
4. AXIOMATIZATIONS

S is an axiomatization of T if SHhT. Suppose SH T. S + X is an axiomatization ofΊ over

S if X is r.e. and THh S + X. In this chapter we discuss some important properties

of axiomatizations: finiteness, boundedness, and irredundance.

§1. Finite and bounded axiomatizability; reflection principles. We shall say that

T is a finite extension ofS if there is a sentence φ such that THh S + φ. T is essentially

infinite over S if no consistent extension of T is finite over S. T is essentially infinite if

T is essentially infinite over the empty theory (logic). We already know that PA is

essentially infinite (Corollary 2.1).

By the local reflection principle for S we understand the set

Rms = (Prs(φ) -» φ: φ any sentence of LA}.

Thus, Rfns is a piecemeal (local) way of saying that every sentence provable in S is

true. (The latter statement, the full (global) reflection principle for S, cannot be

expressed in T, since, by the Gδdel-Tarski theorem, truth is not definable.)

Clearly PA + Rfhjh Cony (let φ := J_). Also note that T is essentially reflexive iff

Th RfnT ! k for every k (cf. Corollary 1.9 (b)).

We now use the local reflection principle to construct an essentially infinite

extension of a given theory S. Note that RfnsH T implies SH T.

Theorem 1. If RfnsH T, then T is essentially infinite over S.

Proof. Suppose TH S + θ. We are going to show that S + θ is inconsistent. Let ψ be

such that

(1) Qhψ^Prs+θ(ψ).

By hypothesis,

Th Prs(θ->ψ) -> (θ -> ψ).

From this and (1) it follows that Th θ -> ψ. But then
(2) S + θh ψ.

It follows that Qh Prs+θ(ψ) and so, by (1), Qh -.ψ. But QH S + θ and so, by (2), S +

θ is inconsistent.

If PAH T, the conclusion of Theorem 1 can be strengthened; see Corollary 2,
below.

There is a stronger principle, the uniform reflection principle, which is a better

approximation than Rfns of the full reflection principle for S, namely,

RFNS = (Vx(Γ(x) Λ Prs(x) -» Trr(x)): Γ arbitrary}.

Clearly T + RFNsh Rfns provided that PAH T. Applying the uniform reflection

principle we can derive a stronger conclusion than in Theorem 1.

A set X of sentences is bounded if X c Γ for some Γ. Let Prfs Γ(x,y) :=
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az(Γ(z)ΛTrΓ(z)ΛPrfs+z(x,y))

and let Prs/Γ(x) := ΞyPrfs/Γ(x,y).

Lemma 1. For every φ,

PA + RFNshPrs/Γ(φ)-*φ.

Proof. Suppose φ is Γd. Argue in PA + RFNS: "Suppose Prs Γ(φ). There is then a Γ

sentence ψ such that Trr(ψ) and Prs(ψ->φ). By RFNS/ Vz(Γd(z) Λ Prs(z) -> Trrd(z)).

Since ψ -» φ is Γd, it follows that Trrd(ψ-^φ). But Trr(ψ). Consequently, by Fact 10
(a) Trrd(φ) and so φ, as desired/'

Theorem 2. Suppose PAH T and Th RFNS. If X is any bounded (not necessarily r.e.)

set of sentences such that TH S + X, then S + X is inconsistent.

Proof. Let Γ be such that X c Γ. Suppose TH S + X. We are going to show that S +
X is inconsistent. Let ψ be such that

(1) PAhψ^-Prs/Γ(ψ).

By Lemma 1,

Th Prs/Γ(ψ) -* ψ.

From this and (1) it follows that Th ψ and so
(2) S + Xh ψ.

But then there is a conjunction θ of members of X such that S + θh ψ. It follows that

T + θh Trr(θ) Λ Prs+θ(ψ) and so T + θh Prs/Γ(ψ), whence, by (1), T + θh ->ψ and so

S + Xh -πψ. Thus, by (2), S + X is inconsistent.

