
2. INCOMPLETENESS

The methods of arithmetization and self-reference were originally used to prove

incompleteness theorems for arithmetical theories. In this chapter we present the

most important theorems of this type.

A sentence φ (in the language of S) is undecidable in S if Sl^ φ and SI/ - φ. S is com-

plete if no sentence is undecidable in S, otherwise incomplete.

§1. Incompleteness. We begin with the first and most important result of the whole

subject, GόdeΓs incompleteness theorem (for theories in LA).

Theorem 1. Let φ be a Π1 sentence such that

(G) Qh φ <-» -Prτ(φ).

Then φ is true and TI/ φ. Thus, if T is Σ1~sound, then also TI/ -«φ.

Proof. Suppose Th φ. Then, by Fact 7 (b), Qh Prτ(φ). But then, by (G), Qh ->φ and

so Th -»φ. It follows that T is inconsistent, contrary to Convention 2. Thus, Ί\f φ. By

(G), φ is true. Thus, -«φ is a false Σ^ sentence and so TI/ - φ if T is Σ1-sound.

Notice the close similarity between the proofs of Theorem 1, Lemma 1.2, and

Theorem 1.3 (the liar paradox).

To derive the conclusion that TI/ -tφ in Theorem 1, we needed the assumption

that T is Σ1-sound. We can now see that this is stronger than mere consistency: T +

-ιφ is consistent but not Σ1-sound. (Note that it does not follow from Theorem 1

that T + -iφ is incomplete.) Thus, the question arises if, assuming consistency only,

there is a (Π^) sentence which is undecidable in T. Our next result, known as

Rosser's theorem, shows that the answer is affirmative.

Theorem 2. Let θ be a Πj sentence such that

(R) Qh θ o Vz(Prfτ(θ,z) -> au<zPrfτ(--θ,u)).

Then θ is undecidable in T

Proof. We first prove that TI/ θ. Suppose, for reductio ad absurdum, Th θ and let p be

a proof of θ in T. Then, by Fact 7 (a),

(1) Qh Prfτ(θ,p).

Since T is consistent, we have TI/ -^θ. By Fact 7 (d), Qh -iPrfjί-^q) for every q. But

then, by Fact 1 (iv),

Qh u < p -» -ϊPrfτ(- θ,u).

Combining this with (1) we get

Qh az(Prfτ(θ,z) Λ Vu<z-Prfτ(-.θ,u)).

But then, by (R), Qh - θ and so Th -«θ, a contradiction. Thus, W θ as desired.
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Next we prove that Th ->θ. Suppose Th - θ and let p be a proof of ->θ in T. Then

TH θ and so, by Fact 7 (d), Qh - Prfτ(θ,q) for every q. By Fact 1 (iv), it follows that

Qh z < p -> -Prfτ(θ,z),

whence, by Fact 1 (v),

(2) Qh Prfτ(θ,z) -» p < z.

By Fact 7 (a), Qh Prfτ(- θ,p). Hence, trivially,

Qh p < z -* au<zPrfτ(- θ,u).

Combining this with (2) and (R) we get Qh θ and so Th θ, again a contradiction. It

follows that Th -«θ, as desired.

Arguments similar to the above proof will occur time and again in the follow-

ing pages.

Theorem 2 can also be proved by considering a Σ1 sentence ψ such that

(R7) Qh ψ ̂  3z(PτίΊ(-ι\\t,z) Λ Vu<z-ιPrfτ(ψ,u)),

a condition that is, of course, (almost) satisfied by - θ, where θ is as in (R). A sen-

tence satisfying (R) or (R') is called a Rosser sentence for T.

The difference between (the proofs of) Theorems 1 and 2 can be described in the

following way. The formula ξ(x) := Prτ(x) used in the former has the properties:

(i) if Th φ, then Th ξ(φ), and (ii) if Th-Kp, then (Th φ and so) ξ(φ) is false. The cor-

responding formula which is (almost) used in the latter,

ξ(x) := Ξz(Prfτ(x,z) Λ Vu<z-.Prfτ(- x,u)),

satisfies (i) and (iii): if Tl—'(p, then Tl—'ξ(φ). From (i) and (iii) it follows at once that

if

Thψ4-»-ξ(ψ)

(or Th ψ <-̂  ξ(- ψ)), then ψ is undecidable in T.
If PAH T, the above proof of Theorem 2 can be replaced by the following argu-

ment. Suppose Th θ. Then TI/ ->θ. By (R), it follows that ->θ is true and so, -»θ being

ΣI, Th -iθ, by Fact 9 (a), a contradiction. (This part does not use the assumption that

PAH T.) Next suppose Th -iθ. Then TM θ. But then, by Corollary 1.10 (a) and (R), Th

θ, again a contradiction.

That T is incomplete also follows from Theorem 1.2, since every complete r.e.

theory is decidable. This proof, however, does not (directly) yield an example of a

sentence undecidable in T. Furthermore, the present proof of Theorem 1 is needed

in the proof of Theorem 4, below.

That every complete r.e. theory U is decidable is seen as follows: If U is incon-

sistent, decidability is trivial; thus, suppose U is consistent. Let φ be any sentence

of U. To decide whether or not φe Th(U), generate, in some effective way, all proofs

in U. If a proof of φ is found, conclude that φG Th(U); if a proof of - φ is found, con-

clude that φ£Th(U).

Conversely, Theorem 1.2 follows from Theorem 2. Indeed, suppose U is a con-

sistent, decidable extension of Q. There is then a complete, recursive, consistent

extension U' of U. U' is an extension of Q. Hence, by Craig's theorem (Theorem

1.1), there is a complete, consistent primitive recursive extension of Q. This, how-
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ever, contradicts Theorem 2.

That any consistent, decidable theory U has a complete, consistent, decidable

extension can be seen as follows: Let φ0, (p^,... be an effective enumeration of all sen-

tences of the language of U. Define Un by: U0 = U, Un+1 = Un + φn if Un \f -»φn, Un+1

= Un + -ιφn otherwise. Let U' = LJ{Un: neN}. Then U' is complete and consistent.

By assumption, it can be effectively decided whether Unh -ιφn or not. It follows
that U' is decidable.

Theorem 2 can be strengthened as follows. A family {Tk: ke N} of theories is r.e.
if the binary relation φe Tk is r.e.

Theorem 3. If {Tk: ke N} is an r.e. family of theories, there is a Hi sentence which is

simultaneously undecidable in all the theories T .̂

We derive Theorem 3 from the following slight improvement of Theorem 2.

Let us say that a set X of sentences is monoconsistent with T if T + φ is consistent

for every φe X. Thus, for example, if φ is undecidable in T, then {φ, -iφ} is mono-

consistent with T. Also, if X and Y are monoconsistent with T, so is X u Y. Let φ° :=
φ and φ1 := - φ.

