2. INCOMPLETENESS

The methods of arithmetization and self-reference were originally used to prove
incompleteness theorems for arithmetical theories. In this chapter we present the
most important theorems of this type.

A sentence ¢ (in the language of S) is undecidable in S if S¥ ¢ and S¥ —@. S is com-
plete if no sentence is undecidable in S, otherwise incomplete.

§1. Incompleteness. We begin with the first and most important result of the whole
subject, Godel’s incompleteness theorem (for theories in L,).

Theorem 1. Let ¢ be a I1; sentence such that

(G  QF ¢ -Prr(9).
Then ¢ is true and T¥ ¢. Thus, if T is Z;-sound, then also TF —¢.

Proof. Suppose Tt ¢. Then, by Fact 7 (b), QF Prr(¢). But then, by (G), QF -¢ and
so Tk —@. It follows that T is inconsistent, contrary to Convention 2. Thus, T ¢. By
(G), ¢ is true. Thus, - is a false Z; sentence and so T - if T is Z;-sound. B

Notice the close similarity between the proofs of Theorem 1, Lemma 1.2, and
Theorem 1.3 (the liar paradox).

To derive the conclusion that T# —¢ in Theorem 1, we needed the assumption
that T is ;-sound. We can now see that this is stronger than mere consistency: T +
- is consistent but not Z;-sound. (Note that it does not follow from Theorem 1
that T + —¢ is incomplete.) Thus, the question arises if, assuming consistency only,
there is a (I1;) sentence which is undecidable in T. Our next result, known as
Rosser’s theorem, shows that the answer is affirmative.

Theorem 2. Let 6 be a I; sentence such that
(R) QF 6 & Vz(Prfp(8,z) » Ju<zPrfr(-6,u)).
Then 6 is undecidable in T.

Proof. We first prove that T 6. Suppose, for reductio ad absurdum, Tk 6 and let p be
a proof of 8 in T. Then, by Fact 7 (a),
(1)  QF Prig(®,p).
Since T is consistent, we have T —6. By Fact 7 (d), QF -Prf1(-6,q) for every q. But
then, by Fact 1 (iv),
QF u<p - —Prfr(-06,u).
Combining this with (1) we get
QF 3z(Prfr(6,z) A Vusz—-Prfr(-6,u)).
But then, by (R), QF -6 and so T+ -8, a contradiction. Thus, TW 0 as desired.
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Next we prove that T# 6. Suppose T+ -6 and let p be a proof of -6 in T. Then

Tk 6 and so, by Fact 7 (d), QF —Prf(6,q) for every q. By Fact 1 (iv), it follows that
QF z < p - ~Prf(6,2),

whence, by Fact 1 (v),

(20 QFPrfp(0z) >p<z.

By Fact 7 (a), QF Prfr(-6,p). Hence, trivially,
QF p <z - Ju<zPrfr(-6,u).

Combining this with (2) and (R) we get QF 6 and so TI 6, again a contradiction. It

follows that T -6, as desired. B

Arguments similar to the above proof will occur time and again in the follow-
ing pages.

Theorem 2 can also be proved by considering a Z; sentence y such that
(R)  QF vy & 3z(Prfp(~y,z) A Vusz-Prir(y,u)),

a condition that is, of course, (almost) satisfied by -6, where 0 is as in (R). A sen-
tence satisfying (R) or (R’) is called a Rosser sentence for T.

The difference between (the proofs of) Theorems 1 and 2 can be described in the
following way. The formula §(x) := Prr(x) used in the former has the properties:
(i) if Tk @, then T+ &(¢), and (ii) if TH-, then (TF ¢ and so) E() is false. The cor-
responding formula which is (almost) used in the latter,

E(x) := Iz(Prfp(x,z) A Vusz-Prip(-x,u)),
satisfies (i) and (iii): if TF-¢, then TF-&(9). From (i) and (iii) it follows at once that
if

Tk y & =&(y) A
(or Tk v & E(-y)), then v is undecidable in T.

If PA- T, the above proof of Theorem 2 can be replaced by the following argu-
ment. Suppose T+ 6. Then TF —6. By (R), it follows that =8 is true and so, =6 being
X1, Tk -6, by Fact 9 (a), a contradiction. (This part does not use the assumption that
PA- T.) Next suppose T =6. Then T¥ 6. But then, by Corollary 1.10 (a) and (R), T+
6, again a contradiction.

That T is incomplete also follows from Theorem 1.2, since every complete r.e.
theory is decidable. This proof, however, does not (directly) yield an example of a
sentence undecidable in T. Furthermore, the present proof of Theorem 1 is needed
in the proof of Theorem 4, below.

That every complete r.e. theory U is decidable is seen as follows: If U is incon-
sistent, decidability is trivial; thus, suppose U is consistent. Let ¢ be any sentence
of U. To decide whether or not ¢e Th(U), generate, in some effective way, all proofs
in U. If a proof of ¢ is found, conclude that ge Th(U); if a proof of ~¢ is found, con-
clude that @¢ Th(U).

Conversely, Theorem 1.2 follows from Theorem 2. Indeed, suppose U is a con-
sistent, decidable extension of Q. There is then a complete, recursive, consistent
extension U’ of U. U’ is an extension of Q. Hence, by Craig’s theorem (Theorem
1.1), there is a complete, consistent primitive recursive extension of Q. This, how-
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ever, contradicts Theorem 2.

That any consistent, decidable theory U has a complete, consistent, decidable
extension can be seen as follows: Let ¢, ¢1,... be an effective enumeration of all sen-
tences of the language of U. Define U, by: Uy=U, U1 = U, + ¢, if U, ¥ -, U4
= U, + -@, otherwise. Let U” = U{U,;: ne N}. Then U’ is complete and consistent.
By assumption, it can be effectively decided whether U, F —¢, or not. It follows
that U’ is decidable.

Theorem 2 can be strengthened as follows. A family {T: ke N} of theories is r.e.
if the binary relation @e Ty is r.e.

Theorem 3. If {T}: ke N} is an r.e. family of theories, there is a I1; sentence which is
simultaneously undecidable in all the theories T).

We derive Theorem 3 from the following slight improvement of Theorem 2.

Let us say that a set X of sentences is monoconsistent with T if T + ¢ is consistent
for every ge X. Thus, for example, if ¢ is undecidable in T, then {@, ¢} is mono-
consistent with T. Also, if X and Y are monoconsistent with T, so is X U Y. Let ¢0 :=
¢ and ¢! := -¢.

