4. AXIOMATIZATIONS

S is an axiomatization of T if SH+T. Suppose S T. S + X is an axiomatization of T over
S if X is re. and THF S + X. In this chapter we discuss some important properties
of axiomatizations: finiteness, boundedness, and irredundance.

§1. Finite and bounded axiomatizability; reflection principles. We shall say that
T is a finite extension of S if there is a sentence ¢ such that T4F S + @. T is essentially
infinite over S if no consistent extension of T is finite over S. T is essentially infinite if
T is essentially infinite over the empty theory (logic). We already know that PA is
essentially infinite (Corollary 2.1).

By the local reflection principle for S we understand the set

Rfng = {Prg(9) — ¢: ¢ any sentence of L}.

Thus, Ring is a piecemeal (local) way of saying that every sentence provable in S is
true. (The latter statement, the full (global) reflection principle for S, cannot be
expressed in T, since, by the Godel-Tarski theorem, truth is not definable.)

Clearly PA + RfntF Conr (let ¢ := 1). Also note that T is essentially reflexive iff
TF Rfn)y for every k (cf. Corollary 1.9 (b)).

We now use the local reflection principle to construct an essentially infinite
extension of a given theory S. Note that Rfng- T implies S T.

Theorem 1. If Rfng T, then T is essentially infinite over S.

Proof. Suppose T S + 8. We are going to show that S + 6 is inconsistent. Let y be
such that
(1) QF y e Prg,q(¥).
By hypothesis,
TF Prg(6—vy) — (6 - ).
From this and (1) it follows that Tk 8 — . But then
(2) S+6Fy.
It follows that QF Prg,¢(y) and so, by (1), QF —y. But Q4 S + 6 and so, by (2), S +
0 is inconsistent. W
If PA4 T, the conclusion of Theorem 1 can be strengthened; see Corollary 2,
below.
There is a stronger principle, the uniform reflection principle, which is a better
approximation than Rfng of the full reflection principle for S, namely,
RENg = {Vx(['(x) A Prg(x) — Trp(x)): I arbitrary}.
Clearly T + RENgl Rfng provided that PA4 T. Applying the uniform reflection
principle we can derive a stronger conclusion than in Theorem 1.
A set X of sentences is bounded if X € T for some T'. Let Prfg (x,y) :=
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3z(I'(z) A Trp(z) A Prfg,,(x,y))
and let Prg r(x) := JyPrfg (xy).

Lemma 1. For every ¢,
PA + RFNgt Prg r(¢) — o.

Proof. Suppose ¢ is I'd. Argue in PA + RENg: “Suppose Prg r(9). There is thena I’
sentence y such that Tr(y) and Prg(y—9). By RENg, Vz(I'd(z) A Prg(z) — Trpd(z)).
Since ¥ — ¢ is 'Y, it follows that Trrd(y—9). But Trp(y). Consequently, by Fact 10
(a) Trpd(@) and so @, as desired.” W

Theorem 2. Suppose PA4 T and T+ RFNGg. If X is any bounded (not necessarily r.e.)
set of sentences such that T4'S + X, then S + X is inconsistent.

Proof. Let T" be such that X C I'. Suppose T4 S + X. We are going to show that S +
X is inconsistent. Let y be such that
(1)  PAF y & ~Prg ().
By Lemma 1,
Tk Prg r(y) —» v.

From this and (1) it follows that T+ y and so
(20 S+Xkw.
But then there is a conjunction 8 of members of X such that S + 6F y. It follows that
T + 0k Trp(6) A Prg,g(y) and so T + 6F Prg r(y), whence, by (1), T + 6F -y and so
S + XF ~y. Thus, by (2), S + X is inconsistent. B

Note the obvious analogy between the proofs of Theorems 1 and 2, on the one
hand, and the proof of Gddel’s theorem (Theorem 2.1), on the other. Note also that
if T is Z;-sound, then X = {-=Pr(9): T¥# ¢} is a (non-r.e.) set of I1; sentences such
that T + Rfngd T + X and T + X is consistent.

Since PAF RFNg; (Fact 11), we have (a) of the following corollary, improving
Corollary 2.1.

Corollary 1. (a) There is no consistent bounded set X such that PA- X.
(b) If PAH T, there is no bounded set X such that T + RENp4 T + Xand T + X is

consistent.

