections from a and
a' to £m+ι be denoted π and π', respectively. Note that membership in
π~l(j) (respectively π'""1^')) is definable in L^, since π~l(j) consists of the
j-th class with respect to =^. Concrete formulae are obtained exactly as in
Example 1.9. It follows that in order not to lose, player II must necessarily
respect π and π; as well as the properties of being an inner node in π"1^)
or of being an end point of a connecting edge between ττ~1(i) and π"1^') for
any 1 ̂  i,j ^ m + 1. This is true for both the Ck- and the Lfe-games.
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We first employ the Lm+1-game to show that 21 and 21' are not Lm+1-
equivalent. By the above considerations, player I can force II into positions
such that the j-ih pebbles are placed on inner nodes α/ G π~l(j) and α^ G
π'~l(j) for 1 ̂  j ^ m + 1. For each j φ 1 consider the pair of corresponding
outer nodes in π~1(l) in 21 that belong to connecting edges between π~1(l)
and π ~ l ( j ) . Note that exactly one node of this pair has distance 2 from α/,
the other one has distance greater than 2. Let Vj be the one with distance
2. By the construction of 21 it is clear that the number of Vj that are direct
neighbours to a\ is even. Choosing nodes v'j for 2 ̂  j ^ m + 1 in 21' in the
same manner, we find that the number of υ'j that are direct neighbours to
a{ must be odd. There is therefore at least one index j ^ 2 such that Vj
is a neighbour of αi while v'j is not a neighbour of a( or vice versa. Assume
without loss of generality the former is true of j = 2. Let player I move pebble
3 in 21 to ^2. II must move pebble 3 to a neighbour of a( in 21' in order not
to lose immediately. If II places this pebble not on one of the outer nodes
in π~1(l) belonging to a connecting edge to ττ~1(2) then II loses within one
more round. Choosing the one of these outer nodes that is a neighbour of
a( and therefore different from v'2 II still loses in one more round, since now
pebbles 2 and 3 are placed at distance 2 in 21 and at distance greater 2 in 21'.

It remains to exhibit a strategy for player II in the Cm-game on 21 and
21'. We show that II can maintain the following condition on the stages

π(α) = π'(ά') and
W (a Γ π-^πίδJJ.ό) ~ (a' r π'-^πV))^').

We argue that this suffices for 21 =°m 21'. In any game position (21, α) at
least one π ~ l ( j ) remains unpebbled. Consider a position ά over 21 in which
π~1 (1) is unpebbled. By construction the identity mapping is an isomorphism
between the induced subgraphs of 21 and 2t' on π"1 ({2, . . . , m + 1}:

Thus (*) is seen to hold of (2l,ά;2l',α) if a is disjoint from π"1(l). In the
general case there still is an isomorphism between 21 \ (A \ π"1^')) and
2l; \ (A'\π'-l(j)) for any j, because 21' = (^n+iΘ^)1 = (£m+ιΘ#m){ι} -
(#m+ι ® Λm){j} Therefore, for all ά there is some α' such that (*) holds of
(21, ά) and (21', ά'), and vice versa. If II can maintain (*), this implies that
Tpcm(2l;2) = Tpcm(2l';2) and, with Lemma 1.34, that indeed 2t =cm 21'.

Assume now that (*) is satisfied in the current position. Assume fur-
ther that I chooses pebble 1 to play. Without loss of generality suppose that
π(α2, . . . , αm) = π'(a!<2, . . . , a'm) C {3, . . . , m + 1} and that the given isomor-
phism is the identity mapping in restriction to π-1({3, . . . ,ra + 1}):
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Consider any potential target position for pebble 1 over 21 say. If a\ is
placed within π"1 ({3, . . . , m + 1}) then we want a( to be placed according to
the given isomorphism (which happens to be the identity under our assump-
tions). The interesting case is that a\ is moved to either π-1(l) or π-1(2). It
follows from the considerations above that for i = 1, 2 there are isomorphisms
7i between 21 f π"1 ({!,..., ro + l}\{»}) and 21' f π'"1 ({!,..., ro + l}\{i})
such that 7i restricts to the identity mapping over π~1({3, ...,ra + 1}),
and thus extends the given isomorphism between (21 f π~1({3,...,m +

I}),θ2,...,αm) and (21' \ ̂ ({S,. . .,ro + l}),α'2, . . . ,α'm). Let now 7 be
the following bijection between 21 and 21':

ί v for v G TΓ-^ίSj-.^m + l})
72 (υ) for v € TΓ"1^!)
71 (v) for υeπ-1^).

Let II play according to 7: if I proposes B C 21 say, then II answers B' = 7(B)
and upon a move of pebble 1 in 21' to 6' € 7(#), II moves pebble 1 in 21 to
7~1(6/). (*) is satisfied by construction in the resulting stage — the required
isomorphism is provided by the corresponding restriction of 7. G

We thus have in particular the following theorem.

Theorem 2.9. The logics C^ω form a strict hierarchy with respect to k even
for boolean queries on finite graphs:

Cooω £ CΌou; £ . . . £ CΌQω £ Cooω £ . . . C C^ω .

It follows that C^ω ζ Looα, — not every query on finite structures is express-

The second claim is provable from the first by diagonalization. A concrete
graph query which is not in C^ω is of course {(£m+ι <8> ίJm)° | m ^ 2}, or
rather the closure of this set under isomorphisms.

2.1.2 Proof of Theorem 2.2

The proof is given in two separate lemmas, one for each implication in the
theorem.