Lemma 1. If X is r.e. and monoconsistent with Q, then there is a I1; sentence 8 such
that 6i¢X,i=0, 1.

Proof. The proof is almost the same as the proof of Rosser’s theorem. Let R(k,m) be
a primitive recursive relation such that X = {k: 3mR(k,m)} and let p(x,y) be a PR
binumeration of R(k,m). Let 0 be such that
(1) QF 6 e Vz(p(6,z) > Juzp(—6,u)).
Suppose either 6 X or =6€ X. Let m be the smallest number such that either R(6,m)
or R(-6,m). Suppose first R(-8,m). Then -6e X. Also not R(8,n) and so QF —p(6,n)
for n < m. It follows, by Fact 1 (v), that QF p(8,z) - m < z. Now QF p(-6,m) and
SO

QF Vz(p(6,z) > Ju<zp(—6,u)).
But then, by (1), QF 8 which is impossible, since =8¢ X.

Thus, not R(=6,m) and so R(6,m) whence 8¢ X. Also not R(-6,n) for n < m. It fol-

lows that QF p(8,m) and, by Fact 1 (iv), QF u <m — -p(=6,u). But then

QF Jz(p(8,2) A Yusz-p(-6,u))
and so, by (1), QF -6, which is impossible, since 6 X. Thus, we have derived the
desired contradiction and the proof is complete. B
Proof of Theorem 3. The set \U{Th(T}): ke N} is r.e. and monoconsistent with Q.
Now use Lemma 1. B

§2. Consistency statements. Most arguments carried out in this book can be for-
malized in PA. In particular this is true of the proof of Theorem 1. This leads to a
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proof of the following very important result, Godel’s second incompleteness theo-
rem (for theories in Lp). (Recall that a numeration of a set X is a formula numerat-
ing Xin PA.)

Theorem 4. (a) Suppose PAH T. Let ¢ be as in (G). Then PAF Cont — ¢ and conse-
quently T# Conr.
(b) If ©(x) is any X1 numeration of T, then T¥ Con,.

Proof. (a) We follow closely the proof of Theorem 1 (a). By (BLiii),
(1)  PAF Pry(g) - Prr(Prr(e)).
By (G) and (BLi), PAF Prp(Prr(¢) — —¢) and so, by (BLii),
PAF Pr(Prr(¢)) = Pri(-o).
But then, by (1),
PAF Prp(¢) - Pry(-9),
whence, by Corollary 1.5 (iii), PAF Pry(¢) - —-Cont and so, by (G),
PAF Cony — ¢.
But then, assuming that TF Cont, we get Tt ¢, contradicting Theorem 1 (a). It fol-
lows that T¥ Cont. ¢

The proof of (b) is obtained from the above by replacing Pry(x) by Pr(x). B

In Theorem 4 (b) it is sufficient to assume that 1(x) is X; and numerates T in
some theory S such that PA4 S T; but the assumption that t(x) is Z; cannot be
omitted; see Theorem 7, below.

In applying Theorem 4 to an extension S of PA, we often show that there is a PR
binumeration (£; numeration) 6(x) of S such that Sk Cong and conclude that S is
inconsistent.

A somewhat shorter proof of Theorem 4 (a) is as follows. By (G),

PAF =¢ — Pry(9).
By provable X;—completeness (Fact 9 (b)),
PAF =¢ — Pry(-9).
But then, by Corollary 1.5 (iii), PAF ~¢ — =Cont and so
PAF Cont — ¢.
A similar proof yields Theorem 4 (b).
Combining Theorem 4 and Corollary 1.8, we get.

Corollary 1. If PA- T, then T is not finitely axiomatizable.

Proof. Suppose T is finitely axiomatizable. Then there is a k such that T4 T | k. Also,
by Corollary 1.8, TF Cont |y, whence T |kt Cong. But, since PA- Tk, this con-
tradicts Theorem 4. B

Corollary 1 will be strengthened in Chapter 4 (Corollary 4.1) and Chapter 6
(Theorem 6.3).

The proof of Theorem 4 can also be formalized in PA yielding:
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Corollary 2. If PA- T, then PA + Contt Cont,_cont-

Proof. Let @ be as in (G). By Theorem 4 (a),
(1) PAFCont—o.
But then, by (BLi) and (BLii), PAF Prr(Cont) — Pr(¢) and so, by (G)
(2) PAF Prp(Cong) — .
From (1) and (2) we get PAF Pry(Cony) = -Cony which, by Corollary 1.5 (iv),
yields the desired conclusion. B
The proof of our next result is another exercise in formalization, in this case of
the proof of Theorem 2.

Theorem 5. Let 6 be a Rosser sentence for T. Then
PA + Contt —Pry(6) A =Prg(-6).

Proof. We follow closely the above proof of Theorem 2. By Corollary 1.5 (iii),
(1) PA+ Congk Prr(8) - —Pry(-6).
It follows that
PA + Contt Prf(6,z) - —Prfy(-6,u)
and so
(2) PA+ Congt Prfp(6,z) —» Vu<z —Prfp(-6,u)).
Let
Y(z) := Prf1(6,z) A Vusz=Prfr(-6,u)).
Then, by (2),
(3) PA+ Confgt Prfr(8,z) — 1(2).
By Fact 9 (b), we have, PAF ¥(z) — Pry(y(2)). Combining this with (3) yields
PA + Congt Prf(6,z) — Prr(1(2)),
whence, by Corollary 1.5 (i),
(4) PA+ Congt Prr(8) — Prr(3zy(z)).
By (R), Tk 3zy(z) — —-6. But then, by (BLi) and (BLii),
PAF Prp(3zy(z)) — Pry(-6).
Combining this with (4), we get PA + Contt Pry(6) — Pry(—6). But then, by (1),
(5 PA+ Congk -Pry(6),
as desired.
Next we prove that
(6) PA+ Congk —Pry(-6).
From (1), we get
PA + Contt Prfp(-6,u) — -Prfp(6,z)
and so
PA + Contt Prfp(-6,u) = Vz<u-Prf(6,z)).
Let
8(u) := Prfp(-6,u) A Vz<u-Prf(8,z)).
By an argument similar to the proof of (4), we get
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PA + Congt Prp(-8) — Prp(Fud(u)).
(R) easily implies that T 3ud(u) — 6. But then (6) follows, by an argument almost
the same as the proof of (5).
If PAH T, this proof of Theorem 5 can be replaced by the formalization of the
above short proof of Theorem 2. By (R),
PAF Prp(6) A =Prg(-6) — -6.
Since -6 is X;, PAF =0 — Pry(-6). It follows that PAF Pry(8) — Prr(-6) and so, by
Corollary 1.5 (iii),
PAF COI'IT - 'WPI'T(G).
Next, by Corollary 1.10 (b), (R), (BLi), and (BLii), PAF Pry(-6) A ~Pr(6) — Prp(8),
whence PAF Prp(-6) — Prp(6) and so, by Corollary 1.5 (iii),
PAF Cont — =Prp(-0).
Combining Theorem 5 and Corollary 1.5 (iv) we get:

Corollary 3. Let 6 be as in (R). Then
PA + ConTI- COI’IT+9 A COI‘IT*_ﬂe.