Lemma 1. If X is r.e. and monoconsistent with Q, then there is a Γ^ sentence θ such

that θ i ίX / i = 0,1.

Proof. The proof is almost the same as the proof of Rosser's theorem. Let R(k,m) be

a primitive recursive relation such that X = {k: ΞmR(k,m)} and let p(x,y) be a PR

binumeration of R(k,m). Let θ be such that
(1) Qh θ <-> Vz(p(θ,z) -> Ξu<zp(-.θ,u)).

Suppose either θe X or - θe X. Let m be the smallest number such that either R(θ,m)

or R(- θ,m). Suppose first R(--θ,m). Then - θeX. Also not R(θ,n) and so Qh - p(θ,n)

for n < m. It follows, by Fact 1 (v), that Qh p(θ,z) -> m < z. Now Qh p(-ιθ,m) and

so

Qh Vz(p(θ,z) -> 3u<zp(-.θ,u))
But then, by (1), Qh θ which is impossible, since -«ΘE X.

Thus, not R(-ιθ,m) and so R(θ,m) whence θe X. Also not R(--θ,n) for n < m. It fol-

lows that Qh p(θ,m) and, by Fact 1 (iv), Qh u < m -» -»p(-ιθ,u) But then
Qh 3z(p(θ,z) Λ Vu<z-p(- θ,u))

and so, by (1), Qh ->θ, which is impossible, since θeX. Thus, we have derived the

desired contradiction and the proof is complete.

Proof of Theorem 3. The set LJ{Th(Tk): keN} is r.e. and monoconsistent with Q.

Now use Lemma 1.

§2. Consistency statements. Most arguments carried out in this book can be for-

malized in PA. In particular this is true of the proof of Theorem 1. This leads to a
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proof of the following very important result, GόdeΓs second incompleteness theo-

rem (for theories in LA). (Recall that a numeration of a set X is a formula numerat-

ing X in PA.)

Theorem 4. (a) Suppose PAH T. Let φ be as in (G). Then PAh Conτ -> φ and conse-

quently ΊV- Conτ.

(b) If τ(x) is any Σ^ numeration of T, then TI/

Proof, (a) We follow closely the proof of Theorem 1 (a). By (BLiii),

(1) PAhPrT(φ)^PrT(PrT(φ)).

By (G) and (BLi), PAh Prτ(Prτ(φ) -> - φ) and so, by (BLii),

PAhPrτ(Prτ(φ))->Prτ(-πφ).

But then, by (1),

PAh Prτ(φ) -» Prτ(-φ),

whence, by Corollary 1.5 (iii), PAh Prτ(φ) -> -»Conτ and so, by (G),

PAh Conτ -> φ.

But then, assuming that Th Conτ, we get Th φ, contradicting Theorem 1 (a). It fol-

lows that ΊV Conτ. 4-

The proof of (b) is obtained from the above by replacing Prτ(x) by Prτ(x).

In Theorem 4 (b) it is sufficient to assume that τ(x) is Σ} and numerates T in

some theory S such that PAH SH T; but the assumption that τ(x) is Σ^ cannot be

omitted; see Theorem 7, below.

In applying Theorem 4 to an extension S of PA, we often show that there is a PR

binumeration (Σ^ numeration) σ(x) of S such that Sh Conσ and conclude that S is

inconsistent.

A somewhat shorter proof of Theorem 4 (a) is as follows. By (G),

PAh -iφ -» PrT(φ).

By provable Σ1-completeness (Fact 9 (b)),

PAh -iφ -> Prτ(->φ).

But then, by Corollary 1.5 (iii), PAh - φ -» -«Conτ and so

PAh Conτ -» φ.

A similar proof yields Theorem 4 (b).

Combining Theorem 4 and Corollary 1.8, we get.

Corollary 1. If PAH T, then T is not finitely axiomatizable.

Proof. Suppose T is finitely axiomatizable. Then there is a k such that TH T I k. Also,

by Corollary 1.8, Th Conτ ( k, whence T I kh Conτ , k. But, since PAH T I k, this con-

tradicts Theorem 4.

Corollary 1 will be strengthened in Chapter 4 (Corollary 4.1) and Chapter 6
(Theorem 6.3).

The proof of Theorem 4 can also be formalized in PA yielding:
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Corollary 2. If PAH T, then PA + Conτh Conτ+^ConT.

Proof. Let φ be as in (G). By Theorem 4 (a),

(1) PAh Conτ -» φ.

But then, by (BLi) and (BLii), PAh Prτ(Conτ) -> Prτ(φ) and so, by (G)
(2) PAh Prτ(Conτ) -> -.φ.

From (1) and (2) we get PAh Prτ(Conτ) -> -ιConτ which, by Corollary 1.5 (iv),
yields the desired conclusion.

The proof of our next result is another exercise in formalization, in this case of

the proof of Theorem 2.

Theorem 5. Let θ be a Rosser sentence for T. Then

PA + Conτh -ιPrτ(θ) Λ - Prτ(-ιθ).

Proof. We follow closely the above proof of Theorem 2. By Corollary 1.5 (iii),

(1) PA + Conτh Prτ(θ) -> ->Prτ(- θ).

It follows that

PA + Conτh Prfτ(θ,z) -> - Prfτ(->θ,u)

and so

(2) PA + Conτh Prfτ(θ,z) -» Vu<z - Prfτ(- θ,u)).

Let
γ(z) := Prfτ(θ,z) Λ Vu<z-πPrfτ(--θ,u)).

Then, by (2),

(3) PA + Conτh Prfτ(θ,z) -> γ(z).

By Fact 9 (b), we have, PAh γ(z) -» Prτ(γ(z)). Combining this with (3) yields
PA + Conτh Prfτ(θ,z) -* Prτ(γ(z)),

whence, by Corollary 1.5 (i),

(4) PA + Conτh Prτ(θ) -> Prτ(3zγ(z)).

By (R), Th Ξzγ(z) -+ -.0. But then, by (BLi) and (BLii),

PAh Prτ(5zγ(z)) -» Prτ(-.θ).

Combining this with (4), we get PA + Conτh Prτ(θ) -̂  Prτ(-ιθ). But then, by (1),

(5) PA + Conτh - Prτ(θ),

as desired.

Next we prove that

(6) PA + Conτh-ιPrτ(-θ).

From (1), we get

PA + Conτh Prfτ(-.θ,u) -> - Prfτ(θ,z)

and so
PA + Conτh Prfτ(- θ,u) -̂  Vz<u-ιPrfτ(θ,z)).

Let
δ(u) := Prfτ(-.θ,u) Λ Vz<u-Prfτ(θ,z)).