Lemma 2.10. // (21, α) φc<χ><» (2t',ά;) then player I can force a win in the
game on (2t,α;2l/,ά/).
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Proof. Let (21, a) ^c~" (21', a1). There is some formula φ in C^ such that
21 ̂  y?[ά] but 51' (= -^[ά'j. Let ξ be the quantifier rank of φ. ξ > 0 unless I
has already won. We prove that I can in one move force resulting positions
that can be distinguished by a formula of quantifier rank ζ < ξ. This suffices
to give I a strategy, since by repeated application of such moves the ordinal
valued quantifier rank of the distinguishing formula must reach 0 in finitely
many steps — a win for I. Assume without loss of generality that φ is of the
form 3^mXjψ(x). Other cases reduce to this one through the symmetry of
the claim and by replacing φ by one of its boolean constituents if necessary.
If I chooses pebble index j and proposes a set B := {b € A \ 21 |= ^[^~]} °f
cardinality m, then II cannot help but include at least one element b' in the
response B' such that 21' \= ->^[α'~]. This is simply because by assumption

on φ there are less than m positive examples available over (21',a1). I need
only choose such a b1 from B1 to force a resulting position in which ψ of
quantifier rank less than ξ distinguishes the two tuples. D

Lemma 2.11. Player II has a strategy to maintain =c°°"-equivalence of
game positions.

Proof. Assume (21, a) =c<*>ω (21', α'). It has to be shown that in response to

any choices I can make during one round II can achieve =c«>^ -equivalence in
the resulting positions. Prom Lemma 1.39 we know that each C^-type α is
isolated by some formula φa(x) € C^ω. For each a and each j, the number

is determined by tp^°°ω(a): 3=mXjφa(x) is in tp^00" (a) exactly for m =

i/?(2l, α). (21, a) =°ooω (21', α') therefore implies that for all α and j the corre-
sponding numbers must be equal for (21, α) and (2t',ά'): ι/"(2l, α) = i/?(2l',a').
Suppose now that I chooses to play in the j-th component and proposes
B C A as a challenge. By the above equality II can choose B' C A1 such that
for all a:

\{b 6 B I tp£~(sf) = α}| = |{6' e Ef \ tp^(α'^) =α}|.

But now, no matter which b' € B' I chooses, II can make sure to answer
with some b G B such that the resulting tuples, α^ and α'y again realize the

same C^-type, so that =c~*-equivalence is maintained. D

Before pursuing the analysis of the games, let us remark that unlike the
standard treatment of the fc-pebble games for L^ω and C^ω we have chosen
to consider only positions with all k pebbles placed on their respective struc-
tures. The standard treatment allows to start the game with all pebbles out-
side the structures. Until the point where all pebbles have been placed player
I may either choose to play a round using one of the pebbles already placed



62 2. The Games and Their Analysis

or one of those not yet used. Otherwise everything is unchanged. That choice
has the advantage that the main theorems directly apply to naked structures
and characterize the equivalence relations =£ over fin[τ] rather than over
fin[τ; k]. The disadvantage is that the games are slightly less uniform during
the initial phase in which only some of the pebbles have been placed and the
formal treatment must make more or less awkward provisions for that. We do
not really lose anything in our restriction to full positions, however, because
by Lemma 1.34 21 =£ 21' if and only if 21 and 21' realize exactly the same
£-types. As we shall mostly study =c as an equivalence relation on fin[τ; fc],
we prefer to deal with the variant introduced above.

2.1.3 Further Analysis of the C*-Game

An inductive analysis of strategies. Think of an arbitrary but fixed
k throughout the following. The obvious dependence of various introduced
notions on the value of k is mostly suppressed in the notation. Recall that
fin[τ; k] is the class of all finite r-structures with a fc-tuple of designated
elements.

Definition 2.12. Let «0 be the relation of atomic equivalence on fin[τ;fc]:

(a, α) «0 (2t;, a') if atpm (α) = atp^, (α') .

Recall that atomic equivalence is what is required in the winning condition
for player II, (W): player II has not yet lost in stage (21, ά; 21', α') if (21, ό) «0

(2t',ά;). Obviously «0 is an equivalence relation on positions. A strategy
for II must specify possible moves for II that allow to stay within «o in
response to any moves I might make. Inductively this task reduces to the
specification of strategies for one additional round. Suppose the relation «$
on pairs of positions captures the existence of a strategy for at least i moves.
Then the corresponding relation «ί+ι must exactly contain all stages (pairs of
positions) in which II has a strategy for a single round to enforce a resulting
stage in «j. What constitutes a strategy for the single round is governed by
the rules of the game.

Lemma 2.13. Let ~ be an equivalence relation on fin[r;fc]. Let ~' be the
relation on fin[τ;fc] that contains (2l,α;2l',α') if and only ι/(a,ό) ~ (21', a')
and in a single round of the Ck-game on stage (2l,α;2Γ,α7) player II can
force the resulting stage to be in ~ again. Then ~r is definable as follows:

(2t,α)~'(2t',α') if
(2l,α)~(2t',α')
and for all j € {1, . . . , k} and all a € fin[r; k] /~

\{b£A\ (a,α*) € α}| = \{V € A' \ (2l',α'^) € α}|.

In particular ~* is also an equivalence relation on fin[τ;fc].
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Proof, i) Suppose first that the condition on the right hand side is satisfied
by (21, α; 21', a'). The proof that II can force ^-equivalence in a single round
is very similar to the proof of Lemma 2.11 above. Note that both, the rules
for a round in the game and the condition in the lemma are symmetric with
respect to the constituent positions (21, α) and (21', α'). Let I in the first
part of the round choose j and B C A. Split B into disjoint subsets Ba for
a G fm[τ; k] /~ through: Ba := {b G B \ (21,α^) G a}. By assumption, there

exists for each Ba a subset B'a C {b1 G A! \ (21', ά'y) G α} of exactly the

same size as Ba. Note that the sets {b1 G A' \ (21', α'y) G a} are disjoint for

different a. If II responds with B1 := \Ja B'a then, in the second exchange of
moves in this round, II can force ^-equivalence as desired: I chooses b1 G B'ao

for some αo; II need merely choose b from Bao to ensure (21, α-) ~ (21', α'—)
since both positions are in αo
ii) Suppose now that the condition on the right hand side is not satisfied. The
interesting case is that this is not due to ^-inequivalence. We show how I can
force a successor stage that is not in ~. By symmetry we may assume that
for some j and α, \{b e A \ (2t,άp€α}| > |{b' G A' \ (2l',ά'^) G α}|. Let I

choose this j and B := {b G A | (21, α^) G a}. Whichever B1 of the same size

as B player II chooses, there has to be some b1 G B1 such that (2t',α'y) is

not in a. If I chooses such b1 a resulting stage with ~-inequivalent positions
is forced. D

Definition 2.14. Define a family of binary relations «; on fin[r;fc] as fol-
lows:

/or -\ /πί/ -/\ -£ Player II has a strategy for at least i rounds
(VI, α) «j ί V I , α ) if . ,, ^L, /0ί _ cu, _/λv ' ' v ' ' J in the Ck-game on (2l,α;2t',α').