The sentence ¢ in (G) above says of itself that it is not provable in T. Let us now
consider a sentence  saying of itself that it is provable in T, i.e. such that

QF % ¢ Pry(y).
Is x provable in T? In this case no simple argument in terms truth will yield an
answer, not even if T is true. Nevertheless, it turns out that T+ y provided that PA-
T. This follows from our next result, known as Lob’s theorem.

Theorem 6. Suppose PA- T and let ¢ be any sentence such that Tk Prp(¢) — ¢.
Then T+ .

Proof. Let 6 be such that
(1) PAF 6 < (Prp(6) - o).
From this, (BLi), and (BLii), we get
(2)  PAF Pry(6) - (Prp(Prp(6))>Prr(¢)).
By (BLiii),
(3)  PAF Prp(68) — Prp(Pr(6)).
From (2) and (3) it follows that
(4)  PAF Pry(6) — Prr(o).
Since, by hypothesis, Tk Prr(¢) — ¢, this implies that
(5) Tk Prp(6) — 0.
But then, by (1), TF 6, whence, by (BLi), PAF Pry(8). Finally, this together with (5)
yields T+ ¢, as desired. B
There is a semantic paradox related to the above proof in somewhat the same
way as the liar paradox is related to the proof of Theorem 1. Let
(**)  If (**) is true, the earth is flat.
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“Prove”, by considering (**), that the earth is flat.
Theorem 6 is a strengthening of Theorem 4: let ¢ := L. But Theorem 6 can also
be derived from Theorem 4 as follows. Suppose T+ Prr(9) — ¢. Then T + -t
-Pry(9), whence, by Corollary 1.5 (iv), T + =¢F Conr. - But then, by Theorem 4,
T + —@ is inconsistent and so T+ .
By slightly modifying the proof of Theorem 6 we can derive the stronger result
that for every sentence ¢,
(L)  PAF Pr(Prr(g)->¢) — Prr(@).
In fact, from (4) we get
PAF (Prr(0) > ¢) = (Pr(8) — o).
But then, by (1), PAF (Prp(¢) — ¢) — 6, whence, by (BLi) and (BLii),
PAF Prp(Prr(9)—¢) — Pry(6). '
Finally, (L) follows from this and (4).
Theorem 4 is sometimes informally expressed by saying that if T is as assumed,
then T does not prove that T is consistent. That this must be interpreted with some
care is clear from the following result.

Theorem 7. Suppose PA- T. Let 1(x) be any formula binumerating T in T and let
T(x) = 1(x) A Congy.
Then (i) T*(x) binumerates T in T and (ii) PAF Con.,.

The following intuitive proof of Theorem 7 (ii) (formalizable in PA) is probably
easier to understand than the formal argument below, but its formalization would
be somewhat longer: “Any proof p from the set X defined by 1(x) A Con contains
a greatest sentence e X. Since ¢ satisfies Cony,, it follows that the set of members
of X occurring in p is consistent. Thus, p cannot be a proof of L.”
Proof of Theorem 7. Note that x is free in Cony,.
(i) If ke T, then TF 1(k). By Corollary 1.9 (a), T+ Cong. Thus, TH 7*(k). If, on the
other hand, k¢ T, then TF —-t(k) and so TF -1*(k).
(ii) Trivially F t*(x) = 1(x). Hence, by Fact 6,

(1) F Con; — Cong,.
Since PA is reflexive, we have PAF Congg. (We assume that 0 is not a formula.)
Also, by Fact 8 (iii), PAF VzCony, — Con,. By the least number principle, it follows
that
(2)  PAF =Con; — Jz(~Conyy,,q A Cong,).
By Fact 6,

PAF =Cony,,1 — (Congy - x < 2).
Hence, by the definition of t*(x),

PAF =Cong,4q — (T%(x) = T(X) A X L 2).
Hence, again by Fact 6,

PAF =Congy,,1 A Cong, — Cong,.
But then, by (2),
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PAF -Con; — Cony,
and so, by (1), PAF Con,, as desired. B

If 1(x) is PR, then 1*(x) is I1;. By Theorems 4 and 7, t*(x) is not provably in T
equivalent to a Z; formula.

The formula 7*(x) may seem like a mere curiosity, but certain closely related for-
mulas are actually of crucial importance in connection with interpretability (see the
proof of Lemma 6.2.).

By Theorems 4 and 7, there are formulas ty(x) and 1;(x) binumerating T in T
such that Con,; and Con,, are not provably equivalent in T. We now show that this
is so even if we restrict ourselves to PR formulas.

Theorem 8. Suppose PA- T. Let 1(x) be any PR binumeration of T.

(a) There is a PR binumeration 1/(x) of T such that

(i) TF Con; — Conyy,

(ii) T¥ Conys — Con,.

(b) Let & be a true II; sentence such that T © — Con,. There is then a PR binu-
meration 7/(x) of T such that T+ n < Cony.