If PA- S, the above proof of Theorem 2 can be replaced by the following simple
argument; the proof of Theorem 1 can be simplified in a similar way. Let
x = VX(I'(x) A Prg(x) = Trp(x)).
Now let 8 be any I'd sentence such that S + 6F x. Then S + 6+ —Prg(—6), whence S
+ 0F Cong,g and so S + 8 is inconsistent, by Theorem 2.4.
This argument and (a somewhat more detailed version of) the above proof of
Theorem 2 can be looked at from a different point of view which will be further
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elaborated in Chapter 5: Let ¢ be any I sentence such that S + ~x+ ¢. Then S + -}
x and so Sk @. Thus, ~y is [—conservative over S in the sense that if ¢ is any I" sen-
tence and S + -yt o, then Sk ¢.

Next we show that if PAH T, no bounded extension of T is essentially infinite
over T (and a bit more).

Theorem 3. Suppose PA4 T, let X be an r.e. set of I' sentences, and let Y be any r.e.
set of sentences such that T + X¥ y for every ye Y. There is then a I' sentence 6 such
that T + 6F X and T + 6k y for every yeY.

Proof. By Craig’s theorem, we may assume that X and Y are primitive recursive.
Let &(x) and n(x) be PR binumerations of X and Y, respectively.
Case 1. T'=TI1,,. Let 6 be such that
PAF 6 < Vy(E(y) A Vzusy(n(z) — —Prfr,g(z,0)) - Trnn(y)).
Suppose yeY and T + 6F y. Let p be a proof of y in T + 8 and let q = max{p,y}.
Then
(1) PAFVzusy(n(z) » —Prfre(zu)) >y <q.
Let ¢g,..., ¢, be those members of X which are < q. Then, by (1) and Fact 10 (a) (ii),
PA + @y +..+ @ 6,
whence T + XF 68 and so T + Xk y, contrary to hypothesis. Thus, T + 6 y for all
yeY. But then
PAFVzusr(n(z) — -Prfr,g(z,u))
for all r. It follows that T + 8F X, as desired.
Case 2. T=Z,,. Let 6 be such that
PAF 8 & Fy(Jzusy(n(z) A Prir,g(z,w) A Vz<y(E(z) > Trzn(z))).
The verification that 0 is as desired is left to the reader. B
From Theorem 1 and Theorem 3 with Y = {1} we get the following:

Corollary 2. Suppose PA- T. If X is any bounded r.e. set of sentences such that
Rfng T + X, then T + X is inconsistent.

Suppose T is Z;-sound. We have already mentioned that PA + Rfnt+ Cont. By
Theorem 1, T + ConyH Rfnt. Clearly PA + RENTF Rfnt. It has been pointed out that
T + {-Pry(9): TH ¢} is a consistent, bounded extension of T + Rfny. Thus, by
Theorem 2, if PA4 T, then T + Rfnpl RENT. These observations can be strengthened
as follows.

We define the sentences Con(n,S), for n > 0, by: Con(1,S) := Cong, Con(n+1,5) :=
Con(1,S + Con(n,S)). Let

Con‘so = {Con(n,S): n > 0}.
The proof of the following lemma is straightforward and left to the reader.

Lemma 2. (a) If k > m > 0, then
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PAF Con(k,S) —» Con(m,S).
(b) For allk, m >0,
PAF Con(k,S + Con(m,S)) <> Con(k+m,S).

The sets Rfn(n,S) are defined as follows: Rfn(0,S) = &, Rfn(1,S) := RfnS, Rfn(n+1,S)
:= Rfn(1,S + Rfn(n,S)). Next let

Rfng = U{Rfn(n,S): ne N}.
We write SH,5 to mean that S is a proper subtheory of §'.

Theorem 4. Suppose PA- T and T is Z;-sound.
(@) T+ Con7-,T + Ring.
®)T+ Rf'n‘.’r)-|pT + RENT.

Lemma 3. (a) PA + Ringk Rfnr,cong-
(b) PA + RENTF RFNT, Rfn -

Proof. (a) Let ¢ be any sentence.

PA + Rfngt Prp(Cont — ¢) = (Cont — ¢).
But, as we have already observed, PA + Rfntl Conr. It follows that PA + Rfngthk
Prr,con(9) = @, as desired.