Note that the above definition of «o as equality of atomic types is consis-
tent with this new definition. Lemma 2.13 can be applied to generate induc-
tively equivalence relations «i that capture the existence of a strategy for at
least i moves. Obviously s^+i is obtained from «; through the refinement
step described in Lemma 2.13, «ΐ+ι = («i)'

In particular it follows inductively from the condition in Lemma 2.13 that
all the «; are equivalence relations on fin[τ; k]. For future reference we present
the inductive description of the «; in detail.

Proposition 2.15. Let the «, on finfr fc] be defined through the existence
of a strategy for player II for at least i rounds in the Ck-game. Then these
are inductively definable in the following process:

(2t, α) »o (»', δ1) iff atpa (α) - atpa, (a1)
(2l,α)«m(2t',α') iff

(2l,α)«i(2l',α')
and for all j G {1,..., fc} and all a G fin[τ; fc]

e A I (a,of) € α}| =
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As a sequence of successively refined equivalence relations the /sι possess a
limit or roughest common refinement. Formally this limit « is the intersection
of all «i for i £ ω:

t-κx> ^
«< - «=[]»».

i

We show that « captures the existence of a strategy in the infinite game.

Lemma 2.16. Let w := f|» «»• Γften

/or -\ /CM/ -/\ Λ Player II ftαs α strategy in the infinite
(ία, α) « (*l , α ) iff ^L. /rk _ m, _nv ' ' v ' ; Ck-game on (2l,α;2l',α').

Proof. This is the first place in the analysis of the games where we use the
finiteness of the underlying structures. Fix two structures 21,21' and let «3l2l/

and f&f* stand for the restrictions of w and «, to positions over 21 and 21'.
Thus «5l2t is the limit of the decreasing sequence of subsets «fa of the
finite set Ak x Alk. It follows that « '̂ = «fa/ = w5121' for some i. But this
means that for such i and in games over 21 and 21' player II is guaranteed to
have a strategy for at least i + 1 rounds whenever there is a strategy for at
least i rounds. The strategy in the infinite game now simply is to maintain
~?a -equivalence: ttf® -equivalence implies «^J_ -equivalence and this can

by definition be used to enforce «f2l/ -equivalence in each consecutive round.
D

Equivalence of positions and equality of types. We can now show that
the «-classes coincide with the C*ω-types as well as with the C^ω-types
over fin[τ]. This correspondence in particular yields a proof of Corollary 2.4.
Recall form Definition 1.36 that the C^.^ consist of all those formulae of

C%oω whose quantifier rank is at most i. By what we already have, it suffices
to show that «» is equivalence in C^.^ for all i € ω. For then, the following
limit equations prove the claim:

=Cωω i

ck .=. ooα t

The indicated limits are clear: C*w = |Ji Cωω i so ^at C*ω-equivalence
is the limit of the equivalences with respect to the C*ω;ί. « = Πi ~i by the
definition of «.
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Coincidence between C*ω .^-equivalence and C^^-equivalence follows
from our preliminary analysis in Chapter 1, see Corollary 1.40. But from
Theorem 2.2 and Lemma 2.16 we already know that « is C^ω -equivalence.
It follows that indeed on fin[τ; k] all three notions of equivalence

r* rk

= ̂ ωω =^000,

coincide. This is precisely the statement of Corollary 2.4. It remains to prove
inductively the coincidence between «» and C^^-equi valence.

Lemma 2.17. The equivalence relation «$ coincides with C^.^- equivalence
on fm[τ; k] for all i G ω.

Proof. By induction on i. The claim is true for i = 0 by definition. Recall
from Proposition 2.15 how «$+ι is characterized in terms of «*:

(2l,ά)«w(2l',ά') iff
(a, α) «,(*,*)
and for all j € {!,...,&} and all α G fin[τ; k]

€ A I (a,s) € α} =

It suffices to prove the following, which says that the =c <*>*>* are governed by
the same rules:

(α,ά)=σ~« .*+ι (Λ'.af) iff

and for all j € {1, . . . , k} and all α G fin[r; k] /=c«>«;

€ A I (α,5*) e α}| = |{6' € A' \ (<&',άlbj) € α}.

The "only if "-part is clear, since by Lemma 1.39 each =c°°u,;t -class α is
isolated by a formula φa(x) £ C^.^. Therefore, if

then 3=mXjφa(x) is in the C^ω.i+l'type of (a,δ) for m = ̂ (a,α). For the
"if "-part it suffices to show that the numbers ι/j*(a, α), for all a and j isolate

the Cr^)α;;i+1-type of (a,δ). This, however, is clear: whether 21 1= 3^mXj^[α]

for ^ G C^ .̂̂  is determined by ̂  ι/j*(a,δ) for those α that contain ψ. D

Since we only deal with finite structures we henceforth identify =c<χ>ω

and =c*»" and indistinguishably write =° . Correspondingly, the distinction
between C^ω- and C*ω -types is dropped and we may simply speak of Ck-
types over finite structures.

Referring back to the inductive generation of the «f as characterized in
Proposition 2.15 and combining this with the insight that the limit of the «;
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is Cfc-equivalence, we have the following rather algebraic characterization of

=c over fin[r; k].

Remark 2.18. =c on fin[r;fc] is the roughest equivalence relation « on
fin[τ; k] that is at least as fine as atomic equivalence and satisfies the following
fixed-point equation:

G

Έ f>

/or α// j G {1,..., k} and all a G fin[τ; k] /«

|{6 G A I (a,δp G α}| - \{b' G A' I (2l',α'^

The fixed-point equation directly corresponds with the equation that gov-
erns the refinement step «; ι—> ~i+ι in Proposition 2.15.