Proof. (a) Let 7’(x) be such that
PAF 7'(x) & 1(x) A Vy<x-Prfr(Con., -Con, /y).
By Fact 6, (i) holds. Suppose (ii) is false, i.e.
(1) Tk Cong — Con,.
Let p be a proof of Con;; — Con, in T. Then, by Fact 7 (a) and Fact 1 (v),
PAF Vy<x-Prf1(Con;,—»Con; ;y) > x <p
and so PAF 17/(x) = t(x) A x < p. By Fact 6, it follows that,
(2)  PAF Conyy, — Cony,.
But T+ Conﬂp, by Corollary 1.9 (a). Hence, by (1) and (2), T Con,, contradicting
Theorem 4 (a). This proves (ii). Finally, by (ii), Fact 1 (iv), and Fact 7 (d), 7'(x) is a
PR binumeration of T. ¢
(b) By Fact 5 (b), we may assume that 7 := Vx8(x), where §(x) is PR. Let 7'(x) :=
1(x) v Jy<x-d(y). Since = is true, T’(x) is a PR binumeration of T. Clearly
T + nk 7 (x) = ().
Thus, by Fact 6, T + n- Con; — Con;, and so T+ © — Con,.
To show that the converse implication is provable in T we use the fact that evi-
dently
PAF 3y-6(y) — ~Cony.
But then, by Fact 6, T + -nk =Con,;; and so T+ Con,, —» n. &
Suppose 1(x) is a PR binumeration of T. Then, by Theorem 4, it may be true that
Tk -~Con,. However, from Theorem 8 (a) it follows that we can always choose t(x)
so that this does not hold:

Corollary 4. If PA- T, there is a PR binumeration 1t(x) of T such that T# -Con,.
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§3. Independent formulas. A formula §(x) is independent over T if the only proposi-
tional combinations of sentences of the form (k) provable in T are the tautologies.
This, of course, is the same as saying that T + {£(k){(k): ke N} is consistent for any
fe 2N,

The following result is a strengthening of Theorem 2.

Theorem 9. There is a I1; formula which is independent over T.

Proof. Let R(k,i,y,p) be the primitive recursive relation:
there is a binary sequence s such that s, =i (soi=0ori=1) and p is a proof
in T of =(Y(0)50 A...A ¥(k)Sk).
Let p(x,y,z,u) be a PR binumeration of R(k,i,y,p). Let pu(x) be such that
QF u(x) © Vz(p(x,1,1,z) = Ju<zp(x,0,u,u)).
Suppose, for reductio ad absurdum, that pu(x) is not independent over T. There is then
a smallest n for which there is a sequence s such that
1) ~(u(0)% A...A p(n)*n)
is provable in T. Let s be the sequence for which the shortest proof p of (1) in T is
minimal. There are then two cases. (We assume that n > 0 and leave the casen =0
to the reader.)
Case 1. s, = 0. Then
(2 Tk p0)% A...A p(n-1)%n-1 — =pu(n),
3 Tk pn0mpp),
4) Tk -p(n,1,u,q) for q<p.
From (3) and (4) we get T p(n) as in the proof of Rosser’s theorem. But then, by
@),
(5)  TF (0% A..A p(n-1)n1),
contrary to the fact that n is minimal.
Case 2. s, = 1. Then
6) Tk u0)50 A..A p(n-1)8n-1 — p(n),
(7) Tk p(nLpp),
8) Tk -p(n,0,uq) for q <p.
From (7) and (8) we get Tk —(n) and so, by (6), we again get (5), again contrary to
the minimality of n. B
Theorem 9 can be improved as follows; Theorem 10 will be used in Chapter 6
(proof of Lemma 6.8).

Theorem 10. For any X, formula §(x), there is a X, ,; formula n(x) such that for any
f, ge 2N, if Ty = T + {8(k)fX): ke N} is consistent, so is T¢ + {n(k)&®): ke NJ.
Proof. For every fe 2N, let Rf(k,i,y,p) be the relation:
there is a binary sequence s such that (s), =i and p is a proof in T¢ of
=(1(0)®)0 A...A Y(k))k)
(compare the relation R(k,i,y,p) defined in the proof of Theorem 9). Using the for-
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mula 8(x), we are going to define a formula p*(x,y,z,w) such that for every f,
(1) p*(xyzw) binumerates Rf(ki,y,p) in T¢.
(Thus, p*(x,y,z,w) behaves in relation to Ty, in the same way as the formula
p(x,y,z,u) in the proof of Theorem 9 behaves in relation to T.) Let R*(k,i,y,t,n,p) be
the following primitive recursive relation, where t is a binary sequence:

there is a binary sequence s such that (s), = i and p is a proof of

=(1(0)®)0 A...A Y(K)OK) in T + §(0)1)0 +...+ §(n)tn,
Then
) Rf(kiyp) iff Int<p(Vmsn((t),, = f(m)) & R¥(k,i,y,tn,p)).
This is trivial except that it isn’t clear that assuming that Rf(k,i,y,p), we can choose
t < p. But this holds if we assume, as we may, that if 8(n)f(n) occurs in p, then p >
2x3x...Xp,,, where p,, is the nth prime mumber. Let p*(x,y,z,u,v,w) be a PR binumer-
ation of R*(k,i,y,t,n,p).

By Fact 2, there is a PR formula o(x,z,u) such that

QF o(km,u) & u = (k).

Let
B(x,y) := Vz<y((8(z) — o(x,2,0)) A (=3(z) - o(x,2,1))).

Then for every n and every t,

3y  T¢ Bltn) & Al(t)y = f(m): m <n}.

In view of (2) and (3), the obvious definition of p*(x,y,z,w) is now:
p*(x,y,z,w) := Juvsw(P(u,v) A pH(x,y,zu,v,w)).

To prove (1), suppose first Rf(k,i,y,p). By (2), there are then n, t < p such that (t),
= f(m) for all m < n and R*(k,i,y,tn,p). But then Tk p*(k,i,y,t,n,p). By (3), it follows
that T¢+ B(t,n) and so that T¢+ p*(k,i,y,p).

Next suppose —-Rf(k,i,'y,p). Then, by (2), -R*(ki,y,t,n,p) for every n < p and every
t < p such that (), = f(m) for all m <n. It follows that T+ —p*(k,i,y,t,n,p) for all such
n and t. Also, by (3), T¢+ -B(t,n) for all t such that (t),, # f(m) for some m<n. It fol-
lows that T¢- —p*(k,i,y,p). This proves (1).

Let n(x) be such that

QF n(x) & Jz(p*(x,0n,z) A Yusz-p*(x,1,n,u)).
The proof that n(x) is as desired is now the same as the proof of Theorem 9 except
that T is replaced by any consistent theory T, and the fact that p(x,y,z,u) is decid-
able in T is replaced by (1). We leave this part of the proof to the reader.