Note the obvious analogy between the proofs of Theorems 1 and 2, on the one

hand, and the proof of GodeΓs theorem (Theorem 2.1), on the other. Note also that

if T is Σj-sound, then X = {->Prτ(φ): TI/ φ} is a (non-r.e.) set of Πj sentences such

that T + RfnτH T + X and T + X is consistent.

Since PAh RFN0 (Fact 11), we have (a) of the following corollary, improving

Corollary 2.1.

Corollary 1. (a) There is no consistent bounded set X such that PAH X.

(b) If PAH T, there is no bounded set X such that T + RFNTH T + X and T + X is

consistent.

If PAH S, the above proof of Theorem 2 can be replaced by the following simple

argument; the proof of Theorem 1 can be simplified in a similar way. Let

χ:=Vx(Γ(x)ΛPrs(x)-*TrΓ(x)).

Now let θ be any Γd sentence such that S + θh χ. Then S + θh ->Prs(^θ), whence S

H- θh Cons+θ and so S + θ is inconsistent, by Theorem 2.4.

This argument and (a somewhat more detailed version of) the above proof of

Theorem 2 can be looked at from a different point of view which will be further
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elaborated in Chapter 5: Let φ be any Γ sentence such that S + ->χh φ. Then S + ->φh

χ and so Sh φ. Thus, -<χ is Γ-conservative over S in the sense that if φ is any Γ sen-

tence and S + ->χh φ, then Sh φ.

Next we show that if PAH T, no bounded extension of T is essentially infinite

over T (and a bit more).

Theorem 3. Suppose PAH T, let X be an r.e. set of Γ sentences, and let Y be any r.e.

set of sentences such that T + XI/ ψ for every ψe Y. There is then a Γ sentence θ such

that T + θh X and T + θ^ ψ for every ψe Y.

Proof. By Craig's theorem, we may assume that X and Y are primitive recursive.

Let ξ(x) and η(x) be PR binumerations of X and Y, respectively.

Case 1. Γ= Πn. Let θ be such that

PAh θ ̂  Vy(ξ(y) A Vzu<y(η(z) -> -πPrfτ+θ(z,u)) -> TrΠn(y)).
Suppose ψeY and T + θh ψ. Let p be a proof of ψ in T + θ and let q = max{p,ψ}.

Then

(1) PAhVzu<y(η(z) -» -Prfτ+θ(z,u)) -* y < q.

Let Φo/ /Ψk be those members of X which are < q. Then, by (1) and Fact 10 (a) (ii),
PA + φ0 +...+ cpfch θ,

whence T + Xh θ and so T + Xh ψ, contrary to hypothesis. Thus, T + θl/ ψ for all

ψEY. But then

PAhVzu<r(η(z) -> -.Prfτ+θ(z,u))
for all r. It follows that T + θh X, as desired.

Case 2. Γ= Σn. Let θ be such that

PAh θ <-> Ξy(Ξzu<y(η(z) Λ Prfτ+θ(z,u)) A Vz<y(ξ(z) -> Tr^z))).

The verification that θ is as desired is left to the reader.

From Theorem 1 and Theorem 3 with Y = {_!_} we get the following:

Corollary 2. Suppose PAH T. If X is any bounded r.e. set of sentences such that

RfnτH T + X, then T + X is inconsistent.

Suppose T is Σ^-sound. We have already mentioned that PA + Rfnτh Conτ. By

Theorem 1, T + Conτl^ Rfnτ. Clearly PA + RFNτh Rfnτ. It has been pointed out that

T + {-ιPrτ(φ): TI/ φ} is a consistent, bounded extension of T + Rfnτ. Thus, by

Theorem 2, if PAH T, then T + Rfnτl^ RFNT. These observations can be strengthened

as follows.