2.1.4 The Analogous Treatment for Lk

Both, the proof of Theorem 2.1 and the analysis of the L*-game that leads to
Corollary 2.3, are carried out along exactly the same lines as for the Cfc-game.
The more transparent rules for the single round, however, lead to consider-
able simplifications. The inductive generation of the corresponding equiva-
lence relations «; on game positions is formally much simpler, though strictly
analogous in spirit. Instead of Proposition 2.15 we now find the following.

Proposition 2.19. With the «j defined through the existence of a strategy
for player II in the Lk-game, these are inductively definable as follows:

(a, α) «0 (a1, δ1) iff atpα (α) - atpα, (δ
1)

(a,δ)«<+1(a/,δl) iff

and for all j G {1,..., A:} and all a G fin[τ; k] /«»

36 G A((a,δ*) Gα) <—> 36' G A'((2l',α'^-) G αV

The limit w^ *- «, where the equivalence relations «, now stand
for equivalence with respect to the Lfc-game, becomes equality of L^-types
over finite structures. The «j also correspond to indistinguishability in the
bounded quantifier rank fragments L^ { of L^ω. L^^-equi valence is the

same as L*ω;Γequivalence by Corollary 1.40. Thus,

= Ltω =Lπω onH ^— , — , CL11U. ^^

coincide, where « now is equivalence in the Lfe-game. This is precisely the
statement of Corollary 2.3.

It is therefore justified to write =L for both, equivalence in L^ω or Lk

ωω.
Accordingly we identify L^ω-types and Lk

ωω-types over finite structures and
address them as Lfc-types.
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Finally an algebraic characterization of =L in the style of Remark 2.18
is obtained: =L is the roughest equivalence relation « on fin[τ; k] that is
at least as fine as atomic equivalence and satisfies the following fixed-point
equation:

for all j e {1, . . . , A;} and all α € fin[r; k] /«

36 e A((a,δj) G α) <— » 36' G A'((a',α'^) G α).

2.2 Colour Refinement and the Stable Colouring

This section is an intermezzo on our way to obtain definable orderings with
respect to Ck- and Lfc-types. The basic technique in the underlying inductive
processes is intimately related to a similar technique in combinatorial graph
theory: the colour refinement technique and the stable colouring, often also
considered under the name of vertex classification. We review these notions in
some detail and consider variants that are useful in the present development.
In particular some definability properties of variants of the stable colouring
can later directly be transferred to definability statements for the invariants.

We use the terminology of pre-orderings as reviewed in Section 1.7. In
particular compare Definition 1.62. We reserve variants of the symbol ^ to
denote pre-orderings; -< then denotes the associated strict pre-ordering and
~ the induced equivalence relation. Recall that the quotient =^/~ is a linear
ordering in the sense of ^, -</~ the corresponding linear ordering in the sense
of <. Intuitively ~ describes the discriminating power of =^. Recall that -<
and ^ are quantifier free interdefinable and that ~ is quantifier free definable
form either.

2.2.1 The Standard Case: Colourings of Finite Graphs

Let ( V, E) be a finite graph. A colouring of (V, E) with finitely many colours
0, . . . , r — 1 is a function c: V -> r, where r = {0, . . . , r — 1} as usual. We
regard this set of colours as ordered in the natural way. To make the order in
the colours explicit, the colouring may be formalized as a pre-ordering on V:
vι z$ v<2 if c(υι) ^ 0(^2). The associated ~ is the relation of having the same
colour. A particular refinement of c is induced by the following mapping:

c':υ i — > [c(υ)j \{w\Eυw Λ c(w) = 0}|, . . . , |{w|Ewι; Λ c(w) = r —

Let ~' be the relation of having the same new colour. Obviously v\ ~' VΊ
if and only if v\ and v^ have the same colour under c and the same numbers
of direct neighbours in any of the c-colours. We note the similarity of this
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refinement process with that encountered in the refinement for equivalence
of positions in the Cfc-game as expressed in Lemma 2.13.

The new colours can be ordered lexicographically so that one may also
regard d as a mapping into some initial subset r' = {0,..., r1 — 1} of natural
numbers. With our conventions for lexicographic orderings (see Section 1.7.3)
the colours under c1 get ordered with dominating c-colour.

The new c' is the colour refinement of c. Let =^', -<' and ~' be the char-
acteristic descriptions of c' in terms of pre-orderings. The colouring c' is a
refinement of c in the sense that ~' is a refinement of ~ and that for -< and
-<' we have: -< C -<'. The discriminating power of the colouring is possibly
enhanced in the passage from c to c', but the new ordering of colours is
compatible with the former one.

Since (V, E) is finite, repeated colour refinement must terminate in a
stationary colouring after at most \V\ steps. In the standard graph theoretic
setting this limit process is applied to the trivial monochromatic colouring
GO : V -» {0}. Note that this trivial colouring corresponds to the pre-ordering
^0 = V x V (with associated strict pre-ordering X0 = 0) The limit colouring
obtained in this way is called the stable colouring of the graph. At the level of
the associated strict pre-orderings the stable colouring is the least fixed point
of the monotone operator corresponding to the single colour refinement step
sending -< to -<':

-< = (J -<i where -<o = 0
i and -<<+ι= Hi)'.

The first successor level -<ι is just the pre-ordering according to the degree
of vertices. Note that the description of the refinement process is monotone
increasing in terms of -< and monotone decreasing in terms of ~ and =^.

2.2.2 Definability of the Stable Colouring

A slight generalization of the setting in which the colour refinement technique
is applicable concerns fc-graphs with any given initial pre-ordering on the set
of vertices. We use the term k-graph to denote structures with k binary
relations E\,..., Ek instead of the single edge relation in the standard case.
Also we here need not require these relations to be irreflexive or symmetric.
An additional arbitrary pre-ordering =^0 serves as an initial stage for the
colour refinement. In terms of colourings we now pass from a colouring c: V -»
r to a refinement c' obtained from a lexicographic ordering of the new colours

where Vj(y) = |{u;|£/;Viι; Λ c(w) = s}\.
Recall once more our conventions for the lexicographic ordering: a new

colour m = (ra, (rrijs)) is regarded as a tuple with first component ra and
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consecutive components πijs listed according to the lexicographic ordering
on the index pairs ( j , s ) . For ra = (ra, (rrij8)) and ra' = (ra', (m'J8)) we get
that ra < ra' if m < m1 or if m = m1 and mjs < ra^ for the least (j, s) such
that ra^s ̂  m'j8.