Finally, if 8(x) is X, then B(x,y) is A,,;, whence the same is true of p*(x,y,z,w)
and so N(x) is Z,,1, as desired. B

The proof of the final theorem of this § is quite different from the proofs of
Theorems 9 and 10; instead of a Rosser type construction it uses the formulas
Satg(x,y) and so does not apply to Q (and its extensions).

In the proof of Theorem 11 we assume, as we may, that
(+) PAF<xy>=z 6 (x=(z)g Ay =(2))).

Theorem 11. Suppose PA4 T. Then there is a I" (A,,) formula y(x) such that T +
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Vx(Y(x) ¢> 8(x)) is consistent for every I" (B,,) formula 5(x).

Proof. Suppose first I' = X; the case I' = I1,, follows by taking negations. Let
S(k,m,n) be a primitive recursive relation such that
d(x)e X, & Tk -Vx(n(x) « &(x)) iff InS(n,d,n).
Let 6(x,y,z) be a PR binumeration of S(k,m,n) and let *(x,y,z) :=
o(x,y,z) A VY2 (<y’,2'> < <y,z> = ~06(x,y’,2')).
Finally, let y(x) be such that
(1) PAF y(x) & Iyz(c*(vy.z) A Satzn(x,y)).
Suppose there is a X, formula §(x) such that
(2) Tk =Vx(Y(x) © 3(x)).
For each such formula, there is an n such that S(y,8,n). Now pick §(x) and n so that
<d,n> is minimal. Then, by (+),
PAF o*(yyz) @ y=8az=n
Hence, by (1) and Fact 10 (a) (i), PAF Vx(Y(x) <> 8(x)), contradicting (2). Thus, (2) is
false for all =, formulas 8(x), as desired.
To obtain a Ay, formula as desired, replace Saty_(x,y) by Satg (x,y) in (1). B
For extensions T of PA, Theorem 9 follows at once from Theorem 11.
Theorem 11 has the following:

Corollary 5. Suppose PA4 T. There is a I (A1) sentence not in ['4'T (BT).

Proof. Let y(x) be as in Theorem 11 and let ¢ := y(0). B

§4. The length of proofs. We begin by showing that the length of proofs of (I1;)
sentences ¢ is not bounded by any recursive function of ¢.

Theorem 12. Let f(k) be any recursive function. There is then a I1; sentence ¢ such
that TF ¢ and the least proof of ¢ in T is > f(¢).

Proof. Let §(x,y) be a X; formula defining f in Q (cf. Fact 3 (b)). Let ¢ be such that
QF ¢ & Vy(8d9,y) = Vz<y-Prfr(9,2)).
Suppose ¢ has a proof p < f(¢) in T. Since
QF 3(g)y) © y = (o)
and, by Fact 7 (a), QF Prfr(¢,p), it follows that QF —¢ and so TF ¢, a contradic-
tion. Thus, ¢ has no proof p < f(9) in T. But then, by Fact 1 (iv) and Fact 7 (d),
QF Vz<f(¢)-Prf(¢,z)), whence QF ¢ and so T ¢. B
In Theorem 12 and in Theorems 13 and 14, below, we use (the Godel number of)
the proof as a measure of its “length”. We could also have used the number of
(occurrences of) symbols as a (more natural) measure of “length” and proved the
same results.
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Suppose T# ¢. Then T + ¢ is stronger than T not only in the sense that it proves
more theorems but also in the sense that there are infinitely many theorems of T
which have “much shorter” proofs in T + ¢; more exactly:

Theorem 13. Suppose TF ¢. Let f be any recursive function. There is then a sen-
tence 6 such that T+ 6 and there is a proof q of 8 in T + ¢ such that 6 has no proof
<f(@inT.

Proof. We may assume that f is increasing. Let 8¢(x y) be a formula defining f in Q
(cf. Fact 3 (a)). Let y be such that

QF y © 3yz(Prir,o(evy,y) A 8y 2) A Vusy+z-Prfr(ovy,u)).
Let 0 := ¢ v y. Suppose TF 6. Since, trivially, T + ¢t 6, it follows, by Fact 1 (iv) and
Fact 7 (a) and (d), that TF y and so Tt 6, a contradiction. Thus, Tt 6.

Let q be the least proof of 8 in T + ¢. Suppose there is a proof < f(q) of 6 in T.
Then, again by Fact 1 (iv) and Fact 7 (a) and (d), TF -y and so TF @, contrary to
hypothesis. It follows that 8 has no proof < f(q) in T. B

Another way of obtaining “much shorter proofs”, in this case without getting
any new theorems, is to add new (nonlogical but correct) rules of inference: for
example, if T is Zj—sound, the rule

R: from Pry(9) derive o,
is correct for T in the sense that every sentence which can be derived (from the
axioms of T) using this rule can be proved without it, i.e. is a theorem of T. That R
occasionally leads to “much shorter proofs” follows from our next:

Theorem 14. Suppose PAH T and T is X;-sound. Let g(k,m) be any primitive recur-
sive function. There are then a (Z;, I1;) sentence ¢ such that T+ ¢ and a proof q of
Pr() in T such that ¢ has no proof < g(¢,q) in T.

Proof. We may assume that g(k,m) is increasing in m. Let ¢ be such that
Tk ¢ & Jy(Prip(Pr(9),y) A Vz<g(9,y)-Prf1(9,2)).
Clearly
T + Prp(Prr(e)) + ~Prr(@)F ¢.
Since ¢ is X, we have, by provable Z;—completeness, T + ¢+ Pr(9). It follows that
T + Pro(Prr(@)F Prr(e),
and so, by Theorem 6, T Pry(¢). Since T is ;-sound, this implies that T+ ¢ and
that ¢ is true.
Let q be the least proof of Pry(¢) in T. Since ¢ is true and g(k,m) is increasing in
m, it follows that ¢ has no proof < g(¢,q).
To obtain a IT; sentence as desired, let ¢ be such that

Tk ¢ & Vz(Prf(9,z) - Jy<z(g(9,y) < z A Prig(Pr(9),y)))
and set

¢* := Iy(Prfr(Prp(9)y) A Vz<g(,y)-Prir(9,2)).
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Then

T + Prp(Prr(9)) + =Prp(o)F ¢*.
Clearly, TF ¢* = ¢ and so, by (BLi) and (BLii), Tk Prp(¢*) — Pry(p). Since ¢* is Z;,
we have T + ¢*F Pr(¢*). It follows that

T + Prr(Pro(@)F Prr(e).
The rest of the proof is now the same as above, except that we observe that, since
¢ is IT; and T+ @, @ must be true (Fact 9 (a)). B

For any sequence p of formulas and any formula 6, let p~6 be p followed by 6.

