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1 Introduction

The higher infinite usually refers to the lofty reaches of Cantor’s paradise, no-
tably to the realm of large cardinals whose existence cannot be proved in the
established formalisation of Cantorian set theory, i.e. Zermelo-Fraenkel set the-
ory with the axiom of choice. Proof theory, on the other hand, is commonly
assoclated with the manipulation of syntactic objects, that is finite objects par
excellence. However, finitary proof theory became already infinitary in the 1950’s
when Schiitte re-obtained Gentzen’s ordinal analysis for number theory in a par-
ticular transparent way through the use of an infinitary proof system with the
so-called w-rule (cf. [49]). Nowadays one even finds vestiges of large cardinals
in ordinal-theoretic proof theory. Large cardinals have worked their way down
through generalized recursion (in the shape of recursively large ordinals) to proof
theory wherein they appear in the definition procedures of so-called collapsing
functions which give rise to ordinal representation systems. The surprising use of
ordinal representation systems employing “names” for large cardinals in current
proof-theoretic ordinal analyses is the main theme of this paper.

The exposition here diverges from the presentation given at the conference
in two regards. Firstly, the talk began with a broad introduction, explaining the
current rationale and goals of ordinal-theoretic proof theory, which take the place
of the original Hilbert Program. Since this part of the talk is now incorporated
in the first two sections of the BSL-paper [43] there is no point in reproducing
it here. Secondly, we shall omit those parts of the talk concerned with infini-
tary proof systems of ramified set theory as they can also be found in [43] and
even more detailed in [40]. Thirdly, thanks to the aforementioned omissions, the
advantage of present paper over the talk is to allow for a much more detailed
account of the actual information furnished by ordinal analyses and the role of
large cardinal hypotheses in devising ordinal representation systems.

2 Observations on ordinal analyses

How are ordinals connected with formal systems? Well, this question is way
more difficult to answer than “How are vector spaces measured by cardinals?”

* Research supported by a Heisenberg-Fellowship of the Deutsche Forschungsgemein-
schaft.
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Since the answer is crucial to the branch of logic reported on in this paper, we
shall gather together some wellknown and some not so wellknown facts. In doing
so, we also aim at averting certain misconceptions about ordinal-theoretic proof
theory.?

Furthermore, using results of [15], we characterize the provably recursive
functions of theories for which an ordinal analysis has been given.

Definition 2.1 For a set X and and a binary relation < on X, let LO(X, <)
abbreviate that < linearly orders the elements of X and that for all u, v, whenever
u < v, then u,veX.

A linear ordering is a pair (X, <) satisfying LO(X, <).

Let T be a framework for formalizing a certain part of mathematics. T' should
be a true theory which contains a modicum of arithmetic.

Let A be a subset of N ordered by < such that A and < are both definable in
the language of T'. If the language of T allows for quantification over subsets of
N; like that of second order arithmetic or set theory, well-foundedness of (A, <)
will be formally expressed by

WF(A, <) :=VX C N[VueA(Vv < uveX - ueX) = YuedueX] (1)

If, however, the language of T does not provide for quantification over arbitrary
subsets of N| like that of Peano arithmetic, we shall assume that it contains a new
unary predicate U. U acts like a free set variable, in that no special properties
of it will ever be assumed. We will then resort to the following formalization of
well-foundedness:

WF(4, <) :=VYueA(Yv < uU(v) - U(u)) = YueAU(u), (2)

where Vv < u ... is short for Vo(v < u — ...).
We also set

WO(A4, <) :=LO(4, <) A WF(4, <). (3)

If (A, <) is well-founded, we use |<| to signify its set-theoretic order-type. For
a€A, the ordering <[ a is the restriction of < to {z€A : = < a}.
The ordering (A4, <) is said to be provably well-founded in T if

T+ WO(A4, <). (4)
The proof-theoretic ordinal |T| of T is often defined as follows:
IT| := = sup {a : o provably recursive in 7'} (5)

where an ordinal « is said to be provably recursive in T if there is a recursive
well-ordering (A, <) with order-type a such that

T+ WO(4,<)

with A and < being provably recursive in 7.
The calibration of |T'| is then called ordinal analysis of T.

? The present section is complementary to [43], §2.
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The above definition of |T'| has the advantage of being mathematically precise.