We define the sentences Con(n,S), for n > 0, by: Con(l,S) := Cons, Con(n+l,S) :=
Con(l,S + Con(n,S)). Let

Con£ = (Con(n,S): n > 0}.

The proof of the following lemma is straightforward and left to the reader.

Lemma 2. (a) If k > m > 0, then
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PAh Con(k,S) -> Con(m,S).

(b) For all k, m > 0,

PAh Con(k,S + Con(m,S)) <-> Con(k+m,S).

The sets Rfn(n,S) are defined as follows: Rfn(0,S) = 0, Rfn(l,S) := RfnS, Rfn(n+l,S)
:= Rfn(l,S + Rfn(n,S)). Next let

Rfng = U{Rfn(n,S): neN}.

We write SHpS' to mean that S is a proper subtheory of S'.

Theorem 4. Suppose PAH T and T is Σ1-sound.

(a) T + Con^HpT + Rfnτ.

(b) T + Rfn^HpT + RFNT.

Lemma 3. (a) PA + Rfnτh Rfnτ+Con .

(b)PA+RFNThRFNT+Rfnr

Proof, (a) Let φ be any sentence.

PA + Rfnτh Prτ(Conτ -̂  φ) -» (Conτ -> φ).

But, as we have already observed, PA + Rfnτh Conτ. It follows that PA + Rfnτh
Prτ+Conτ(φ) -» Φ^ as desired. Φ

(b) We give an informal proof using the fact that Fact 10 (a) is provable in PA.

We assume, as we may, that the PR binumeration p(x) of Rfnτ implicit in the nota-

tion RFNj+Rfn is such that PA proves that every sentence satisfying p(x) is of the

form Prτ(θ) -> θ. Suppose Σα c Γ. Now argue in PA + RFNT: "Let ψ be any Γ sen-

tence provable in T + Rfhτ and let PrT((pj) -> φir for i < n, be the members of Rfnτ

occurring in the proof. We may assume that -iPr-ĵ ), for i < n, since those Prτ(φ)

-» φ for which Prτ(φ) are provable in T and we may add the proofs of them to the

original proof. Since -iPrT((pj) —> (Prτ(φj) —»9^) is (trivially) provable in T, it follows

that θ :=

-.Prτ(φ0) Λ...Λ - Prτ(φn) -̂  ψ

is provable in T. By RFNT, Trr(θ). But, by Fact 10 (a) (ii), Trrd^Pr^cpi)), for i < n.

Hence, by Fact 10 (a) (iii), Trr(ψ), as desired."

Proof of Theorem 4. (a) In view of Lemma 3 (a), it follows, by induction, that

T + Rfnτh Conίj!. T + Conίj! is consistent, since T is Σ1-sound, and Con^ is an r.e. set

of Π1 sentences. Thus, by Corollary 2, T + Con^ \f- Rfhτ. Φ

(b) By Lemma 3 (b), T + RFNτh Rfn£ Let Xk = {- Prτ+Rfn(k/τ)(φ): T + Rfn(k,T)l^

φ}. Then, by induction, T + U{Xk: k < n}h Rfn(n+l,T). Let X = U{Xk: keN}. Then

X is a (non-r.e.) set of true Π^ sentences, whence T + X is consistent, and T + Xh

Rfnίj?. Thus, by Theorem 2, T + Rfn^ \t- RFNT.

If T is Σ1-sound then, by Theorem 4 (a), T + Conίjί is a proper subtheory of T +

Rfhτ. In our next result we show that if we restrict ourselves to Π1 sentences, this

is no longer true.
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We write SHΠlS' to mean that S is a Uγ-subtheory of S', i.e. every Γ^ sentence

provable in S is provable in S7.

Theorem 5. If PAH T, then T + RfnτHΠlPA +

In the proof we use the following observation.

Lemma 4. If QH S, then SHΠlPA + Cons.

Proof. Let π be a Πj sentence such that Sh π. Then PAh Prs(π). Since - π is Σ l7 we

also have, PAh - π -> Prs(-ιπ). It follows that PAh ->π -> -«Cons and so PA + Consh

π.