If p is a proof of Pry(8) in T we may think of p/ as an R~proof of 8 in T, i.e. a proof
in T in which we are allowed to use the rule R. Now, let h be any primitive recur-
sive function and let g(6,p) = h(p”\6). Then g is primitive recursive. Let ¢ and q be
as in Theorem 14 and let r = q*¢. Then r is an R—proof of ¢ in T and ¢ has no proof
<h(r)inT.

Exercises for Chapter 2.
In the following Exercises we write Prf(x,y), Pr(x), Con for Prfr(x,y), Pry(x), Conr,
respectively.

1. Suppose T is true. Show that T is not complete by using the fact that Th(T), being
re., is definable in N together with Corollary 1.7.

2. Let U be a (not necessarily r.e. or true) consistent extension of Q. Suppose there
is a formula v(x) binumerating U in U. Show that U is not complete.

3. Let Ref(T) = {¢: TF —¢}. Let X be any set such that Th(T) & X and Ref(T) n X = Q.
Show that there is no formula binumerating X in T. (This improves Lemma 1.2.)
Conclude that Th(T) and Ref(T) are recursively inseparable, i.e. there is no recursive
set Y such that Th(T) €Y and Ref(T) N Y = &. (This implies Theorem 1.2.)

4. (a) Suppose T is Z;-sound. Use the fact that there is an r.e. nonrecursive set to
show that there is a (true) IT; sentence not provable in T.

(b) Let X, and X be disjoint r.e. sets. Let p;(x,y) be a PR formula such that X; =

{k: 3ImQF p;(k,m)},i=0, 1. Let

E(x) := y(pg(x,y) A Vz<y-pq(x,2)).
Show that if ke Xy, then QF &(k), and if ke X;, then QF —&(k) (compare Theorem
3.2).

(c) Show that the sets of Iy and X, sentences provable in T are not recursive and,
therefore, there is a true I1; sentence which is unprovable in T (compare Theorem
2). [Hint: There are disjoint r.e. recursively inseparable sets (see Exercise 3).]

(d) Suppose PA- T. Show that the set of AT sentences is not recursive. [Hint: Let
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o be a £ formula which is not AL, Let X; and p;(x,y) be as in (b). Suppose X, and
X, are recursively inseparable. Let n(x) :=

Jy(po(x,y) A Vz<y-p1(x,2)) v (32(p1(x,2) A Vy<zopo(X,y)) A ©).
Let Y = {k: n(k) is AT). Then Xy S Yand X; n Y = @]

5. Suppose Q- S. Show that there is a II; sentence 8 such that S¥ 6, Sk -6,
T -Prg(6), TH —Prg(—6).

6. Let ¢ be as in Theorem 1.

(a) Show that PAF ¢ — Con. Conclude that PAF ¢ <> Con and so PAF Con <
=Pr(Con). (Thus, there is a sentence, Con, satisfying (G) not constructed using
self-reference.) We also have PAF Pr(~¢) — Pr(-Con) (compare the last part of
Theorem 1).

(b) Suppose PA- T and T is Z;-sound. Show that T# Con — —Pr(-¢) (compare
Theorem 5).

7. T is w-consistent iff for every formula o(x), if Tk -o(k) for every k, then TH
Ixou(x).

(c) Show that if T is @—consistent, then T is IT3-sound.

(d) Suppose T is true. Show that there is a false X5 sentence ¢ such that T + ¢ is
w—consistent. Conclude that w—consistency does not imply Zs-soundness. [Hint:
Let ¢ be a sentence “saying” that T + ¢ is not w—consistent.]

(e) Suppose PAH T and T is true. Show that for every n, there is an extension S
of T which is £ -sound but not w—consistent. [Hint: Let 8(x) be a IT;, formula such
that PAF ¢ < 3x8(x), where ¢ as in Exercise 1.6 (b). Let S = T + 3xd(x) + {—~3(k):
keN}]

8. Suppose PA- T. Let 6 be a IT; Rosser sentence for T and let y :=

Yu(Prf(-0,u) — 3z<uPrf(6,z)).
Show that Tl 6 — Con, T# y — Con, and PAF 6 A y — Con. Conclude that TH y.
[Hint: Use Theorem 4 and Corollary 3.]

9. Suppose PA- T. Suppose ¢ is undecidable in T. Show that there is a (£, IT;) sen-
tence y such that

TH o>,

PAF Pr(¢) — Pr(y).
[Hint: Construct y is such a way that PAF Pr(¢) A ~Pr(¢—vy) — Pr(y).]

10. Strengthen Lemma 1 in the following way. Suppose X is r.e. and monoconsis-
tent with Q. Show that there is a I1; formula n(x) such that the only propositional
combinations of sentences of the form mn(k) which are members of X are the tau-
tologies.
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11. Suppose PA- T. Show that there is a IT; formula x(x) such that T¥ x(k) for every
k, but Tk k(k) v k(m) whenever k # m. (This can also be obtained as a special case
of Theorem 3.5.). [Hint: Let x(x) be such that

PAF x(x) <> Vy(Prf(x(x),y) — Fzu(<z,u><<x,y> A Prf(k(2),u))).]

12. Suppose PA- T. Let f(k) be any recursive function. Show that there is a I1; sen-
tence 6 such that Tk 6 and T1f(8)F* 6. (This improves Corollary 1; also compare
Exercise 4.5.) [Hint: Let §¢(x,y) be a Z; formula defining f in Q (cf. Fact 3 (b)) and let
0 be such that

QF 8« VY(Sf(GIY) - _'PrTIy(G)-]

13. Prove L6b’s theorem by considering a sentence 6 such that

PAF 8 & Pr(6—9).
(This is essentially the proof of Theorem 6 using Theorem 4 mentioned in the text.)
Show that this proof can be formalized in PA.

14. Suppose PA- T. Show that there is a PR formula 8(x) such that T+ VxPr(8(X))
and TH Vx§(x). [Hint: Let ¢ be as in the proof of Theorem 1 and let §(x) :=
=Prf(¢,x).]

15. Suppose PA- T. Let t(x) be a PR binumeration of T and let t*(x) be as in
Theorem 7.

(a) Let w be such that PAF y <> —Pr+(y). Show that y is undecidable in T.