But as to the activity named “ordinal analysis” it is left completely open what
constitutes such an analysis. One often encounters this kind of sloppy talk of
ordinals in proof theory. Among the uninitiated it might give the impression that
the calibration of |T'| is akin to computing numerical invariants in other branches
of mathematics, i.e. computing dimensions of vector spaces. This likening is not
completely mistaken, but what is most problematic about it is that ordinals are
not as easily bestowed upon us as natural numbers are. Before one can go about
determining the proof-theoretic ordinal of T', one needs to be furnished with
representations of ordinals. Not surprisingly, a great deal of ordinally informative
proof theory has been concerned with developing and comparing particular or-
dinal representation systems. Moreover, to obtain the reductions of classical
(non-constructive) theories to constructive ones (as related, for instance, in [12],
[43],82) it appears to be pivotal to work with very special and well-structured
ordinal representation systems.

But before attempting to delineate the type of ordinal representation sys-
tems that are actually used in ordinal analyses, it should be mentioned that, in
general, |T'| has several equivalent characterizations; though some of these hinge
upon the mathematical strength of T'.

Proposition 2.2 (i) Suppose that for every elementary well-ordering (A, <),
whenever T+ WO(A, <), then

THFVYu[A(u) = (Vv < uP(v)) = P(u)] = Vu[A(u) = P(u)]
holds for all provably recursive predicates P of T. Then

IT| = sup {@: « is provably elementary in T} (6)

=sup{a: a is provably recursive in T}.
Moreover, if T + WO(A, <) and A, < are provably recursive in T, then
one can find an elementary well-ordering (B, <) and a recursive function f
such that T+ WO(B, <), f is provably recursive in T, and T proves that f

supplies an order isomorphism between (B, <) and (A, <).
(it) If T proves comparability of well-orderings, then

|T| =sup{a: « is provably arithmetic in T}. (7)

(111) If T proves comprehension for analytic sets of integers, i.e. lightface X} sets
of integers, then

IT| =sup {a: o is provably analytic in T}. (8)

% It even rules out some of the pathological candidates of the “dreary list” in [23], p.
334.
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Proof: Probably folklore. But the only reference I know is [37]. For (ii) and (iii)
see [37], Theorem 1.2 and Corollary 1.3. (i) follows by refining the proof of [37],
1.2.(i1). O

Examples for (i) are the theories 1X;, WKL and PA. Examples for (ii),(iii)
are ATRg and 1§ — CAy, respectively.

Definition 2.3 FElementary recursive arithmetic, ERA, is a weak system of
number theory, in a language with 0,1, +, X, E (exponentiation), <, whose ax-
ioms are:

1. the usual recursion axioms for +, x, £, <.
2. induction on Ag-formulae with free variables.

ERA is referred to as elementary recursive arithmetic since its provably re-
cursive functions are exactly the Kalmar elementary functions, i.e. the class of
functions which contains the successor, projection, zero, addition, multiplica-
tion, and modified subtraction functions and is closed under composition and
bounded sums and products (cf. [46]).

The next definition garners some features (similar to [15]) that ordinal repre-
sentation systems used in proof theory always have, and collectively calls them
“elementary ordinal representation system”. One reason for singling out this
notion is that it leads to an elegant characterization of the provably recursive
functions of theories equipped with transfinite induction principles for such or-
dinal representation systems. Furthermore, though only based on empirical facts
about ordinal representation systems surfacing in proof theory, this definition
can also be viewed as a first (naive) step towards answering the question: “What
is a natural well-ordering?”

Definition 2.4 An elementary ordinal representation system (EORS) for a limit
ordinal A is a structure (A, <1,n — A,, +, X,z — w”) such that:

(i) A is an elementary subset of N.

(i1) < is an elementary well-ordering of A.

(111) !<]| = A.

(iv) Provably in ERA, < [, is a proper initial segment of < for each n, and
U, < TAs = <. In particular, ERA F Yy A\ €A A Vz€ATy [z < Ay].

(v) ERA +LO(4,<)

(vi) +, x are binary and z ~ w® is unary. They are elementary functions on
elementary initial segments of A. They correspond to ordinal addition, mul-
tiplication and exponentiation to base w, respectively. The initial segments
of A on which they are defined are maximal.

n — A, is an elementary function.

(vil) (A4, <, +, x,w”) satisfies “all the usual algebraic properties” of an initial
segment of ordinals. In addition, these properties of (4, <, +, x,w®) can be
proved in ERA.
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(viii) Let 7 denote the n** element in the ordering of A. Then the correspondence
n & 7 is elementary.
(ix) Let @ = wPr + --.wPk B > ... > B (Cantor normal form). Then the
correspondence o « (fi,...,0) is elementary.

Elements of A will often be referred to as ordinals, and denoted o, 3, . . ..

In a sense the preceding definition manages to characterize natural well-orderings
of order-type £¢ as any two such well-orderings arising from EORSs are recur-
sively isomorphic (mainly due to 2.4(ix)). Of course, this cannot be expected to
hold for larger order-types.