For the description in terms of the associated pre-orderings =<( and = '̂ with
corresponding strict -< and X7 and equivalences ~ and ~' this becomes:

vι •<' v2 iff

υi -< ^2 or

Vl - V2 and (i/ ίt;!)) <lex (i/Jfa)), ί2'1)

where ι/*(v) = ({w^w/; Λ c(w) = s}\.

The structural similarity of this refinement process with that in Proposi-
tion 2.15 is most apparent for the associated equivalences ~ and ~':

vι ~* V2 iff
vι ~ V2 and for all j £ {1,..., k} and all α G V/ ~ (2.2)

\{u G V I EjViuΛu G α}| = | {uG V | EjViuf^uζ a}\.

Definition 2.20. The stable colouring of a pre-ordered finite k-graph is the
limit pre-ordering ^ obtained through application of the above refinement
operation with the given =^o us the initial stage:

^ is the limit =^i — +• ^4 where inductively ^i+ι := (=^i)'.

We regard the =3̂  and ^ as global relations on finite pre-ordered k-graphs.

The standard version of the stable colouring of graphs is comprised as a
special case for k = 1 and for trivial initial pre-ordering =^o = V x V. In this
form the following result is due to Immerman and Lander, see Theorem 2.23
below.

Lemma 2.21. The stable colouring ^ of finite pre-ordered k-graphs is de-
finable in C^ω.

Proof. Let -<< and -< stand for the associated strict pre-orderings, ~< and
~ for the induced equivalences. It is sufficient to show that each level -<$ in
the fixed-point process that generates x is definable by some C^ -formula
ψi(Xι y) Then the limit of the sequence -<Q C -<ι C is defined by

ψfay) := \J ψi(*,y}
iζω

i) Suppose that ψι defines -<i. Then for each s ^ 0 there is a formula ψi,s(x)
of C^>oω in a single free variable which defines the 5-th equivalence class with
respect to ~i in the sense of the ordering -<j. We first generate auxiliary
Xi,8(x) that define the union of the classes up to s: Xi$(x) := -3y(ψi(y,x)}
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defines the X -least ~;-class. As usual, ψi(y,x) is the result of exchanging all
occurrences of x and y in ψi(x, y). Inductively let Xi,8+ι (x) '= Vy(ψί(y, #) -*
Xt,β(2/)) Finally ^ίfβ(x) := Xi,a(x) Λ ̂ χil8-ι(x) is as desired.
ii) Definability of the -<$ is established by an induction with respect to i.
φ0(x,y) := x ^>Q y/\~*y =4o x defines -<o as the strict variant of the given =^o
Recall from the definitions that

x Xi+i y iff
x X; y or (2.3)
x~iy and (ι>/(z)) <lex (

ι/?(x) = |{^|£"jX^ Λ ^i,s(^)}| is the number of Ej-neighbours to x that are in
the s-th class with respect to ~$.

The crucial lexicographic comparison (vj(x)) <\ex (fj(y)) can be ex-
pressed as follows:

V ( Λ vi (*) = "J; (
U,β) (J' ,*')<«,*)

Λ

Since z/|(x) = |{y | -BjX2/Λ^i j β(2/)}| it only remains to dissolve the cardi-
nality equalities and inequalities in the last formula into infinite disjunctions
according to the following pattern:

{u\χ(χ,u)} < {u\χ(y,u)} «=» \/
τn<n

D

Beside infinitary definability in only two variables with counting we also
get definability in an extension of fixed-point logic just sufficiently expres-
sive to permit cardinality comparison. Recall the definition of the Rescher
quantifier from Definition 1.53.

Lemma 2.22. The stable colouring ^ of finite pre-ordered k-graphs is glob-
ally definable in FP(QR), fixed-point logic with the Rescher quantifier. In
particular it is computable in PTIME.

Proof. Note that equation 2.3 for the inductive refinement is directly ad-
equate for the definition of -< as an inductive fixed point. Only, in stan-
dard fixed-point processes we initialize the fixed-point variable to 0, whereas
here we want to substitute the given ^o for the initial stage. This is
possible with the following standard trick. To obtain the inductive fixed-
point for the operator given by χ(X,x) but with initialization to an X0

defined by some ΨQ(X) one may use the usual inductive fixed-point over
χ'(X,x) = (-^xXxλφQ(x}} V (3xXx/\χ(X,x}}.

It therefore suffices to show that the lexicographic comparison in equa-
tion 2.3 is definable with the Rescher quantifier. (vj(x)) <ιex (fj (y)) can now
be reformulated as follows:
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/\ vs>;,'(z) -!/;;(»)) Λk

^ V
Λ ι/?(z) <

The quantifications over s and s1 can be replaced by quantifications over
elements z and z1 that represent the s-th and s'-th classes with respect to ~^.
If for instance z is in the s-th ~;-class then £^(x) = \{u \ EjX Λ u ~i z}\. It
follows that the cardinality equalities and comparisons in the above formulae
can be expressed with applications of Qn. Thus (fj(x)) <ιex (ft(y)) is in
first-order logic with the Rescher quantifier in terms of ̂ .

The limit -<, and with it =^, therefore are definable in FP(QR). D

2.2.3 C^ω and the Stable Colouring

For this section we return to the standard case of the stable colouring,
with just one edge relation E and initialization to the trivial pre-ordering.
Lemma 2.21 was first stated by Immerman and Lander [IL90] in this form:

Theorem 2.23 (Immerman, Lander). The stable colouring of graphs is
C^ω-definable in the finite: there is a C^-formula η(x,y) defining on all
finite graphs the pre-ordering associated with the stable colouring.