By an argument similar to the proof of (4), we get
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PA + Conτh Prτ(- θ) -> Prτ(5uδ(u)).
(R) easily implies that Th Ξuδ(u) -> θ. But then (6) follows, by an argument almost

the same as the proof of (5).
If PAH T, this proof of Theorem 5 can be replaced by the formalization of the

above short proof of Theorem 2. By (R),

PAh Prτ(θ) Λ - Prτ(-θ) -> -«θ.

Since ->θ is Σα, PAh -.0 -» Prτ(-ιθ). It follows that PAh Prτ(θ) -> Prτ(- θ) and so, by

Corollary 1.5 (iii),

PAh Conτ -> -πPrτ(θ).
Next, by Corollary 1.10 (b), (R), (BLi), and (BLii), PAh Prτ(--θ) Λ --Prτ(θ) -> Prτ(θ),

whence PAh Prτ(--θ) -> Prτ(θ) and so, by Corollary 1.5 (iii),

PAh Conτ -> -.Prτ(- θ).

Combining Theorem 5 and Corollary 1.5 (iv) we get:

Corollary 3. Let θ be as in (R). Then

PA + Conτh Conτ+θ Λ

The sentence φ in (G) above says of itself that it is not provable in T. Let us now

consider a sentence χ saying of itself that it is provable in T, i.e. such that

Qh χ <-> Prτ(χ).

Is χ provable in T? In this case no simple argument in terms truth will yield an

answer, not even if T is true. Nevertheless, it turns out that Th χ provided that PAH

T. This follows from our next result, known as Lob's theorem.

Theorem 6. Suppose PAH T and let φ be any sentence such that Th Prτ(φ) — » φ.
Then Th φ.

Proof. Let θ be such that

(1) PAh θ <-> (Prτ(θ) -> φ).

From this, (BLi), and (BLii), we get

(2) PAh Prτ(θ) -> (Prτ(Prτ(θ)HPrτ(φ)).
By (BLiii),

(3) PAh Prτ(θ) -> Prτ(Prτ(θ)).

From (2) and (3) it follows that

(4) PAh Prτ(θ) -> Prτ(φ).

Since, by hypothesis, Th Prτ(φ) -> φ, this implies that

(5) Th Prτ(θ) -> φ.

But then, by (1), Th θ, whence, by (BLi), PAh Prτ(θ). Finally, this together with (5)

yields Th φ, as desired.

There is a semantic paradox related to the above proof in somewhat the same

way as the liar paradox is related to the proof of Theorem 1. Let
(**) If (**) is true, the earth is flat.
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"Prove", by considering (**), that the earth is flat.

Theorem 6 is a strengthening of Theorem 4: let φ := _L But Theorem 6 can also

be derived from Theorem 4 as follows. Suppose Th Prτ(φ) —» φ. Then T + -«φh

- Prτ(φ), whence, by Corollary 1.5 (iv), T + -iφh Conτ+_,φ. But then, by Theorem 4,

T + -iφ is inconsistent and so Th φ.

By slightly modifying the proof of Theorem 6 we can derive the stronger result

that for every sentence φ,

(L) PAh Prτ(Prτ(φHφ) -> Prτ(φ).

In fact, from (4) we get

PAh (Prτ(φ) -> φ) -> (Prτ(θ) -> φ).

But then, by (1), PAh (Prτ(φ) -> φ) -» θ, whence, by (BLi) and (BLii),

PAh Prτ(Prτ(φ)->φ) -> Prτ(θ).

Finally, (L) follows from this and (4).

Theorem 4 is sometimes informally expressed by saying that if T is as assumed,

then T does not prove that T is consistent. That this must be interpreted with some
care is clear from the following result.

Theorem 7. Suppose PAH T. Let τ(x) be any formula binumerating T in T and let

τ*(x) := τ(x) Λ Conφ.

Then (i) τ*(x) binumerates T in T and (ii) PAh Con,.*.

The following intuitive proof of Theorem 7 (ii) (formalizable in PA) is probably

easier to understand than the formal argument below, but its formalization would

be somewhat longer: "Any proof p from the set X defined by τ(x) Λ Con^ contains

a greatest sentence φe X. Since φ satisfies Conτ|x, it follows that the set of members

of X occurring in p is consistent. Thus, p cannot be a proof of L."

Proof of Theorem 7. Note that x is free in Cort^.

(i) If ke T, then Th τ(k). By Corollary 1.9 (a), Th Con .̂ Thus, Th τ*(k). If, on the

other hand, keT, then Th -ιτ(k) and so Th - τ*(k).

(ii) Trivially h τ*(x) -» τ(x). Hence, by Fact 6,

(1) h Con,- -> Corv
Since PA is reflexive, we have PAh Con^. (We assume that 0 is not a formula.)

Also, by Fact 8 (iii), PAh VzCoriφ —> Cor̂ .. By the least number principle, it follows

that

(2) PAh -iConτ -> Ξz(-.Conτ|z+1 Λ Conψ).

By Fact 6,

PAh -'Conτ|z+1 -> (Conτjx -> x < z).

Hence, by the definition of τ*(x),

PAh ~ Conτ|z+1 -> (τ*(x) -̂  τ(x) Λ x < z).

Hence, again by Fact 6,

PAh - Conτ|z+1 A Conτ|z
But then, by (2),
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PAh -"Coriτ -» Conτ*

and so, by (1), PAh Corv,.*, as desired.

If τ(x) is PR, then τ*(x) is Π1. By Theorems 4 and 7, τ*(x) is not provably in T

equivalent to a Σ^ formula.

The formula τ*(x) may seem like a mere curiosity, but certain closely related for-

mulas are actually of crucial importance in connection with interpretability (see the

proof of Lemma 6.2.).

By Theorems 4 and 7, there are formulas τ0(x) and τ ̂ x) binumerating T in T

such that ConTQ and Conτ are not provably equivalent in T. We now show that this

is so even if we restrict ourselves to PR formulas.

Theorem 8. Suppose PAH T. Let τ(x) be any PR binumeration of T.

(a) There is a PR binumeration τ'(x) of T such that

(i) Th Con,. ->

(ii) Ί\f- Coiv ->
(b) Let π be a true Γ^ sentence such that Th π -> Conτ. There is then a PR binu-

meration τ'(x) of T such that Th π <-» Cor^/.

Proof, (a) Let τ'(x) be such that

PAh τ'(x) <-» τ(x) Λ Vy<χ-PrfT(Coιv -^Cor̂  ,y).
By Fact 6, (i) holds. Suppose (ii) is false, i.e.