(b) We give an informal proof using the fact that Fact 10 (a) is provable in PA.
We assume, as we may, that the PR binumeration p(x) of Rfnt implicit in the nota-
tion RFNT, Ry is such that PA proves that every sentence satisfying p(x) is of the
form Prp(8) — 6. Suppose Z; € I'. Now argue in PA + RFNT: “Let y be any I sen-
tence provable in T + Rfny and let Pry(g;) — ¢;, for i < n, be the members of Ring
occurring in the proof. We may assume that =Pry(¢g;), for i < n, since those Prr(o)
— ¢ for which Prp(¢) are provable in T and we may add the proofs of them to the
original proof. Since =Prr(¢;) = (Prr(@;) — @) is (trivially) provable in T, it follows
that 6 :=

“Prp(@g) A...A “Prp(e,) = v
is provable in T. By RFNr, Trp(6). But, by Fact 10 (a) (ii), Trpd(-Pr(9;)), for i < n.
Hence, by Fact 10 (a) (iii), Tr(y), as desired.” B
Proof of Theorem 4. (a) In view of Lemma 3 (a), it follows, by induction, that
T + Rfngk Confi.’. T+ Confi.’ is consistent, since T is £;-sound, and Con.‘;.’ isanr.e. set
of I1; sentences. Thus, by Corollary 2, T + Con,‘r" ¥ RfnT. ¢

(b) By Lemma 3 (b), T + RENtH anf}) Let Xy = {-Pry +Rf-n(k,T)(‘P): T + Rin(k,T)¥
¢}. Then, by induction, T + U(X: k < n}i Rfn(n+1,T). Let X = U{X: ke N}. Then
X is a (non-r.e.) set of true IT; sentences, whence T + X is consistent, and T + X
an‘.i.’ Thus, by Theorem 2, T + Rf-nfl‘.’ ¥ RFNT. B

If T is £;-sound then, by Theorem 4 (a), T + Con‘l‘.) is a proper subtheory of T +
Rfnt. In our next result we show that if we restrict ourselves to Il; sentences, this
is no longer true.
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We write SHpy,S’ to mean that S is a I1j—subtheory of §’, i.e. every II; sentence
provable in S is provable in S’.

Theorem 5. If PA- T, then T + Rfnp;, PA + ConT.
In the proof we use the following observation.
Lemma 4. If Q1 S, then S-p; PA + Cong.

Proof. Let ©t be a I1; sentence such that Sk n. Then PAF Prg(n). Since —m is £}, we
also have, PAF -1t — Prg(-m). It follows that PAF -n — -Cong and so PA + Congl
n. l
Proof of Theorem 5. Let ¢, @, @,,... be all sentences of L. For every theory S, let

S, =5+ A{Prg(g;) = ¢ i<n}.
It is sufficient to show that for every n, there is a k such that T,4p, PA + Con(k,T).
By Lemma 4, T ;- 1PA + ConTn and so we need only prove that PA + Con(k,T)F
Conr,.

First we note that
(1)  for any sentence ¢, PA + Con(2,5)F Cong,prg(g) - ¢-
Argue in PA: “Suppose ~Cong, pr¢() - ¢ in Other words, S + Prg(¢) — o L. Then
Sk Prg(¢) and Sk —¢. But then Sk Prg(—¢) and so Sk ~Cong, whence ~Con(2,5).”
This proves (1).
We now show that for every n,

(2) for every extension S of PA,

PA + Con(27+1,5)F Cong,.
For n = 0 this holds, by (1). Suppose (2) holds for n = k. Let S be any extension of
PA. Then
(3) PA proves: PA + Con(2k+1 S)F Cong,,
(4)  PAproves: if Con(2k+1S + Cong,), then (S + Cong, )y is consistent.
Now argue in PA: “Suppose -Cong, _,, in other words,

Sk + Prg(@y41) = Qb L.
Then, since 51 S,

S + Prg (@x+1) = Qrab L.
But then, by (1), Sy + Cong, F- L and so

S+ Cong, + A{Prg(@;) = @i <k}F L.
It follows that

S+ Cong, + A{Pr5+C0nsk((pi) = @si<kiF L,
in other words, (S + Cong, )i L. But then, by (4),
(5) —Con(2k+1S + Cong,).
By (3), we also have