As for the computational complexity of EORSs involved in ordinal analyses,
it appears that they are even Ag-representable (cf. [62]). Be this as it may,
ordinal analysts never expected that the peculiarities of “real” ordinal represen-
tation systems, including their naturalness, could be fathomed via complexity
theory.* Sommer has addressed the issue at great length in [52, 53]. Here are his
conclusions:

Observation 2.5 Synopsis of discussion in [52]

— It 1s an empirical fact that with regard to complexity measures considered
in complexity theory the ordinal representation systems emerging in proof
theory are of low computational complexity and their basic properties are
provable in weak fragments of arithmetic.

The latter includes that computations on ordinals in actual proof-theoretic
ordinal analyses can also be handled in such weak theories.

—~ The complezity of ordinal representation systems involved in proof-theoretic
ordinal analyses cannot be described in terms of the complexity of the repre-
sentations of these ordinals, but only in terms of the difficulty in recognizing
the well-foundedness of these representations.

We continue to gather information about ordinal analyses.

Definition 2.6 Suppose LO(A, <) and F(u) is a formula. Then TI 4 q)(F) is
the formula

VneA[Vz a4 nF(z) —» F(n)] - Yn€AF(n). (9)
TI(A, <) is the schema consisting of TI(4,q)(F) for all F.

Given a linear ordering (A, <1) and a€A let Ay = {B€A : < a} and <4 be the
restriction of < to Ag,.

In what follows, quantifiers and variables are supposed to range over the
natural numbers. When n denotes a natural number, 7 is the canonical name in
the language under consideration which denotes that number.

* Though at times they got carried away pointing out the computational complexity
of their orderings as if it were their decisive feature.
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Observation 2.7 Every ordinal analysis of a classical (intuitionistic) theory
T that has ever appeared in the literature provides an EORS (A, <,...) such
that T and PA + U, 4 TH(Aa, <a) (HA + Uye s TI(Aa, <a)) prove the same
arithmetic sentences.

Moreover, regardless of the underlying logic, T and HA + |J, ¢ 4 TI(Aa, <a)
prove the same I13 statements.

Proof: PA + UaeATI(A&, <lg) can be interpreted in HA + UaeA TI(Ag, <a)
via the Godel-Gentzen ——-translation. Since the theorems of HA + UaEA TI(Aa,
<l&) are closed under the Markov-rule for primitive recursive predicates (using,
for instance, Friedman’s A-translation), it follows that the theories prove the

the same II? propositions, hence HA + Uaea TI(Aa, <a) proves the same m
sentences as T. (]

The latter result can be considerably improved.
Definition 2.8 For each a€A, ERWF(<, @) is the schema

VxIy[f(x,y) <f(xy+1) V f(x,9)¢A V a< f(x,y)]

for each (definition of an) elementary function f.
ERWF (<) is the schema

Vx3y[f(Xv y)ﬁf(x»wa 1) \ f(x’y)¢A]

for each elementary function f.
The schemata PRWF(<1,@) and PRWF(«) are defined identically, except
that f ranges over the primitive recursive functions.

Definition 2.9 DRA 4 q) (Descent Recursive Arithmetic) is the theory whose
axioms are ERA + (J,c4 ERWF(«, a).
DRA(<%) is the theory whose axioms are ERA + ERWF(«).

The difference is that DRA(<]) asserts only the non-existence of elementary
infinitely descending sequences below each a€A, where a is given at the meta-
level.

Combined with 2.7 the latter result leads to a neat characterization of the
provably recursive functions of T due to the following observation:

Proposition 2.10 The provably recursive functions of DRA (4 ) are all func-
tions f of the form

f(m) = g(m, least n.h(m,n) < h(m,n + 1)) (10)

where g and h are elementary functions and ERA + Vxy h(x,y)EAs for some
a€A.

The above class of recursive functions will be referred to as the descent recursive
functions over A.
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Proposition 2.11 (Friedman, Sheard [15, 4.4])
DRA (4 q) and PA + U,c4 TI(As, <a) prove the same II3 sentences.

From 2.7 and 2.11 we get:

Observation 2.12 Suppose an ordinal analysis of the formal system T has been
attained using an EORS (A, <, ...). Then the provably recursive functions of T
are the descent recursive functions over A.

We shall list some complimentary results.

Definition 2.13 If T is a theory, the 1-consistency of T is the schema
Vu[Prp("F(u)") - F(u)]

for 9 formulae F(u) with one free variable u.

Theorem 2.14 (Friedman and Sheard [15, 4.5]) The following are equivalent
over PRA:

(1) 1-consistency of PA + (J,e4 TI(As, <a)
(ii) PRWF(<t)
(ii) ERWF(<t).