(b) Show that TF Corns,_cone- [Hint: Let ¢ be as in Theorem 1. Then T+ ¢ —
Pr.+(—9) and so Tk ¢ — —Pr«(9). It follows that Tk Pr(¢) — —Pr«(¢). Also T+
=Pr.(9) = —Pr+(9) and so Tk —Pr.+(¢). Now use the fact that TF Con; — ¢.]

16. Suppose PA- T. Prove the following strengthening of Corollary 4. Suppose X is
r.e. and monoconsistent with T. There is then a PR binumeration 1(x) of T such that
—~Con.¢ X (see Exercise 6.6 (b)). [Hint: Let 7/(x) be a PR binumeration of T, let p(x,y)
be a PR binumeration of a relation R(k,m) such that X = {k: 3ImR(k,m)}, let ¢ be such
that

PAF ¢ © Cone ) avyscp-oyy
and set 1(x) := T (X)AVy<x-p(~9,y).]

17. Suppose PAH T. Let 1y(x) and 1;(x) be PR binumerations of T.
(a) Show that there is a PR binumeration t(x) of T such that
T+ Cong > Cong A Conyg,.
[Hint: Let 1(x) := 19(x) v EinXPrfﬁ(J.,y). See also Theorem 8 (b).]
(b) Show that there is a PR binumeration t(x) of T such that
T+ Con, «» Cong, v Cong,.
[Hint: Let 1(x) := (t5(x) A T1(x)) v (EInyPrftO(J_,y) A HnyPrft‘l(L,y)).]
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(c) Suppose T @. Show that there is a PR binumeration 1(x) of T such that
T Con; — ¢ (compare Theorem 8 (a)).

(d) Suppose T# ¢ and TH —y. Show that there is a PR binumeration t(x) of T
such that T Con; — ¢ and T# y — Con,. [Hint: Use Lemma 1 and Theorem 8 (b).]

18. Suppose PA- T. Let a(x), B(x) be PR formulas and let o. < f mean that there is a
primitive recursive function g such that

PAF Vx(Prfy(Lx) = PrfB(J_,g(x)).
(o< B implies PAF Cong — Cony, bur not conversely.) Let o= B mean that a <P <
o. Let t(x) be a PR binumeration of T and let a(x) be such that PAF 1(x) — o(x).
Show that there is a I1; (Z;) sentence ¢ such that o. = T + ¢. [Hint: In the IT; case let
¢ be such that

PAF ¢ & Vx(Prfy(L,x) —» Jy<xPrf; +q,(J.,y)).
Use the fact that to every PR formula §(x), there is a primitive recursive function h
such that

PAF §(x) — Prf(8(x),h(x)).]

19. Prove the following strengthening of Theorems 3 and 9. If {T}: ke N} is an re.
family of theories, there is a IT; formula which is simultaneously independent over
all the theories Ty. Strengthen Theorems 10 and 11 in the same way.

20. (a) Derive Theorem 9 for extensions of PA from Theorem 11.
(b) Formulate and prove a generalization of Theorem 11 which implies Theorem
10 for extensions of PA.

21. Suppose PA-T. Let 6 be any X sentence. Show that there is a Z; sentence y such
that

PAF (o v Pr(1)) & Pr(y).
Conclude that (i) for every Z; sentence ¢ such that T Pr(1) — o, there is a Z; sen-
tence  such that Tk ¢ <> Pr()) and so for any sentences @, y, there is a Z; sentence
x such that TF Pr(x) < Pr(9) v Pr(y), and (ii) for every I; sentence = such that T+
n — Con, there is a I1; sentence 8 such that T ® <> Conr,q (compare Theorem 8
(b)) [Hint: Let (y) be a PR formula such that ¢ := Jyd(y). Let ), be such that

PAF x & 3y(8(y) A Vz<y-Prf(y,z)).
Then PAF Pr(x) A ~c — Pr(-y).]

22. Suppose PA- T. Show that the following conditions are equivalent:

(i) Tis X;—sound.

(ii) For any two X, sentences o, 0y, if TF o v 67, then either T+ 6 or T+ o;.

(iii) If o is Aﬂlr, then either T+ 6 or T+ —c (compare Exercise 3.6 (a)).

(iv) Pr(x) numerates Th(T) in T (compare Exercise 6.18).

[Hint: (iii) implies (i). Let 8(z) be a PR formula such that 3z3(z) is false and prov-
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able in T. Let o be such that
QF 6 & 3z((Prf(-0,z) v 8(z)) A Yusz-Prf(c,u)).
(iv) implies (i). Let 8(z) be as above. Let ¢ be such that
QF ¢ & 3z(8(z) A Yusz-Prf(o,u)).
Then TF Pr(o) and T# ¢.]

23. Suppose PAH T.

(a) Let ¢ be any I' sentence. Show that there is a formula &(x) such that if yis T,
then y is a fixed point of §(x) in T iff y := @.

(b) Suppose ¥(x) is I". Show that Y(x) has infinitely many T fixed points in T.
Conclude that the formula §(x) mentioned in (a) cannot be T.

(c) Let X be any r.e. set of sentences. Show that there is a formula &(x) such that
if pe X N T, then ¢ is a fixed point of §(x) in T and if T - X, then ¢ is not a fixed
point of &(x) in T. [Hint: Let p(x,y) be a PR formula such that X = {k: 3m PAF
p(k,m)}. Let (x) be such that

PAF &(¢) > (Trr(@) A 3y(p(9,y) A Vz<y-Pri(0-8(9),2)) v
(~Trp(9) A F2(Pri(peE(9),2) A Vy<z-p(,y))).]

In Exercises 24 — 28 “proof” means “proof in T”.

24. Let f(k) be any recursive function.

(a) Show that there is a X sentence ¢ such that Tk ¢ and the least proof of ¢ is
> f(¢) (compare Theorem 12).

(b) Show that there is a I1; formula &(x) such that for every n, Tk &(n) and the
least proof of £(n) is > f(n).

25. Suppose PA- T and let g(k) be any recursive function. Show that there are IT;
sentences Y, Y; provable and a proof p of Yy, v y; such that neither y, nor y; has
a proof < g(p). [Hint: Let Sg(x,y) be a Z; formula defining g(k) in T. Let Prf’(x,y) :=
Prf(x,y) A Vz<y-Prf(x,z) and let y; be such that
T y; &Vyz(Prf (Wovyr,y) A Iv(y(y,v) Az < V) A Pr(y;2) —
3u<z+iPrf(\|ll_i,u)).]