Proof of Theorem 5. Let φ0/ (pi, 92,-. be all sentences of LA. For every theory S, let

It is sufficient to show that for every n, there is a k such that TnHΠ PA + Con(k,T).

By Lemma 4, TnHΠ PA + ConTn and so we need only prove that PA + Con(k,T)h

ConTn.

First we note that

(1) for any sentence φ, PA + Con(2,S)h Cons+Pr ̂  _> φ.

Argue in PA: "Suppose -iCons+Pr /φj _> φ/ in other words, S + Prs(φ) — » φh J_. Then

Sh Prs(φ) and Sh - φ. But then Sh Prs(- φ) and so Sh - Cons/ whence -τCon(2£)"

This proves (1).
We now show that for every n,

(2) for every extension S of PA,
PA + Con(2n+1,S)h ConSn.

For n = 0 this holds, by (1). Suppose (2) holds for n = k. Let S be any extension of

PA. Then

(3) PA proves: PA + Con(2k+1,S) h ConSk,

(4) PA proves: if Con(2k+1,S + ConSk), then (S + ConSk)k is consistent.

Now argue in PA: "Suppose -ιConSk+1/ in other words,

Sk + Prs(φk+1)->φk+1h_L

Then, since SH Sk,

But then, by (1), Sk + ConSkh _L and so

S + ConSk + A{Prs(9i) ̂  Φi: i < k}h 1.

It follows that

S + ConSk + A{Prs+ConSk(9i) -> Φi: i < k}h 1,

in otiier words, (S + ConSk)kh _L. But then, by (4),

(5) -Con(2k+1,S + ConSk).

By (3), we also have

PA + Con(2k+1,S)h ConSk.

From this and (5) we get
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-πCon(2k+1,S + Con(2k+1,S)),

and so, by Lemma 2 (b), -<:on(2k+2,S)."

Thus, we have shown that (2) holds for n = k+1. It follows that (2) holds for all
n. For S = T, this yields the desired conclusion.

For completeness we mention, but do not prove, that PA + RFNT is not a
Πj-subtheory of T + Rfn^; for example, PA + RFNτh Conτ+R£nω.

§2. Irredundant axiomatizability. A set X of sentences is irredundant over T if for

every φeX, T + (X - {φ})h φ. An extension S of T is irredundantly axiomatizable (i.a.)

over T if there is an axiomatization T + X of S such that X is irredundant over T. In

this case we shall also say that T + X is irredundant over T. If S is a finite extension

of T, then S is i.a. over T. A theory is irredundantly axiomatizable (i.a.) if it is i.a. over

the empty theory (logic). If T is i.a. over a finite theory, then T is i.a.

Theorem 6. If PAH T, then T is i.a.

Lemma 5. Suppose X is recursive and S + X is not a finite extension of S. Then S +

X is i.a. over S iff there is a recursive function f(n) such that for every conjunction

χ of members of X, S + Xh f(χ) and Sh χ -> f(χ).

Proof. "If". Let f(n) be as assumed. Let φ0, cpi/ cp2/ be an effective enumeration of
X. Let χn := φ0 Λ...Λ φn. We may assume that SI/ φ0. We effectively define sentences

ψn in the following way. Let ψ0 := (po Suppose ψn has been defined and S + Xh ψn.

We can then effectively find an m such that S + χmh ψn. Let ψn+1 := χm Λ f(χm).

Then S + XHh S + (ψn: ne N}, h ψn+1 -> ψn, and Sh ψn -> ψn+1 for every n. Next let

Θ0 := ΨQ and θn+1 := ψn -> ψn+ι. Again we have S + XHh S + {θn: neN}. For every
n, S+-«θn is consistent. Also I— θn —> θk for every k Φ n. It follows that S + {θk:

k * n}h θn. Thus, S + {θn: ne N} is an axiomatization of S + X which is irredundant

over S.
"Only if". Let S + Y be an axiomatization of S + X which is irredundant over S.