PA + Con(2k+1 S)- Cong, .
From this and (5) we get
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-Con(2k+1 S 4+ Con(2k+1,9)),
and so, by Lemma 2 (b), ~Con(2k+2,S).”
Thus, we have shown that (2) holds for n = k+1. It follows that (2) holds for all
n. For S =T, this yields the desired conclusion. B
For completeness we mention, but do not prove, that PA + RFN7 is not a
I1;-subtheory of T + anfi.’; for example, PA + RFNt+ Cont +Rfn®:

§2. Irredundant axiomatizability. A set X of sentences is irredundant over T if for
every ¢e X, T + (X - {¢})¥ ¢. An extension S of T is irredundantly axiomatizable (i.a.)
over T if there is an axiomatization T + X of S such that X is irredundant over T. In
this case we shall also say that T + X is irredundant over T. If S is a finite extension
of T, then S is i.a. over T. A theory is irredundantly axiomatizable (i.a.) if it is i.a. over
the empty theory (logic). If T is i.a. over a finite theory, then T is i.a.

Theorem 6. If PAH T, then T is i.a.

Lemma 5. Suppose X is recursive and S + X is not a finite extension of S. Then S +
X is i.a. over S iff there is a recursive function f(n) such that for every conjunction
x of members of X, S + XF f(x) and S¥ x — f(x).

Proof. “If”. Let f(n) be as assumed. Let @g, 1, @,,... be an effective enumeration of
X. Let x5 := @g A-..A 9. We may assume that S¥ ¢q. We effectively define sentences
y,, in the following way. Let yj := @g. Suppose y,, has been defined and S + XF ..
We can then effectively find an m such that S + x,F ¥, Let W1 = %m A fXm)-
Then S + X4k S + {y,: ne N}, F w1 = v, and S¥ y, = y,,, for every n. Next let
0 := Yg and 6,1 := Y, = Yp,q- Again we have S + XHF S + {6,: ne N}. For every
n, S+-0, is consistent. Also F -6, — 6, for every k # n. It follows that S + {6}:
k #n}l 6,. Thus, S + {6,;: ne N} is an axiomatization of S + X which is irredundant
over S.

“Only if”. Let S + Y be an axiomatization of S + X which is irredundant over S.
Let x be a conjunction of members of X. Given y, we can effectively find a con-
junction y of members ...,y of Y such that S + yt . Since S + X is not finite over
S, we can now effectively find a sentence 8 Y — {y,..., yi}. Let f(x) = 6; if nis not a
conjunction of members of X, let f(n) = 0. Since S + Y is irredundant over §, it fol-
lows that f(n) is as desired. B
Proof of Theorem 6. Let ¢ be as in Theorem 2.1 with T=Q + x. If Tk x, then Q +
is consistent and so Q + ¥ ¢. By Theorem 2.4, PA + Cong, +xl— ¢. Set f(x) = ¢. Then
# x — f(x). Also, by Corollary 1.8, Tk Cong,, and so Tk f(x). The desired conclu-
sion now follows from Lemma 5 withS=J and X=T. R

To prove the existence of non-i.a. theories we borrow the following lemma from
recursion theory.
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Lemma 6. There is a coinfinite r.e. set H such that for every recursive function h(n)
(such that h(n) < h(n+1) for every n), there is a number m such that {k: h(m) <k <
h(m+1)} ¢ H. (It follows that H is not recursive.)

Theorem 7. There is a I1; (£;) formula n(x) such that T + {n(k): ke N} is not i.a. over
T.

Proof. Let H be as in Lemma 6. By Theorem 3.3, there is a I1; (Z;) formula n(x)
numerating H in T and such that if k¢ H, then

1) T+ {n(m): m = k}¥ n(k).

Let S =T + {n(k): keN}. By (1) and since H is coinfinite, S is not finite over T.
Suppose Sisi.a. over T. Let @, := n(0) A...AN(n). By Lemma 5, there is then a recur-
sive function f(n) such that for every n, Sk f(¢,) and T¥ ¢, — f(¢,). There is a recur-
sive function g(n) such that for every n, Tk @g(,) = f(¢y,). It follows that T# ¢, —
Pgm) Let h(0) = 0 and h(n+1) = g(h(n)). Then for every n, TH Qpn) = Pn(n+1)- But
TF n(k) for ke H. It follows that {k: h(n) < k < h(n+1)} € H for every n, contradict-
ing Lemma 6. W

Corollary 4. If T is finite, there is a I1; (£;) formula n(x) such that T + {n(k): ke N}
is not i.a.