(1) Th Coiv -> Conτ.
Let p be a proof of Coiv -> Cor^ in T. Then, by Fact 7 (a) and Fact 1 (v),

PAh Vy<χ-'PrfT(Conτ/^Conτ /y) -» x < p

and so PAh τ'(x) -» τ(x) Λ x < p. By Fact 6, it follows that,

(2) PAh Conjip -> Conτ,.
But Th Conψ, by Corollary 1.9 (a). Hence, by (1) and (2), Th Cor^ , contradicting

Theorem 4 (a). This proves (ii). Finally, by (ii), Fact 1 (iv), and Fact 7 (d), τ'(x) is a

PR binumeration of T. φ

(b) By Fact 5 (b), we may assume that π := Vxδ(x), where δ(x) is PR. Let τ'(x) :=

τ(x) v 3y<χ-ιδ(y). Since π is true, τ'(x) is a PR binumeration of T. Clearly

T + πh τ7(x) -» τ(x).

Thus, by Fact 6, T + πh Cor^ -» Cor^/ and so Th π — » Cor^/.

To show that the converse implication is provable in T we use the fact that evi-

dently

PAh 3y- δ(y) -» -Coiv.
But then, by Fact 6, T + ->πh -"Co^/ and so Th Con^ — » π.

Suppose τ(x) is a PR binumeration of T. Then, by Theorem 4, it may be true that

Th -iCor .̂ However, from Theorem 8 (a) it follows that we can always choose τ(x)

so that this does not hold:

Corollary 4. If PAH T, there is a PR binumeration τ(x) of T such that TI/
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§3. Independent formulas. A formula ξ(x) is independent over T if the only preposi-

tional combinations of sentences of the form ξ(k) provable in T are the tautologies.

This, of course, is the same as saying that T + (ξ(k)f(k): ke N} is consistent for any

The following result is a strengthening of Theorem 2.

Theorem 9. There is a Πj formula which is independent over T.

Proof. Let R(k,i,γ,p) be the primitive recursive relation:

there is a binary sequence s such that sk = i (so i = 0 or i = 1) and p is a proof

in T of -(γ(0)so Λ...Λ γ(k)sk).

Let p(x,y,z,u) be a PR binumeration of R(k,i,γ,p). Let μ(x) be such that

Qh μ(x) <-> Vz(p(x,l,μ,z) -> 3u<zp(x,0,μ,u)).

Suppose, for reductio ad absurdum, that μ(x) is not independent over T. There is then

a smallest n for which there is a sequence s such that
(1) -(μ(0)sθΛ...Λμ(n)sn)

is provable in T. Let s be the sequence for which the shortest proof p of (1) in T is

minimal. There are then two cases. (We assume that n > 0 and leave the case n = 0

to the reader.)
Case 1. sn = 0. Then

(2) Th μ(0)so Λ...Λ μ(n-l)sn-ι -> -,μ(n),

(3) Th p(n,0,μ,p),
(4) Th -ιp(n,l,μ,q) for q < p.

From (3) and (4) we get Th μ(n) as in the proof of Rosser's theorem. But then, by

(2),
(5) Th -(μ(0)so Λ...Λ μ(n-l)sn-ι),

contrary to the fact that n is minimal.

Case 2. sn = 1. Then

(6) Th μ(0)so Λ...Λ μίn-l)^-! -» μ(n),

(7) Th p(n,l,μ,p),

(8) Th -πp(n,0,μ,q) for q < p.

From (7) and (8) we get Th - μ(n) and so, by (6), we again get (5), again contrary to

the minimality of n.

Theorem 9 can be improved as follows; Theorem 10 will be used in Chapter 6

(proof of Lemma 6.8).

Theorem 10. For any 1^ formula δ(x), there is a I^+l formula η(x) such that for any

f, ge 2N, if Tf = T + (δ(k)f(k): ke N} is consistent, so is Tf + (η(k)δ(k): ke N}.

Proof. For every fe 2N, let Rf (k,i,γ,ρ) be the relation:

there is a binary sequence s such that (s)j,, = i and p is a proof in Tf of

-.(γ(0)(s)o Λ...Λ γ(k)(s)k)

(compare the relation R(k,i,γ,p) defined in the proof of Theorem 9). Using the for-
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mula δ(x), we are going to define a formula p*(x,y,z,w) such that for every f,

(1) p*(x,y,z,w) binumerates Rf(k,i/γ,p) in Tf.

(Thus, p*(x,y,z,w) behaves in relation to Tf, in the same way as the formula

p(x,y,z,u) in the proof of Theorem 9 behaves in relation to T.) Let R+(k,i,γ,t,n,p) be

the following primitive recursive relation, where t is a binary sequence:

there is a binary sequence s such that (s)^ = i and p is a proof of

-.(γ(0)(s)o Λ...Λ γ(k)(s)k) in T + δ(0)«o +...+ δ(n)Wn.

Then

(2) Rf(k,i,γ,p) iff Ξnt<p(Vm<n((t)m = f(m)) & R+(k,i,γ,t,n,p)).

This is trivial except that it isn't clear that assuming that Rf(k,i,γ,p), we can choose

t < p. But this holds if we assume, as we may, that if δ(n)f(n) occurs in p, then p >

2χ3χ...χpn, where pn is the nth prime mumber. Let p+(x,y,z,u,v,w) be a PR binumer-

ation of R+(k,i,γ,t,n,p).

By Fact 2, there is a PR formula σ(x,z,u) such that

Qh σ(k,m,u) <-» u = (k)m.

Let

β(x,y) := Vz<y((δ(z) -> σ(x,z,0)) A (-δ(z) -> σ(x,z,l))).

Then for every n and every t,

(3) T fh β(t,n) <* A{(t)m = f(m): m < n}.

In view of (2) and (3), the obvious definition of p*(x,y,z,w) is now:

p*(x,y,z,w) := Ξuv<w(β(u,v) Λ p+(x,y,z,u,v,w)).

To prove (1), suppose first Rf(k,i,γ,p). By (2), there are then n, t < p such that (t)m

= f(m) for all m < n and R+(k,i,γ,t,n,p). But then Th p+(k,i,γ,t,n,p). By (3), it follows

that Tfh β(t,n) and so that T fh p*(k,i,γ,p).

Next suppose -«Rf(k,i,γ,p). Then, by (2), -ιR+(k,i,γ,t,n,p) for every n < p and every

t < p such that (t)m = f(m) for all m < n. It follows that Th - p+(k,i,γ,t,n,p) for all such

n and t. Also, by (3), T fh ~-β(t,n) for all t such that (t)m Φ f(m) for some m<n. It fol-

lows that Tfh -«p*(k,i,γ,p). This proves (1).

Let η(x) be such that

Qh η(x) <-» Ξz(p*(x,0,η,z) Λ Vu<z-φ*(x,l,η,u)).

The proof that η(x) is as desired is now the same as the proof of Theorem 9 except

that T is replaced by any consistent theory Tf, and the fact that p(x,y,z,u) is decid-

able in T is replaced by (1). We leave this part of the proof to the reader.