Let χ be a conjunction of members of X. Given χ, we can effectively find a con-

junction ψ of members ψo/ /Ψk of γ sucn tnat S + ψh χ. Since S + X is not finite over
S, we can now effectively find a sentence ΘE Y - {ψ0,. .,Ψk} Let f(χ) = θ; if n is not a

conjunction of members of X, let f(n) = 0. Since S + Y is irredundant over S, it fol-

lows that f(n) is as desired.
Proof of Theorem 6. Let φ be as in Theorem 2.1 with T = Q + χ. If Th χ, then Q + χ

is consistent and so Q + χh φ. By Theorem 2.4, PA + CoriQ+χh φ. Set f(χ) = φ. Then

y. χ _> f(χ). Also, by Corollary 1.8, Th CoriQ+χ and so Th f(χ). The desired conclu-

sion now follows from Lemma 5 with S = 0 and X = T.

To prove the existence of non-i.a. theories we borrow the following lemma from

recursion theory.
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Lemma 6. There is a coinfinite r.e. set H such that for every recursive function h(n)

(such that h(n) < h(n+l) for every n), there is a number m such that {k: h(m) < k <

h(m+l)} c H. (It follows that H is not recursive.)

Theorem 7. There is a Πα (Σj) formula η(x) such that T + fη(k): ke N} is not i.a. over

T.

Proof. Let H be as in Lemma 6. By Theorem 3.3, there is a Π1 (Σj) formula η(x)

numerating H in T and such that if kg H, then

(1) T + {η(m):m*k}*η(k).
Let S = T + (η(k): kEN}. By (1) and since H is coinfinite, S is not finite over T.

Suppose S is i.a. over T. Let φn := η(0) Λ...Λ η(n). By Lemma 5, there is then a recur-

sive function f(n) such that for every n, Sh f(φn) and ΊV φn -» f(φn). There is a recur-

sive function g(n) such that for every n, Th φg/n\ -» f(φn). It follows that ΊV φn —>

φg(n). Let h(0) = 0 and h(n+l) = g(h(n)). Then for every n, ΊV φh(n) -» φh(n+i) But

Th η(k) for ke H. It follows that {k: h(n) < k < h(n+l)} ς£ H for every n, contradict-

ing Lemma 6.

Corollary 4. If T is finite, there is a Πx (Σj) formula η(x) such that T + (η(k): keN}

is not i.a.

Let S = T + (φk: ke N}. Suppose S is i.a. over T. By the proof of Lemma 5, there are

conjunctions ψm of the sentences φk such that if Θ0 := Ψo/ θm+l:= Ψm "̂  Ψm+l/tnen

T + {θk: ke N} is an axiomatization of S which is irredundant over T. However, irre-

dundance has been obtained at the price of a slight increase in complexity: sup-

posing that the sentences φ^ are Γ, it does not follow that this is true of the sen-

tences 6 .̂ Thus, we may ask if irredundance can always be achieved without rais-

ing complexity. By our next result, the answer is negative.

Let us say that S is irredundantly Γ-axiomatizable (i. Γ-a.) over T, if there is an r.e.

set Z c: Γ such that T + Z is an axiomatization of S which is irredundant over T.

Theorem 8. If PAH T, there is a Πn formula ξ(x) such that T + (ξ(k): ke N} is i.a. over

T but not i. Πn-a. over T.

The proof of Theorem 8 uses methods which will be developed in Chapter 5; it is

given at the end of that chapter.

Exercises for Chapter 4.

1. (a) Show that

PA + φ + Rfnsh Rfhs+φ,
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P A + φ + RFNshRFNs+φ.

(b) Let

R£ns(Γ) = (Prs(φ) -> φ: φ is Γ},

RFNS(Γ) := Vx(Γ(x) Λ Prs(x) -> Trr(x)).