The stable colouring receives special attention in graph theory since on
generic graphs it provides canonization up to isomorphism. On almost all
finite graphs the pre-ordering associated with the stable colouring is a linear
ordering. This result is due to Babai, Erdos and Selkow [BES80]. The 'almost
all' is to say that the proportion of graphs of size n satisfying the statement
tends to 1 as n goes to infinity. In [BK80] this result was further used to
provide a graph normalization algorithm that operates in average linear time.

Theorem 2.24 (Babai, Erdδs, Selkow). For almost all finite graphs the
stable colouring gives different colours to any two distinct vertices. In other
words, almost all finite graphs are in fact linearly ordered (in the sense of
^) by the pre-ordering ^ associated with the stable colouring. It follows that
almost all finite graphs are characterized up to isomorphism by their C^)θω -
theories, hence also by their C%ω -theories.

Immerman and Lander proved that not only is the stable colouring C2-
definable, but it exactly classifies vertices up to C2-equivalence:

Theorem 2.25 (Immerman, Lander). The equivalence relation ~ asso-
ciated with the stable colouring of finite graphs is equality of C2-types of sin-
gletons. The associated pre-ordering ^ therefore is a pre-ordering with respect
to C2-types of single vertices.
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Sketch of Proof. Let (5 = ( V, E) be a graph. It suffices to show that u ~ u1

for u,u' £ V implies that player II has a strategy in the infinite game on
(®,ιm; 0,iiV). Then ~ is at least as fine as equality of C2 -types. It cannot
be strictly finer because each ~-class is C^ω -definable as we have seen in
the proof of Lemma 2.21. We show that player II can maintain the following
condition on game positions (0,w;) and (<5,uV):

(*) u ~ u1 and υ ~ v' and atp^ (u, υ) = atp^ (u', υ1) .

Let this condition be satisfied in the current stage (<8,uιr, <&,ιtV). Assume
without loss of generality that player I chooses to play in the second compo-
nent, j = 2, and proposes B C V as a subset over the first copy of (5. Let
the colour classes in V/ ~ be enumerated as QI, . . . , α/. Split B into colour
classes 5$ = B (Ί α*. Since u ~ u1 and since ~ = ~' is stationary with respect
to a further colour refinement step, we have for all α$:

|{tu I Euw f\w G α»}| = |{ιt/ \ Eu'w' f\w' € α»}|.

It follows that also \{w | ->Euw Λ w £ cti}\ = [{it;' | ~-*Eu'w' Λ it/ G C K » } | .
Therefore II can choose subsets £^ C α^ such that u' has exactly as many E-
neighbours and non-neighbours in B\ as u has in B{. Let II put B1 = |J^ B[.
If I now chooses for instance a neighbour of u1 in B^ then II can answer with
a neighbour of u from £;. Thus (*) is realized in the resulting stage again.

D

2.2.4 A Variant Without Counting

There is also an inductively definable pre-ordering adapted to capture the
refinement that corresponds to the moves in the ordinary pebble game for
Lk. Its definition does not require cardinality comparison so that it turns
out to be FP-definable. In fact, the role of cardinality comparisons in the
colour refinement is taken by the boolean distinction whether or not there
are neighbours (no matter how many) of respective kinds. Consider some
colouring c:V ->• r on a fc-graph. For the refinement step pass to a new
colouring

f 0
υ):= I

( 1

0 if ->3w(EiVW Λ c(w) = s]
where d'Λ 3 }

3

Note that the entries in all but the first component are boolean values. These
take the place of cardinalities in the colour refinement. The new colours are
ordered lexicographically just as in the colour refinement. The corresponding
refinement in the associated strict pre-orderings can easily be described in a
form analogous to condition 2.1 on page 69.
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Starting from a pre-ordered fc-graph and applying this refinement proce-
dure inductively, a limit pre-ordering is obtained. Let us call this resulting
pre-ordering the Abiteboul-Vianu colouring of the pre-ordered fc-graph.

In complete analogy with the proofs of Lemmas 2.21 and 2.22 above, we
find that the Abiteboul-Vianu colouring of pre-ordered fc-graphs is globally
L^X)ω-definable as well as FP-definable.

We shall see in the next sections that the Abiteboul-Vianu colouring serves
to construct global pre-orderings with respect to Z^-types just as the stable
colouring serves to construct similar pre-orderings with respect to Ck-types.
We have seen in Theorem 2.25 a first indication in this direction: the stan-
dard stable colouring of graphs provides a global pre-ordering of C2-types of
singletons. It may similarly be shown that the Abiteboul-Vianu colouring is
a pre-ordering of L2-types of singletons.

2.3 Order in the Analysis of the Games

The desired ordering with respect to types is obtained through an ordered
classification of positions in the corresponding game. Formally the ordering
of the quotients Ak / =c gets interpreted over each structure 21 through a
pre-ordering on the fc-th power of the universe. The associated equivalence
relation will be equality of types. We have seen a special case of this idea
in Theorem 2.25. In the following we present the introduction of the desired
pre-orderings in two different approaches, each with its specific advantages.

(a) The first view is an internal one in the sense that the pre-ordering is
defined as a global relation on the game positions over each individual
21 without reference to positions over other structures. This development
is a direct application of the stable colouring to some fc-graph associated
with each individual 21. From Section 2.2 we infer definability properties
of the resulting pre-ordering as a global relation on fin[τ].

(b) The other, and indeed more comprehensive, view defines the desired pre-
ordering as a pre-ordering on fin[τ;fc], i.e. as a relation that serves to
compare game positions over different structures. In this sense it involves
considerations that are external to the individual structures. This is in
good agreement, however, with the game analysis in terms of the equiv-
alence relations «. These also primarily are equivalences over fin[τ;fc].
Only their restrictions to the special case that both positions are over the
same structure are global relations over fin[τ].