Finally, if δ(x) is Σ^ then β(x,y) is Δn+1, whence the same is true of p*(x,y,z,w)

and so η(x) is Σn+1, as desired.

The proof of the final theorem of this § is quite different from the proofs of

Theorems 9 and 10; instead of a Rosser type construction it uses the formulas

Satφ(x,y) and so does not apply to Q (and its extensions).

In the proof of Theorem 11 we assume, as we may, that

(+) PAh <x,y> = z <-> (x = (z)0 A y = (z)^.

Theorem 11. Suppose PAH T. Then there is a Γ (Δn+1) formula γ(x) such that T +
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Vx(γ(x) <-> 6(x)) is consistent for every Γ (Bn) formula δ(x).

Proof. Suppose first Γ = 2 ;̂ the case Γ = Πn follows by taking negations. Let

S(k,m,n) be a primitive recursive relation such that

δ(x)e Σj, & Th -Vx(η(x) <-> δ(x)) iff ΞnS(η,δ,n).

Let σ(x,y,z) be a PR binumeration of S(k,m,n) and let σ*(x,y,z) :=

σ(x,y,z) Λ Vy'z'(<y',z'> < <y,z> -» -xr(x,y',z')).

Finally, let γ(x) be such that

(1) PAh γ(x) ̂  ayz(σ*(γ,y,z) A Sat^y)).

Suppose there is a 1^ formula δ(x) such that

(2) Th-Vx(γ(x)^δ(x)).

For each such formula, there is an n such that S(γ,δ,n). Now pick δ(x) and n so that

<δ,n> is minimal. Then, by (+),

PAh σ*(γ,y,z) <->y = δΛZ = n.

Hence, by (1) and Fact 10 (a) (i), PAh Vx(γ(x) <-> δ(x)), contradicting (2). Thus, (2) is

false for all Σ^ formulas δ(x), as desired.

To obtain a Δn+1 formula as desired, replace Sat^^y) by SatBn(x,y) in (1).

For extensions T of PA, Theorem 9 follows at once from Theorem 11.

Theorem 11 has the following:

Corollary 5. Suppose PAH T. There is a Γ (Δn+1) sentence not in Π*'T (B )̂.

Proof. Let γ(x) be as in Theorem 11 and let φ := γ(0).

§4. The length of proofs. We begin by showing that the length of proofs of

sentences φ is not bounded by any recursive function of φ.

Theorem 12. Let f(k) be any recursive function. There is then a Πj sentence φ such

that Th φ and the least proof of φ in T is > f(φ).

Proof. Let δf(x,y) be a Σ1 formula defining f in Q (cf. Fact 3 (b)). Let φ be such that

Qh φ <-> Vy(δf(φ,y) -> Vz<y-Prfτ(φ,z)).

Suppose φ has a proof p < f(φ) in T. Since

Qh δf(φ,y) <-> y = f(φ)

and, by Fact 7 (a), Qh Prfτ(φ,p), it follows that Qh ->φ and so Th -»φ, a contradic-

tion. Thus, φ has no proof p < f(φ) in T. But then, by Fact 1 (iv) and Fact 7 (d),

Qh Vz<f(φ)-.Prfτ(φ,z)), whence Qh φ and so Th φ.

In Theorem 12 and in Theorems 13 and 14, below, we use (the Gόdel number of)

the proof as a measure of its "length'7. We could also have used the number of

(occurrences of) symbols as a (more natural) measure of "length" and proved the

same results.
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Suppose ΊΫ φ. Then T + φ is stronger than T not only in the sense that it proves

more theorems but also in the sense that there are infinitely many theorems of T

which have "much shorter" proofs in T + φ; more exactly:

Theorem 13. Suppose W φ. Let f be any recursive function. There is then a sen-

tence θ such that Th θ and there is a proof q of θ in T + φ such that θ has no proof

< f(q) in T.

Proof. We may assume that f is increasing. Let δf^y) be a formula defining f in Q

(cf. Fact 3 (a)). Let ψ be such that
Qh ψ <-» 3yz(Prfτ+φ(φvψ,y) Λ δf(y^z) Λ Vu<y+z-ιPrfτ(φvψ,u)).

Let θ := φ v ψ. Suppose ΎV θ. Since, trivially, T + φh θ, it follows, by Fact 1 (iv) and

Fact 7 (a) and (d), that Th ψ and so Th θ, a contradiction. Thus, Th θ.

Let q be the least proof of θ in T + φ. Suppose there is a proof < f(q) of θ in T.

Then, again by Fact 1 (iv) and Fact 7 (a) and (d), Th -»ψ and so Th φ, contrary to

hypothesis. It follows that θ has no proof < f(q) in T.

Another way of obtaining "much shorter proofs", in this case without getting

any new theorems, is to add new (nonlogical but correct) rules of inference: for

example, if T is Σ1-sound, the rule

R: from Prτ(φ) derive φ,

is correct for T in the sense that every sentence which can be derived (from the

axioms of T) using this rule can be proved without it, i.e. is a theorem of T. That R

occasionally leads to "much shorter proofs" follows from our next:

Theorem 14. Suppose PAH T and T is Σ1-sound. Let g(k,m) be any primitive recur-

sive function. There are then a (Σl7 Γ^) sentence φ such that Th φ and a proof q of

Pr-p(φ) in T such that φ has no proof < g(φ,q) in T.

Proof. We may assume that g(k,m) is increasing in m. Let φ be such that

Th φ <-> 3y(Prfτ(Prτ(φ),y) Λ Vz<g(φ,y)-Prfτ(φ,z)).

Clearly

T + Prτ(Prτ(φ)) -f -Prτ(φ)h φ.

Since φ is Σl7 we have, by provable Σ1-completeness, T + φh Prτ(φ). It follows that
T + Prτ(Prτ(φ))h Prτ(φ),

and so, by Theorem 6, Th Prτ(φ). Since T is Σ1-sound, this implies that Th φ and
that φ is true.

Let q be the least proof of Prτ(φ) in T. Since φ is true and g(k,m) is increasing in
m, it follows that φ has no proof < g(φ,q).

To obtain a Π1 sentence as desired, let φ be such that

Th φ <-> Vz(Prfτ(φ,z) -> 3y<z(g(φ,y) < z Λ Prfτ(Prτ(φ),y)))
and set

φ* := 3y(Prfτ(Prτ(φ),y) Λ Vz<g(φ,y)-Prfτ(φ,z)).
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Then

T + Prτ(Prτ(φ)) + -Prτ(φ)h φ*.

Clearly, Th φ* -> φ and so, by (BLi) and (BLii), Th Prτ(φ*) -> Prτ(φ). Since φ* is Σl7

we have T + φ*h Prτ(φ*). It follows that

T + Prτ(Prτ(φ))hPrτ(φ).