26. Suppose PA4 T and T is £;—sound. There is then a recursive function g(k) which
given a proof p of a sentence Pr(¢gg) v Pr(p;) picks out a ¢; such that Pr(g;) is true;
in other words, g(p) = 0 or g(p) = 1, if g(p) = 0, then Pr(g) is true, and if g(p) = 1,
then Pr(¢,) is true. Show that g(k) is not provably recursive in T even if we restrict
ourselves to Z; sentences @y, ¢;. [Hint: Suppose not. Assume that T+ g(y) = 0 v g(y)
= 1. Let y; be such that
Tk y; < Jy(Prf’ (Pr(yo)vPr(y1).y) A g(y) = 1),
where Prf’(x,y) := Prf(x,y) A Vz<y-Prf(x,z).]
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27. Suppose PA4 T, T is Z;-sound, and g is primitive recursive.

(a) Show that there are true Z; sentences 6, 61 and a proof p of Pr(cp) v Pr(cy)
such that neither Pr(c) nor Pr(c;) has a proof < g(p). [Hint: Show that there is a
primitive recursive function h such that h is provably increasing in T and if

Tk 6 < 3z(Prf(Pr(x),z) A Vusz-Prf(Pr(c),u)),
(*) Ty & 3z(Prf(Pr(c)vPr(x),z) A Vush(g(z))-Prf(o,u)),
r is a proof of Pr(y), and Pr(c) has no proof < r, then there is a proof < h(r) of c.
(Analyze the proof of Lemma 1.1 (c).) Let 6 := 6 and 67 := x. Use Lob’s theorem to
show that T+ Pr(cg) v Pr(cq).]

(b) Show that there are X; sentences Y, X1 such that x, is true, x; is false (in fact,
Tk —x4) and Pr(yg) v Pr(x;) has a proof p such that Pr(x) has no proof < g(p). [Hint:
In (*) replace Pr(y) by Pr(c*), where 6* :=

Fu(Prf(Pr(c),u) A Vz<u-Prf(Pr(x),z)).
Let xg := 6 and y; := 6*.]

28. Suppose PA4 T and T is Z;-sound.

(a) Show that Theorem 14 and Exercises 26, 27 hold with “primitive recursive”
replaced by “provably recursive in T”.

(b) There is a recursive function f such that if p is a proof of the sentence Pr(9),
then f(p) is a proof of ¢. Show that f is not provably recursive in T.

Notes for Chapter 2.
Theorem 1 is due to Gédel (1931). (However, Godel assumed that T is m—consistent
(see Exercise 7) but then applied this assumption only to the formula (correspond-
ing to) Prf1(¢,x).) For a quick proof of what is the essential content of Gédel’s the-
orem, namely: truth and provability in arithmetic are not equivalent (or: the set of
true sentences of L, is not r.e.), see Exercise 1; this also follows from each of the
Exercises 1.2 (a), 1.3 (a), and 1.6 (b). Theorem 2 is due to Rosser (1936). Theorems 1
and 2 can be strengthened and generalized in a number of different directions as
indicated in Exercises 1, 2, 3, 4 (see also Chapter 8). However, these “directions”
lead away from the central theme of this book and so will not be pursued further;
but see, for example, Kleene (1952a), Mostowski (1952b), (1961), and Kreisel and
Lévy (1968). Lemma 1 is due to Lindstrém (1979). Theorem 3 is due to Mostowski
(1961); for a stronger result also due to Mostowski (1961), see Exercise 19.
Theorem 4 is essentially due to Godel (1931); the present general formulation is
due to Feferman (1960). Corollary 1 is due to Mostowski (1952a) and Ryll-
Nardzewski (1952); this result is strengthened in Chapter 4 (Corollary 4.1) and
Chapter 6 (Theorem 6.3). Theorem 6 is due to L&b (1955). Lob’s theorem or, more
exactly, (L), is one of the keys to the modal logic of provability (cf. Boolos (1979),
(1993), Smoryriski (1985), Lindstrém (199?)). Theorem 7 is due to Feferman (1960).
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Theorem 8 (a) (with a different proof) is due to Feferman (1960); Theorem 8 (b) is
due to Orey (see Feferman (1960)).

Theorem 9 is due to Mostowski (1961); for a stronger result also due to
Mostowski (1961), see Exercise 19. Theorem 10 is due to Scott (1962). Theorem 11
(with a different proof) is due to Montagna (1982).

For Theorem 12 with IT; replaced by X, see Exercise 24 (a). A result similar to
Theorem 13 was first obtained by Godel (1936) (cf. also Mostowski (1952b)); for a
stronger result, see Exercise 3.3. Theorems 12 and 13 can also be derived from the
fact that the set of (I;) sentences provable in T (T + ¢) is not recursive (cf. Exercise
4 (c) and Theorem 1.2). Theorem 14, improved as in Exercise 28 (a), is due to Parikh
(1971); the present proof was pointed out to me by Christian Bennet; see also de
Jongh and Montagna (1989); a more general result has been proved by Montagna
(1992); cf. also Hajek, Montagna, Pudlak (1992); for related results, see Exercise
5.15.

Exercise 1 is implicit in Tarski (1933) (see Godel (1934) and Mostowski (1952b)).
Exercise 6 (a) is a special case of a general result, the fixed point theorem of prov-
ability logic due to Dick de Jongh (unpublished) and Sambin (1976) (cf. also Boolos
(1979), (1993), Smoryriski (1985), Lindstrom (199?)). Exercise 11 (with a different
proof) is due to Kripke (1963). Exercise 13 is due to Kreisel (see Smoryriski (1985)).
Exercise 15 (b) is due to Feferman (1960); it was used by him to prove Theorem 6.8.
Exercise 17 is due to Hajkova (1971); her papers contain many related results.
Exercise 18 is due to Bennet (1986). Exercise 19 is due to Mostowski (1961). Exercise
21 is due to Warren Goldfarb. The equivalence of (i), (ii), (iii) in Exercise 22 is due
to Jensen and Ehrenfeucht (1976) and Guaspari (1979); for similar results, see
Exercise 5.2. Exercise 27, improved as in Exercise 28 (a), is due to Shavrukov (1993)
(with different proofs).