Both views are presented in the following. The externally defined pre-ordering
agrees with the internally defined one in restriction to each individual struc-
ture so that both views contribute to the understanding of the pre-ordering
as a global relation. In order not to overburden notation we shall not distin-
guish between the two notationally. Wherever it matters it will be clear from
context which view is intended.
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We explicitly treat the case with counting quantifiers first and indicate
the analogous treatment for the Lk in the sequel.

2.3.1 The Internal View

We introduce the desired orderings on Tpc (21; k) = Ak / =c as the stable
colouring of some fc-graph associated with 21.

Let us fix some linear ordering ^o °n the finite set Atp(r; k) of atomic
r-types in k variables. This induces an initial pre-ordering =^o on the fc-th
power of the universe of any 21 € fin[r]:

a =^0 o! if atpa (α) ̂ 0 atpm (α') .

The associated equivalence relation ~0 is equality of atomic types, i.e. the
above «o With any finite r-structure 21 we associate a fc-graph that encodes
the game positions over 21 in the fc-pebble game together with the fixed initial
pre-ordering with respect to atomic types.

Definition 2.26. With structures 21 G fin[τ] associate the following struc-
tures over universe Ak .

(i) The game fc-graph of 21, 2t(fc). Its vocabulary τ(fc) consists of binary re-
lations EJ, for j = 1, . . . , fc, and unary predicates PΘ for each atomic
type θ G Atp(r fc). These are interpreted on Ak according to Ejάa! if

t\i±j ai = a'i> and pθά if atp2l(α) = θ.

(ii) For the pre-ordered fc-graph of 21, the identification of the individual
atomic types is replaced be the pre-ordering =^o according to atomic types
(as induced by ^0). The pre-ordered k-graph of 21 is

The EJ encode in both structures the accessibility between positions over
21 in a moves that are carried out over the j-th component. It is important
to note that both the game fc-graph and the pre-ordered fc-graph of 21 are
quantifier free interpreted over the fc-th power of 21. Also, the pre-ordering ^o
of the pre-ordered fc-graphs is atomically definable over the game fc-graphs.

From Section 2.2.2 we obtain a stable colouring =^ on the pre-ordered
fc-graphs.

Proposition 2.27. The stable colouring of the pre-ordered k-graph of 21 is
a pre-ordering with respect to Ck-types: its associated equivalence relation is
equality of Ck -types over Ak.
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Proof. Let the ^i be the stages in the generation of the stable colouring ^ on
the associated fc-graph. Let ~ and the ~j be the corresponding equivalence
relations on Ak. The proposition is equivalent with the statement that ~
coincides with « over Ak . It suffices to show inductively that ~j = «f for all
i, since we know that

i— > oo . ^ t— > oo ^̂

Agreement between ~0 and «o is clear from the definition.
Consider the refinement step in the generation of the stable colouring on

the fc-graph associated with 21. Recall the inductive definition of the stages
for the stable colouring, in particular the formula governing the refinement
step for the associated equivalence relation from equation 2.2 on page 69:

a ~i+ι a' if a ~$ α' and for all j G {!,...,&} and all α G Ak / ~i

I {5 I EjabΛb G α}| - |{6 | Eja'bΛbe α}|.

But obviously | {6 G α | Ejά 6 Λ 5 G α} | = | {b G A | α * G α} | so that

ά ~i+ι α' if α ~j α' and for all j G {1, . . . , k} and all α G A*/ ~$

Comparing Proposition 2.15 for the inductive refinement step in the «i —
and specializing to the case that both positions are over the same structure
21 — it follows that ~» = «$ implies ~$+ι =«ί+1. This yields an inductive
proof of the claim. D

Recall from Lemma 2.21 that the stable colouring of pre-ordered fc-graphs
is C^ω -definable. ^ is the stable colouring of a pre-ordered fc-graph that
itself is quantifier free interpreted over the fc-th power of 21. It follows with
Lemma 1.50 that =^ is globally definable as a global relation over fin[τ] in

<&*>].
By Lemma 2.22 =^ is definable in FP(QR). Thus we have the following.

Theorem 2.28. For each k there is a global pre-ordering ^ over the k-th
power of the universe of structures in fin[r], such that

(i) the associated equivalence relation is equality of Ck -types. Thus ^ is the

quotient interpretation of a global linear ordering of the Ak / =° .
(ii) as a global relation over fin[τ], ^ is definable in C%£ω[τ] as well as in

FP(QR)[τ], fixed-point logic with the Rescher quantifier.
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2.3.2 The External View

Recall how the equivalence relation « was introduced as a binary relation on
fin[τ; k]. Together with its inductive stages «» it serves to analyze the equiv-
alence of fc-tuples over different structures, w and the «< as global relations
on structures in fin[r] merely are the restrictions of these externally defined
relations. It is possible to treat ^ and its stages ̂  under the same exter-
nal view as pre-orderings not only on individual structures in fin[τ], but on
fin[τ; k]. In this view an inductive definition of the -<» can be given as follows.
We here choose the strict variants -<i because their inductive definition is
the formally more transparent one. <o is the strict variant of the fixed linear
ordering ^o on Atp(τ; fc).

(21, α) -Xo (a1 , cf) if atpα (α) <0 atpa, (a1)

(2l,αHi+1 (2l',α') if
(2l,α)^(2l',α') or (2 4)

(2i,α) ~i (a', a1) and (ι/?(a,s)) <lex ' '

where ι/?(2t,ά) = |{6 G A | (a,ά*) € α}|.

The indices (j, a) range over {1, . . . , fc} x fin[τ; fc] /»». The ordering of the
index sets in the lexicographic comparison is chosen with dominant first com-
ponent j. Note that the tuples involved in this comparison each only have
a finite number of non-zero entries. Only types that are realized over 21 or
21' enter non-trivially. Comparison with the inductive generation of the «» in
Proposition 2.15 shows that the equivalence relations ~» associated with the
-<i defined in this manner are indeed the «». It follows that the limit -< of
the -<i is a strict pre-ordering with respect to Cfc-types over fin[τ; fc].

Lemma 2.29. The pre-orderings -<$, as inductively defined on finfr fc] ac-
cording to equations 2.4, and their limit -< coincide in restriction to each
individual 21 € fin[r] with those defined through the stable colouring of the
k- graph associated with 21.