Let S =T + {¢: ke N}. Suppose S is i.a. over T. By the proof of Lemma 5, there are
conjunctions Y, of the sentences @) such that if 8 := yg, 0141 = W = Y1, then
T + {6, ke N} is an axiomatization of S which is irredundant over T. However, irre-
dundance has been obtained at the price of a slight increase in complexity: sup-
posing that the sentences @ are T, it does not follow that this is true of the sen-
tences 6. Thus, we may ask if irredundance can always be achieved without rais-
ing complexity. By our next result, the answer is negative.

Let us say that S is irredundantly I-axiomatizable (i. I-a.) over T, if there is an r.e.
set Z ¢ I" such that T + Z is an axiomatization of S which is irredundant over T.

Theorem 8. If PA- T, there is a IT, formula §(x) such that T + {§(k): ke N} is i.a. over
T but not i. I,-a. over T.

The proof of Theorem 8 uses methods which will be developed in Chapter 5; it is
given at the end of that chapter.

Exercises for Chapter 4.
1. (a) Show that
PA + ¢ + Rfngt Ring,
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PA + ¢ + RFNgt RFNg .
(b) Let
Ring(I') = {Prg(¢) — ¢: 9 is T},
RFNg(I) := VX(I'(x) A Prg(x) = Trp(x)).
(i) Improve (a) by showing that
if  is T, then PA + @ + Rfng(T9)F Ring, ,(T'Y),
if ¢ is T, then PA + @ + RFNg(I'9)F RFNg, ().
(ii) Show that
if Q- S, then PA + Congt Rfng(IT),
PA + RFNg(Z,)F RFNg(IT,,,1)-
(iii) Suppose PA- T. Show that
if Xc Tisre. and T + Xk Rfnp(I'd), then T + X is inconsistent,
ifXCTland T + Xk RFNT(I'd), then T + X is inconsistent.
Define the sets an;’(l") and RPNg’ (T) in the natural way. Suppose S and T are true.
Conclude that
T+ ang’}f RFN(Z;),
T+ Rf'ng‘()_“.n)l* Rfn(IT,) forn >2,
T+ RFNg’(I'[n)b‘ Rfnp(Z,).

2. Suppose PA- T. Let

REN; = {Vx(I'(x) A Pry(x) = Trp(x)): I' arbitrary}.
Let ¢ be any sentence such that T# ¢. Show that there is a PR binumeration 1(x) of
T such that T + REN_F ¢.

3. Suppose PA4 T and T is Z;-sound.

(a) Show that T + Rfny(I') is not essentially infinite over T.

(b) Let S be such that T + Rfny(Z4)4 S4 T + Rfnt. Show that S is infinite over T.
[Hint: Use (the proof of) Theorem 5 and Theorem 2.4.]

4. (a) Suppose the formula o(x) is such that for every o,
if Tk @, then T+ a(g).
Show that there is a sentence y such that TF a(y) — y. [Hint: Use Exercise 1.4.]
(b) Suppose there is a formula a(x) such that for every o,
if F @, then T+ o(o),
TF o) > o.
Show that T is not finitely axiomatizable. (This also follows by the proof of
Theorem 1 with S =.)

5. T is reducible to S if there is a recursive function g(n) such that for all sentences ¢,
(i) TF g(o) and (ii) if TF @, then Sk g(¢) — ¢. If T is a finite extension of S, T =S +
6, then T is reducible to S: let g(¢) = 0 for every ¢. Prove the following result, a
strengthening of Theorem 1: if Rfng T, T is not reducible to S. [Hint: Suppose T is
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reducible to S and let g(n) be the relevant recursive function. Let §(x,y) be such that
for every sentence ¢,
QF 3(q,y) &y = (g(¢)—=9)
(cf. Fact 3). Let y be such that
QF y © Jy(3(y,y) A ~Prg(y))-
Show that Tk y and QF -]

6. (a) Suppose S¥ ¢ and S + =@ + Z is non-i.a. over S + =¢. Show that
S + {¢ v y: ye Z} is non-i.a. over S.
(b) Suppose T-,T". Show that
(i) there is a theory S such that T4 S4 T” and S is not i.a. over T,
(i) if T is finitely axiomatizable, there is a theory S such that T4 S T” and S is not
la.