The rest of the proof is now the same as above, except that we observe that, since

φ is HI and Th φ, φ must be true (Fact 9 (a)).

For any sequence p of formulas and any formula θ, let pΛθ be p followed by θ.

If p is a proof of Prτ(θ) in T we may think of pΛθ as an R-proof of θ in T, i.e. a proof

in T in which we are allowed to use the rule R. Now, let h be any primitive recur-

sive function and let g(θ,p) = h(pΛθ). Then g is primitive recursive. Let φ and q be

as in Theorem 14 and let r = qΛφ. Then r is an R-proof of φ in T and φ has no proof

<h(r)inT.

Exercises for Chapter 2.
In the following Exercises we write Prf(x,y), Pr(x), Con for Prfτ(x,y), Prτ(x), Conτ,

respectively.

1. Suppose T is true. Show that T is not complete by using the fact that Th(T), being

r.e., is definable in N together with Corollary 1.7.

2. Let U be a (not necessarily r.e. or true) consistent extension of Q. Suppose there

is a formula υ(x) binumerating U in U. Show that U is not complete.

3. Let Ref(T) = {φ: Th -.φ}. Let X be any set such that Th(T) £ X and Ref(T) n X = 0.

Show that there is no formula binumerating X in T. (This improves Lemma 1.2.)

Conclude that Th(T) and Ref(T) are recursively inseparable, i.e. there is no recursive

set Y such that Th(T) £ Y and Ref(T) n Y = 0. (This implies Theorem 1.2.)

4. (a) Suppose T is Σj-sound. Use the fact that there is an r.e. nonrecursive set to

show that there is a (true) Γ^ sentence not provable in T.

(b) Let XQ and X1 be disjoint r.e. sets. Let pj(x,y) be a PR formula such that Xj =

{k: ΞmQh pi(k,m)}, 1 = 0,1. Let

ξ(x) := 3y(p0(x,y) Λ Vz<y--p1(x,z)).

Show that if keX0, then Qh ξ(k), and if keX^ then Qh -«ξ(k) (compare Theorem

3.2).

(c) Show that the sets of Γ^ and Σl sentences provable in T are not recursive and,

therefore, there is a true Πj sentence which is improvable in T (compare Theorem

2). [Hint: There are disjoint r.e. recursively inseparable sets (see Exercise 3).]

(d) Suppose PAH T. Show that the set of Δ^ sentences is not recursive. [Hint: Let
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σ be a Σn formula which is not Δ .̂ Let Xj and pj(x,y) be as in (b). Suppose XQ and

X1 are recursively inseparable. Let η(x) :=

3y(Po(*/y) A Vz<y-.p1(x,z)) v (3z(pl(x/z) Λ Vy<z-.p0(x,y)) Λ σ).

Let Y = {k: η(k) is Δ]}. Then X0 C Y and Xl n Y = 0.]

5. Suppose QH S. Show that there is a Πx sentence θ such that Sh θ, Sh -iθ,

ΊV- -Prs(θ), ΊV -ιPrs(- θ).

6. Let φ be as in Theorem 1.

(a) Show that PAh φ -» Con. Conclude that PAh φ <-» Con and so PAh Con <->

-ιPr(Con). (Thus, there is a sentence, Con, satisfying (G) not constructed using

self-reference.) We also have PAh Pr(- φ) —> Pr(->Con) (compare the last part of
Theorem 1).

(b) Suppose PAH T and T is Σ1-sound. Show that ΊV Con -+ - Pr(- φ) (compare
Theorem 5).

7. T is co-consistent iff for every formula α(x), if Tl—>α(k) for every k, then ΊV

Ξxα(x).

(c) Show that if T is co-consistent, then T is Γ^-sound.

(d) Suppose T is true. Show that there is a false Σ3 sentence φ such that T + φ is

ω-consistent. Conclude that co-consistency does not imply Σ3-soundness. [Hint:

Let φ be a sentence "saying" that T + φ is not co-consistent.]

(e) Suppose PAH T and T is true. Show that for every n, there is an extension S

of T which is Σj^-sound but not co-consistent. [Hint: Let δ(x) be a Πn formula such

that PAh φ ̂  Ξxδ(x), where φ as in Exercise 1.6 (b). Let S = T + Ξxδ(x) + bδ(k):

keN}.]

8. Suppose PAH T. Let θ be a Γ^ Rosser sentence for T and let ψ :=

Vu(Prf(- θ,u) -> 5z<uPrf(θ,z)).

Show that W θ -> Con, W ψ -> Con, and PAh θ Λ ψ -» Con. Conclude that ΎV- ψ.

[Hint: Use Theorem 4 and Corollary 3.]

9. Suppose PAH T. Suppose φ is undecidable in T. Show that there is a (Σl7 ny sen-

tence ψ such that

Tl^ φ -> ψ,

PAh Pr(φ) -> Pr(ψ).

[Hint: Construct ψ is such a way that PAh Pr(φ) Λ -tPr(φ-^ψ) -> Pr(ψ).]

10. Strengthen Lemma 1 in the following way Suppose X is r.e. and monoconsis-

tent with Q. Show that there is a Γ^ formula η(x) such that the only prepositional

combinations of sentences of the form η(k) which are members of X are the tau-

tologies.
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11. Suppose PAH T. Show that there is a na formula κ(x) such that T> κ(k) for every

k, but Th κ(k) v κ(m) whenever k Φ m. (This can also be obtained as a special case

of Theorem 3.5.)- [Hint: Let κ(x) be such that

PAh κ(x) <-> Vy(Prf(κ(x),y) -» azu(<z,u>«x,y> Λ Prf(κ(z),u))).]

12. Suppose PAH T. Let f(k) be any recursive function. Show that there is a Πj sen-

tence θ such that Th θ and T l f ( θ ) M θ. (This improves Corollary 1; also compare

Exercise 4.5.) [Hint: Let δf(x,y) be a Σl formula defining f in Q (cf. Fact 3 (b)) and let
θ be such that

Qhθ^Vy(δf(θ,y)^-PrT|y(θ).]

13. Prove Lob's theorem by considering a sentence θ such that

PAh θ <-» Pr(θ->φ).

(This is essentially the proof of Theorem 6 using Theorem 4 mentioned in the text.)

Show that this proof can be formalized in PA.

14. Suppose PAH T Show that there is a PR formula δ(x) such that Th VxPr(δ(x))
and TI/ Vxδ(x). [Hint: Let φ be as in the proof of Theorem 1 and let δ(x) :=

-Prf(φ,x).]

15. Suppose PAH T. Let τ(x) be a PR binumeration of T and let τ*(x) be as in

Theorem 7.