(i) Improve (a) by showing that

if φ is Γ, then PA + φ + Rfns(Γd)h Rfns+φ(Γd),

if φ is Γ, then PA + φ + RFNs(Γd)h RFNs+^P1).

(ii) Show that

if QH S, then PA + Consh RίnsίΠ^,

PA + RFNs(Σn)hRFNs(Πn+1).

(iii) Suppose PAH T. Show that

if X c Γ is r.e. and T + Xh Rfnτ(Γd), then T + X is inconsistent,

if X e Γ and T + Xh REN^Γ1), then T + X is inconsistent.

Define the sets Rfh®(Γ) and RFN^Γ) in the natural way. Suppose S and T are true.^ D
Conclude that

T + Rfn^ RFN^),
T + Rfn^ΣJ^ Rfnτ(Πn) for n > 2,

2. Suppose PAH T. Let

RFNτ = (Vx(Γ(x) Λ Prτ(x) -» Trr(x)): Γ arbitrary}.

Let φ be any sentence such that W φ. Show that there is a PR binumeration τ(x) of

T such that T + RFNτ^ φ.

3. Suppose PAH T and T is Σ1-sound.

(a) Show that T + RfnT(Γ) is not essentially infinite over T.

(b) Let S be such that T + Rfnτ(Σ1)H SH T + Rfnτ. Show that S is infinite over T.

[Hint: Use (the proof of) Theorem 5 and Theorem 2.4.]

4. (a) Suppose the formula α(x) is such that for every φ,

if Th φ, then Th α(φ).

Show that there is a sentence ψ such that TV α(ψ) ̂  ψ. [Hint: Use Exercise 1.4.]

(b) Suppose there is a formula α(x) such that for every φ,

if h φ, then Th α(φ),

Th α(φ) — > φ.

Show that T is not finitely axiomatizable. (This also follows by the proof of

Theorem 1 with S = 0.)

5. T is reducible to S if there is a recursive function g(n) such that for all sentences φ,

(i) Th g(φ) and (ii) if Th φ, then Sh g(φ) -» φ. If T is a finite extension of S, T = S +

θ, then T is reducible to S: let g(φ) = θ for every φ. Prove the following result, a

strengthening of Theorem 1: if RfnsH T, T is not reducible to S. [Hint: Suppose T is
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reducible to S and let g(n) be the relevant recursive function. Let δ(x,y) be such that

for every sentence φ,

Qh δ(φ,y) <-> y = (g(φ)->φ)
(cf. Fact 3). Let ψ be such that

Qhψ^Ξy(δ(ψ,y)Λ-Prs(y)).

Show that Th ψ and Qh - ψ.]

6. (a) Suppose SΫ φ and S + iφ + Z is non-i.a. over S + ->φ. Show that

S + {φ v ψ: ψeZ} is non-i.a. over S.

(b) Suppose THpT'. Show that

(i) there is a theory S such that TH SH T' and S is not i.a. over T,

(ii) if T is finitely axiomatizable, there is a theory S such that TH SH T7 and S is not

i.a.

7. Suppose PAH T. Let X and Y be any r.e. sets of Γ sentences such that if φe X and

ψe Y, then Th φ -> ψ. Show that there is a Γ sentence θ such that if φG X and ψe Y,

then Th φ -^ θ and Th θ —» ψ. [Hint: Suppose Γ = Πn. Suppose X and Y are primi-

tive recursive. Let ξ(x) and η(x) be PR binumerations of X and Y. Let θ :=

Vx(η(x) A Vy<x(ξ(y) -> -TrΠn(y)) ̂  TrΠn(x)).]

8. Suppose PAH T and T is Σ^-sound.

(a) Show that there is a Πj formula β(x) such that

for every m, T + β(m) is consistent and

T + β(m)h Conτ+β(m+1).