Sketch of Proof. One need only specialize equations 2.4 to a_single structure
21 = 21'. The obvious equality \{b € A \ (21, α^) € α}| = \{b G Ak \ Ejab Λ

(21,6) G α}| shows the agreement of the lexicographic comparison in 2.4
with that of the colour refinement over the fc-graph associated with 21, cf.
equation 2.1 on page 69. This proves equality for the inductive stages and
implies equality in the limits as well. D

This external view of ^ and the =^ < really goes beyond the view of these
as global relations on individual structures: it immediately shows that two
Ck- types that are both realized in two different structures get ordered the
same way in both structures.
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Corollary 2.30. As global relations on finfr], the ^ provide a coherent or-
dering with respect to Ck -types across all structures in fin[τ]:

i/tPsί* (δO = tPa* (^i) αnrf tP*11 (^2) = tp§* (03), ίften άi ̂  δ2 t/ and on/y
if άi^X.

This is immediate here from Lemma 2.29. The same coherence claim can
also be proved directly on the basis of the global definition of the individual
pre-orderings. Note, however, that it does not follow directly from the fact
that the associated equivalence relation is equality of <7fc-types. Even though
it is clear that whenever 21 and 21' share even a single Cfc-type they must be
Ck -equivalent, coherent ordering of the types might a priori seem to require
C2k -equivalence.

2.3.3 The Analogous Treatment for Lk

We sketch the introduction of a pre-ordering with respect to Lk -types. An
inductive characterization of the relation =L or equality of Lk -types has
been obtained in the analysis of the L*-game. Recall Proposition 2.19 for the
inductive generation of equivalences «» appropriate for the Lk-game. Their
limit « over fin[τ; k] is =L .

The desired pre-ordering, for which we also write ^ί, can once more be
defined as a global relation internal to each individual structure, or externally
as a pre-ordering on fin[τ; k] whose restriction to individual structures is the
same as the former. As global relations internal to each 21 the pre-ordering ̂
and its stages =^ are obtained as the limit and the stages of the Abiteboul-
Vianu colouring applied to the pre-ordered /.-graphs associated with 21. This
immediately gives the analogous definability results as in the case of the (7fc,
cf. Theorem 2.28.

Theorem 2.31. For each k there is a global pre-ordeήng ^ over the k-th
power of the universe of structures in fin[τ], such that its associated equiv-
alence relation is equality of Lk -types. This pre-ordering is obtained as the
Abiteboul-Vianu colouring of the pre-ordered k-graphs associated with struc-
tures in fm[τ]. As a global relation over fin[τ], =^ is definable in L^ω[τ] as
well as in FP[τ].

The more general external version of =^ over fin[τ; fc] is obtained in an
inductive definition analogous to equations 2.4:

(21, ά) -<o (a;, δ1) if atpa (a) <0 atpa, (of)
(2l,αHm(2l',ά') if

(2l,α)^(2l/,ά/) or
(21, α) ~< (2l',ά') and (d?(2l,ά)) <le

v, ΛO/O,^ ί ° if -36(21, α p e α
where <i?(α,α):=| χ i fW^Eα.



78 2. The Games and Their Analysis

The indices (j, α) range over {1, . . . , fc} x fin[τ; k] /«;.
Recall that «j is the i-ih stage in the generation of w — where now « is

ΞL on fin[τ; fc]. In order to verify that indeed «j also is the equivalence rela-
tion associated with =^$ as defined here, compare Proposition 2.19. In analogy
with Lemma 2.29 it is shown that in restriction to individual structures this
externally defined pre-ordering coincides with the one obtained internally. In
particular, as a global relation on fm[τ], =3! is a coherent pre-ordering with
respect to L^-types.

Lemma 2.32. .As a global relation on fin[τ] the pre-ordering ^ obtained as
the Abiteboul-Vianu colouring of the k-graphs of structures in fin[r] provides
a coherent ordering with respect to Lk -types across all structures in fin[τ]:

its associated equivalence relation is equality of Lk -types, and iftp% (αi) =

,̂ (a() and tp§ (α2) = tp^, (α^), then aι ̂  a<2 if and only ifa( ^' a'2.

Sources and attributions. As pointed out above, the Fraϊsse style analysis
for finite variable logics in terms of back-and-forth systems is due to Barwise
[Bar 77], the introduction of the corresponding pebble games and their anal-
ysis to Immerman [Imm82]. For some more background on the finite variable
fragments of first-order logic see also [Poi82]. The games for finitely many
variables and counting quantifiers were introduced by Immerman and Lan-
der in [IL90]. Cai, Purer and Immerman applied these games in the analysis of
their construction of non-isomorphic but Ck -equivalent graphs in [CFI89]. In
this construction counting is, however, easily eliminated. A systematic analy-
sis of the C^-game over graphs is presented in [CFI92] and was independently
developed in [GO93, Ott96a]. Cai, Furer and Immerman attribute the under-
lying graph theoretic technique connected with the stable colouring in higher
dimension to Lehman and Weisfeiler. The approach in [GO93, Ott96a] grew
out of the generalization of the Abiteboul-Vianu approach to the case with
counting. It should be remarked that the notions of a fc-ary stable colouring
underlying [GO93, Ott96a] — which is the one used here as well — differs
in some technical details from the one attributed to Lehman and Weisfeiler
in the work of Cai, Furer and Immerman. Our fc-ary variant is tuned exactly
to yield a classification of fc-tuples with respect to Ck the other one rather
corresponds to the classification of fc-tuples with respect to types in Cfc+1.
Both ways have their merits but the difference has to be kept in mind to avoid
confusion when comparing the statements. We find our convention more suit-
able in connection with definability issues concerning the pre-orderings with
respect to types and the invariants to be introduced in the next chapter.

The work of Abiteboul and Vianu [AV91] is the essential source for the

introduction of the definable ordered quotients Ak / =L* that will form the
backbone of the invariants. An excellent presentation of the related results
for the L*-game in logical terms is given by Dawar, Lindell and Weinstein in
[Daw93, DLW95].