7. Suppose PA- T. Let X and Y be any r.e. sets of I' sentences such that if e X and
yeY, then TF ¢ — y. Show that there is a I sentence 0 such that if ge X and ye,
then TF ¢ — 6 and T+ 6 — y. [Hint: Suppose I' = I1,,. Suppose X and Y are primi-
tive recursive. Let §(x) and 1(x) be PR binumerations of X and Y. Let 6 :=

vx(n(x) A Yysx(&(y) = T (y)) = Trp, (x)).]

8. Suppose PA4 T and T is ¥1—sound.
(a) Show that there is a IT; formula B(x) such that
for every m, T + B(m) is consistent and
T + B(m)t Cony,gm+1)-
(Note that if T is true, so are the theories T + B(m).) [Hint: Let the primitive recur-
sive function f be defined (in T and in the real world) as follows; we assume that
d(x) is a PR formula:

£(5,£,0) =0,
f(8,£n+1) = m if m > £(3,§,n),
Vz<m-9(z),

nis a proof in T of —&(3,m),
if there is such a number m,
= f(§,,n) otherwise.
If the value of f(k,m,n) is not determined by these conditions, it is irrelevant and
we may set f(k,mn) = 0.
Next let y(z,x) be such that
PAF Y(z,x) & Vy(f(z,yy) < X).
Let g(k,s) = f(k,7.s).
Claim. If 3x3(x) is true, then for every n, g(§,n) = 0.
Proof. Let k be the least number such that §(k) is true. Then for every n, g(8,n) < k.
Thus, if the claim is false, there is a largest n such that g(§,n) # g(§,n+1). Let m =
g(dn+1). Then n is a proof of —y(§,m). It follows that ~Vy(g(8,y) < m) is provable
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and so is true, a contradiction.
Let 8'(x) be a PR formula such that
PAF 3x8'(x) &> Prp(-Vy(g(&',y) = 0)).
Let B(x) := Vy(g(&'y) <x).]

(b) Show that with each rational number a > 0, we can effectively associate a I
sentence 6, such that T + 6, is consistent and if a < b, then T + 0,+ Conr,g,. [Hint:
Define a function g in much the same way as in case (a) except that g may, in a
sense, take rational numbers > 0 as values.]

Notes for Chapter 4.

Theorems 1 and 2 are due to Kreisel and Lévy (1968). The formula Prg (x) and the
present formulation of the proof of Theorem 2 are due to Smorynski (1981b).
Corollary 1 (a) is due to Montague (1961) and Rabin (1961). What we have called
the uniform reflection principle RFNg is not quite what is usually referred to by
that term, but for theories containing PA the difference is negligible. Theorem 3 is
due to Lindstrom (1984a). Corollary. 2 is due to Kreisel and Lévy (1968). Theorem
4 (b) is a weak form of a result of Feferman (1962). For (partial) improvements of
Theorems 1, 2, 4 and Corollaries 1, 2, see Exercise 1. Theorem 5 is due to Goryachev
(1986) (with a different proof); the bound 27+ obtained in the proof is far from
optimal; using methods not explained here, it can be shown that n+2 will do (cf.
also Beklemishev (1995)).

More information on (transfinite) iterations of consistency statements and
reflection principles, a rather technical subject which falls outside the scope of this
book, can be found in Feferman (1962) and Beklemishev (1995).

What we have called an irredundant axiomatization is usually called an inde-
pendent axiomatization. Theorem 6 is due to Montague and Tarski (1957). Lemma
5 is due to Tarski (cf. Montague and Tarski (1957)). For a proof of the existence of
an r.e. set as described in Lemma 6, a so called hypersimple set, see Soare (1987). The
idea of using hypersimple sets to construct non—i.a. theories is due to Kreisel
(1957). Theorem 7 is related to a result of Pour-El (1968) and Corollary 4 is
Pour-El's result restricted to theories in L. Theorem 8 is new; Theorem 8 with IT,,
replaced by %, and restricted to X —sound theories is also true but seems to require
a quite different proof.

Exercise 3 (b) is due to Beklemishev (199?). Exercise 4 is due to Montague (1963).
Exercise 5 is due to Kreisel and Lévy (1968). Exercise 8 (a) was proved by Harvey
Friedman, Smoryriski, and Solovay, independently, answering a question of Haim
Gaifman; for a different proof, due to Friedman, see Smorynski (1985), p. 179.
Exercise 8 (b) is due to Alex Wilkie (with a different proof); see Simmons (1988).
The present proof can be modified to yield much stronger conclusions.