(Note that if T is true, so are the theories T + β(m).) [Hint: Let the primitive recur-

sive function f be defined (in T and in the real world) as follows; we assume that

δ(x) is a PR formula:

f(δ,ξ,0) = 0,

f(δ,ξ,n+l) = m if m > f(δ,ξ,n),

Vz<m->δ(z),

n is a proof in T of -iξ^m),

if there is such a number m,

= f(δ,ξ,n) otherwise.

If the value of f(k,m,n) is not determined by these conditions, it is irrelevant and

we may set f(k,m,n) = 0.

Next let γ(z,x) be such that

PAhγ(z,x)^Vy(f(z,γ,y)<x).

Letg(k,s) = f(k,γ,s).

Claim. If Ξlxδ(x) is true, then for every n, g(δ,n) = 0.

Proof. Let k be the least number such that δ(k) is true. Then for every n, g(δ,n) < k.

Thus, if the claim is false, there is a largest n such that g(δ,n) Φ g(δ,n+l). Let m =

g(δ,n+l). Then n is a proof of - γ(δ,m). It follows that ^y(g(δfy) < m) is provable
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and so is true, a contradiction.

Let δ'(x) be a PR formula such that

PAh Ξxδ'(x) o Prτ(-Vy(g(δ',y) = 0)).

Letβ(x):=Vy(g(δ',y)<x).]

(b) Show that with each rational number a > 0, we can effectively associate a Γ^

sentence θa such that T + θa is consistent and if a < b, then T + θah Conτ+θb. [Hint:

Define a function g in much the same way as in case (a) except that g may, in a
sense, take rational numbers > 0 as values.]

Notes for Chapter 4.

Theorems 1 and 2 are due to Kreisel and Levy (1968). The formula Prs Γ(x) and the

present formulation of the proof of Theorem 2 are due to Smoryήski (1981b).

Corollary 1 (a) is due to Montague (1961) and Rabin (1961). What we have called

the uniform reflection principle RFNS is not quite what is usually referred to by

that term, but for theories containing PA the difference is negligible. Theorem 3 is
due to Lindstrom (1984a). Corollary 2 is due to Kreisel and Levy (1968). Theorem

4 (b) is a weak form of a result of Feferman (1962). For (partial) improvements of

Theorems 1,2,4 and Corollaries 1,2, see Exercise 1. Theorem 5 is due to Goryachev

(1986) (with a different proof); the bound 2n+1 obtained in the proof is far from

optimal; using methods not explained here, it can be shown that n+2 will do (cf.

also Beklemishev (1995)).

More information on (transfinite) iterations of consistency statements and

reflection principles, a rather technical subject which falls outside the scope of this

book, can be found in Feferman (1962) and Beklemishev (1995).

What we have called an irredundant axiomatization is usually called an inde-

pendent axiomatization. Theorem 6 is due to Montague and Tarski (1957). Lemma

5 is due to Tarski (cf. Montague and Tarski (1957)). For a proof of the existence of

an r.e. set as described in Lemma 6, a so called hypersimple set, see Soare (1987). The

idea of using hypersimple sets to construct non-i.a. theories is due to Kreisel

(1957). Theorem 7 is related to a result of Pour-El (1968) and Corollary 4 is

Pour-EΓs result restricted to theories in LA. Theorem 8 is new; Theorem 8 with Πn

replaced by Σ^ and restricted to Σn-sound theories is also true but seems to require

a quite different proof.
Exercise 3 (b) is due to Beklemishev (199?). Exercise 4 is due to Montague (1963).

Exercise 5 is due to Kreisel and Levy (1968). Exercise 8 (a) was proved by Harvey

Friedman, Smoryήski, and Solovay, independently, answering a question of Haim

Gaifman; for a different proof, due to Friedman, see Smoryήski (1985), p. 179.

Exercise 8 (b) is due to Alex Wilkie (with a different proof); see Simmons (1988).

The present proof can be modified to yield much stronger conclusions.