(a) Let ψ be such that PAh ψ <-> ->Prτ*(ψ). Show that ψ is undecidable in T.

(b) Show that Th Conτ*+_,conr [Hint: Let φ be as in Theorem 1. Then Tl — φ — >

Prτ*(- φ) and so Th -Kp -> ~ Prτ*(φ). It follows that Th Prτ(φ) -> -^Prτ*(φ). Also Th

-"Prτ(φ) -> -«Prτ*(φ) and so Th -<Prτ*(φ). Now use the fact that Th Cor^ — > φ.]

16. Suppose PAH T. Prove the following strengthening of Corollary 4. Suppose X is

r.e. and monoconsistent with T. There is then a PR binumeration τ(x) of T such that

- Conτ£ X (see Exercise 6.6 (b)). [Hint: Let τ'(x) be a PR binumeration of T, let p(x,y)

be a PR binumeration of a relation R(k,m) such that X = {k: ΞmR(k,m)}, let φ be such

that

PAh φ o Conτ,(x)ΛVy<x_np(^φ/y),

and set τ(x) := τ'

17. Suppose PAH T. Let τ0(x) and τ-^x) be PR binumerations of T.

(a) Show that there is a PR binumeration τ(x) of T such that

Th Con,. <-> Con. Λ Con^.

[Hint: Let τ(x) := τ0(x) v ay<xPrfτι(_L,y). See also Theorem 8 (b).]

(b) Show that there is a PR binumeration τ(x) of T such that

Th Con,. <r^ Con- v

[Hint: Let τ(x) := (τ0(x) Λ τx(x)) v (Ξy<xPrfτo(_L,y) Λ 3y<xPrfτι(_L,y)).]
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(c) Suppose Ί> φ. Show that there is a PR binumeration τ(x) of T such that

TI/ Coriτ —» φ (compare Theorem 8 (a)).

(d) Suppose TV φ and TV - ψ. Show that there is a PR binumeration τ(x) of T

such that TI/ Con,. -> φ and TY ψ -̂  Co .̂ [Hint: Use Lemma 1 and Theorem 8 (b).]

18. Suppose PAH T Let α(x), β(x) be PR formulas and let α < β mean that there is a

primitive recursive function g such that

PAh Vx(Prfα(l,x) -> Prfp(JL,g(x)).
(α < β implies PAh Conβ —> Conα, bur not conversely.) Let α = β mean that α < β <

α. Let τ(x) be a PR binumeration of T and let α(x) be such that PAh τ(x) -> α(x).

Show that there is a Γ^ (ΣI) sentence φ such that α = τ + φ. [Hint: In the Γ^ case let

φ be such that

PAh φ <-> Vx(Prfα(_L,x) -> 3y<xPrfτ+φ(_L,y)).

Use the fact that to every PR formula δ(x), there is a primitive recursive function h

such that

PAh δ(x) -> Prfτ(δ(x),h(x)).]

19. Prove the following strengthening of Theorems 3 and 9. If {Tk: ke N} is an r.e.

family of theories, there is a Π^ formula which is simultaneously independent over

all the theories Tk. Strengthen Theorems 10 and 11 in the same way.

20. (a) Derive Theorem 9 for extensions of PA from Theorem 11.

(b) Formulate and prove a generalization of Theorem 11 which implies Theorem

10 for extensions of PA.

21. Suppose PAH T. Let σ be any Σ-^ sentence. Show that there is a ΣI sentence χ such

that

PAh (σ v Pr(_L)) «-» Pr(χ).

Conclude that (i) for every Σ^ sentence σ such that Th Pr(_L) -> σ, there is a ΣI sen-

tence χ such that Th σ <-> Pr(χ) and so for any sentences φ, ψ, there is a Σj sentence

χ such that Th Pr(χ) <-> Pr(φ) v Pr(ψ), and (ii) for every Γ^ sentence π such that Th

π -> Con, there is a Π1 sentence θ such that Th π <-̂  Conτ+θ (compare Theorem 8

(b)). [Hint: Let δ(y) be a PR formula such that σ := 3yδ(y). Let χ be such that

PAh χ ^> Ξy(δ(y) Λ Vz<y-.Prf(χ,z)).

Then PAh Pr(χ) Λ - σ -» Pr(- χ).]

22. Suppose PAH T. Show that the following conditions are equivalent:

(i) T is Σ1-sound.

(ii) For any two ΣI sentences σ0, σ^, if Th σ0 v σlr then either Th σ0 or Th α^.
(iii) If σ is Δ f, then either Th σ or Th -iσ (compare Exercise 3.6 (a)).

(iv) Pr(x) numerates Th(T) in T (compare Exercise 6.18).

[Hint: (iii) implies (i). Let δ(z) be a PR formula such that 3zδ(z) is false and prov-
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able in T. Let σ be such that

Qh σ <-» 3z((Prf(-.σ,z) v δ(z)) Λ Vu<z-ιPrf(σ,u)).

(iv) implies (i). Let δ(z) be as above. Let φ be such that

Qh φ ̂  Ξz(δ(z) Λ Vu<z-ιPrf(φ,u)).

Then Th Pr(φ) and TM φ.]

23. Suppose PAH T.

(a) Let φ be any Γ sentence. Show that there is a formula ξ(x) such that if ψ is Γ,

then ψ is a fixed point of ξ(x) in T iff ψ := φ.

(b) Suppose γ(x) is Γ. Show that γ(x) has infinitely many Γ fixed points in T.

Conclude that the formula ξ(x) mentioned in (a) cannot be Γ.

(c) Let X be any r.e. set of sentences. Show that there is a formula ξ(x) such that

if φe X n Γ, then φ is a fixed point of ξ(x) in T and if φe Γ - X, then φ is not a fixed

point of ξ(x) in T. [Hint: Let p(x,y) be a PR formula such that X = {k: 3m PAh

p(k,m)}. Let ξ(x) be such that

PAh ξ(φ) <H» (Trr(φ) Λ 3y(p(φ,y) Λ Vz<y-ιPrf(φ<->ξ(φ),z)) v

(-Trr(φ) Λ 3z(Prf(φ^ξ(φ),z) A Vy<z-p(φ,y))).]

In Exercises 24 - 28 "proof" means "proof in T".

24. Let f(k) be any recursive function.

(a) Show that there is a Σ^ sentence φ such that Th φ and the least proof of φ is

> f(φ) (compare Theorem 12).

(b) Show that there is a Γ^ formula ξ(x) such that for every n, Th ξ(n) and the

least proof of ξ(n) is > f(n).

25. Suppose PAH T and let g(k) be any recursive function. Show that there are Π^

sentences ψ0, Ψi provable and a proof p of ψ0 v ̂  such that neither ψ0 nor \\f^ has

a proof < g(p). [Hint: Let δg(x,y) be a Σ1 formula defining g(k) in T. Let Prf'(x,y) :=

Prf(x,y) Λ Vz<y->Prf(x,z) and let ψj be such that

Th ψi ^VyzίPrf'tψoVψ^y) Λ 3v(δg(y,v) Λ z < v) Λ Prf(ψi,z) ->

3u<z+iPrf(ψ1_i/u)).]

26. Suppose PAH T and T is Σ1-sound. There is then a recursive function g(k) which

given a proof p of a sentence Pr(φ0) v Pr(φ1) picks out a φj such that Pr(φi) is true;

in other words, g(p) = 0 or g(p) = 1, if g(p) = 0, then Pr(φ0) is true, and if g(p) = 1,

then Pr(q>ι) is true. Show that g(k) is not provably recursive in T even if we restrict

ourselves to Σj sentences φ0, φlβ [Hint: Suppose not. Assume that Th g(y) = 0 v g(y)

= 1. Let ψj be such that

Th Ψi <-> 3y(Prf/(Pr(ψ0)vPr(ψ1),y) Λ g(y) = 1-i),

where Prf '(x,y) := Prf(x,y) Λ Vz<y--Prf(x,z).]
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27. Suppose PAH T, T is Σ1-sound, and g is primitive recursive.

(a) Show that there are true Σα sentences σ0/ GI and a proof p of Pr(σ0) v Pr(σα)

such that neither Pr(σ0) nor Pr^) has a proof < g(p). [Hint: Show that there is a

primitive recursive function h such that h is provably increasing in T and if

Th σ <-» 3z(Prf(Pr(χ),z) Λ Vu<z-.Prf(Pr(σ),u)),

(*) Th χ <-* Ξz(Prf(Pr(σ)vPr(χ),z) Λ Vu<h(g(z))-Prf(σ,u)),

r is a proof of Pr(χ), and Pr(σ) has no proof < r, then there is a proof < h(r) of σ.

(Analyze the proof of Lemma 1.1 (c).) Let σ0 := σ and GI := χ. Use Lob's theorem to

show that Th Pr(σ0) v Pr^).]

(b) Show that there are ΣI sentences χ0, %ι such that χ0 is true, χ1 is false (in fact,

Th -ιχ{) and Pr(χ0) v Pr(χ{) has a proof p such that Pr(χ0) has no proof < g(p). [Hint:

In (*) replace Pr(χ) by Pτ(σ*), where σ* :=

Ξu(Prf(Pr(σ),u) Λ Vz<u-πPrf(Pr(χ),z)).

Let χ0 := σ and χl := σ*.]

28. Suppose PAH T and T is Σ1-sound.

(a) Show that Theorem 14 and Exercises 26, 27 hold with "primitive recursive"

replaced by "provably recursive in T".

(b) There is a recursive function f such that if p is a proof of the sentence Pr(φ),

then f(p) is a proof of φ. Show that f is not provably recursive in T.

Notes for Chapter 2.

Theorem 1 is due to Godel (1931). (However, Godel assumed that T is co-consistent

(see Exercise 7) but then applied this assumption only to the formula (correspond-

ing to) Prfτ(φ,x).) For a quick proof of what is the essential content of GδdeΓs the-

orem, namely: truth and provability in arithmetic are not equivalent (or: the set of

true sentences of L^ is not r.e.), see Exercise 1; this also follows from each of the

Exercises 1.2 (a), 1.3 (a), and 1.6 (b). Theorem 2 is due to Rosser (1936). Theorems 1

and 2 can be strengthened and generalized in a number of different directions as

indicated in Exercises 1, 2, 3, 4 (see also Chapter 8). However, these "directions"

lead away from the central theme of this book and so will not be pursued further;

but see, for example, Kleene (1952a), Mostowski (1952b), (1961), and Kreisel and

Levy (1968). Lemma 1 is due to Lindstrδm (1979). Theorem 3 is due to Mostowski

(1961); for a stronger result also due to Mostowski (1961), see Exercise 19.

Theorem 4 is essentially due to Godel (1931); the present general formulation is

due to Feferman (1960). Corollary 1 is due to Mostowski (1952a) and Ryll-

Nardzewski (1952); this result is strengthened in Chapter 4 (Corollary 4.1) and

Chapter 6 (Theorem 6.3). Theorem 6 is due to Lob (1955). Lob's theorem or, more

exactly, (L), is one of the keys to the modal logic of provability (cf. Boolos (1979),

(1993), Smorynski (1985), Lindstrόm (199?)). Theorem 7 is due to Feferman (1960).
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Theorem 8 (a) (with a different proof) is due to Feferman (1960); Theorem 8 (b) is

due to Orey (see Feferman (I960)).

Theorem 9 is due to Mostowski (1961); for a stronger result also due to

Mostowski (1961), see Exercise 19. Theorem 10 is due to Scott (1962). Theorem 11

(with a different proof) is due to Montagna (1982).

For Theorem 12 with Γ^ replaced by Σlr see Exercise 24 (a). A result similar to

Theorem 13 was first obtained by Gδdel (1936) (cf. also Mostowski (1952b)); for a

stronger result, see Exercise 3.3. Theorems 12 and 13 can also be derived from the

fact that the set of (Π^ sentences provable in T (T + φ) is not recursive (cf. Exercise

4 (c) and Theorem 1.2). Theorem 14, improved as in Exercise 28 (a), is due to Parikh

(1971); the present proof was pointed out to me by Christian Bennet; see also de

Jongh and Montagna (1989); a more general result has been proved by Montagna

(1992); cf. also Hajek, Montagna, Pudlak (1992); for related results, see Exercise

5.15.
Exercise 1 is implicit in Tarski (1933) (see Gδdel (1934) and Mostowski (1952b)).

Exercise 6 (a) is a special case of a general result, the fixed point theorem of prov-

ability logic due to Dick de Jongh (unpublished) and Sambin (1976) (cf. also Boolos

(1979), (1993), Smorynski (1985), Lindstrδm (199?)). Exercise 11 (with a different

proof) is due to Kripke (1963). Exercise 13 is due to Kreisel (see Smorynski (1985)).

Exercise 15 (b) is due to Feferman (1960); it was used by him to prove Theorem 6.8.

Exercise 17 is due to Hajkova (1971); her papers contain many related results.

Exercise 18 is due to Bennet (1986). Exercise 19 is due to Mostowski (1961). Exercise

21 is due to Warren Goldfarb. The equivalence of (i), (ii), (iii) in Exercise 22 is due
to Jensen and Ehrenfeucht (1976) and Guaspari (1979); for similar results, see

Exercise 5.2. Exercise 27, improved as in Exercise 28 (a), is due to Shavrukov (1993)

(with different proofs).