Observation 2.15 Again, let T' be a theory for which an ordinal analysis has
been carried out via (A, <1). Then the following are equivalent over PRA :

(i) 1-consistency of T
(i) PRWF (<)
(i) ERWF(<t).

The ordinal representation systems used in ordinal analyses are distinguished
by another property. Suppose T successfully underwent an ordinal analysis by
employing an EORS (A, «,...). Further, assume T + WO(B, <) for some ele-
mentary (or recursive) well-ordering (B, <). Then a question suggesting itself is
whether it is possible to determine an initial segment <1, of < and T-provably
recursive function f such that

T f:B23 Az AVx,yeBx <y & f(x) <z f(y)]? (11)

The content of (11) is that (A, <) provides a universal measure for the provable
well-orderings of 7" in that each such well-ordering is T-recursively embedded in
an initial segment of <.

In the case of PA a positive answer to (11) can be obtained from Gentzen’s
proof of |PA| < gq (cf. [54, 13.4]). Fortunately, this is not the only example. The
proof of the following result requires a refined analysis of infinitary derivations.

Observation 2.16 In practice, that is to say when a reduction as in 2.7 has
been attained, the answer to question (11) is "YES”.5

® Ordinal analyses providing reductions as in 2.7 have also been distinguished in [84],
where they were christened “profound”.
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A caveat is in order here. Taken in isolation, property (11) does not guarantee a
meaningful ordinal notation system as the pathological example (iv) of [23], p.
334 demonstrates.

The preceding pointed out some markings of EORSs found in proof the-
ory. Another feature that we deem more important than the ones mentioned
hitherto is their versatileness in establishing equivalences between classical non-
constructive theories and intuitionistic constructive theories (cf. [43]) based on
radically different ontologies. Thus far we have only given a rather unsatisfying
and imprecise answer to the question: “What is so particular about the ordinal
representation system used in ordinal analyses?” In connection with this ques-
tion, it has been suggested (cf. [23], [11]) that it is important to address the
broader question of “What is a natural well-ordering?” A criterion for natu-
ralness put forward in [23] is uniqueness up to recursive isomorphism. Further-
more, in [23], Kreisel seems to seek naturalness in algebraic characterizations of
ordered structures. Feferman, in [10], discerns the properties of completeness,
repleteness, relative categoricity and preservation of these under iteration of the
critical process as significant features of systems of natural representation. Gi-
rard [17] appears to propose dilators to capture the abstract notion of a notation
system for ordinals.

However, in the ensuing sections we shall not be particularly heedful of these
suggestions and rather try to reflect on the main question from new angles.

3 Large cardinals and ordinal representation systems I

3.1 A brief history of ordinal representation systems up till the
early 1980s

Several natural well-orderings that later came to be used in proof theory had
arisen in a purely set-theoretic context. The Cantor normal form of ordinals
with exponentiation to the base w provides an ordinal representation system for
€o0. Veblen’s work [55], whose main tools are the operations of derivation and
transfinite iteration applied to continuous increasing functions of ordinals, dis-
tinguished several ordinals (e.g. ) which Feferman and Schiitte then employed
in their investigations on predicativity.

Still from a set-theoretic stance, Bachmann [4] utilized Veblen’s methods for
building hierarchies of normal functions and added the new procedure of diago-
nalization. A hierarchy of normal functions {4}« p is defined by simultaneously
defining the indexing set B such that with each limit a€B is associated a fun-
damental sequence (a[€] : £ < 7,) of ordinals a[€]€B of length 7, with a[¢] < a.
Depending on the type of 7, the function ¢ is defined from previously defined
functions by one of the procedures. Bachmann’s novel idea was the systematic
use of uncountable ordinals in the indexing set to keep track of the functions
defined by diagonalization.

When in the sixties important proof-theoretic ordinals were located in Bach-
mann’s system, it became the standard source of notations for ordinals required
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in proof theory. Bachmann’s hierarchy was extended by Pfeiffer [32] and Isles
[20]. By the end of the 1960s the conceptually straightforward Bachmann method
had been pushed as far as it could be. Unfortunately, the dependence of the con-
struction on fundamental sequences for each limit indexing ordinals, with certain
additional “dove-tailing” properties, adds enormous complexity to the very def-
inition of the ¢, and severely hampers their applicability in ordinal analyses.

At the end of the 1960s the definitions of ordinal representation systems were
so contaminated by details that future progress of ordinal-theoretic proof theory
was at stake. Fortunately, around 1970, this impasse was overcome by Feferman
who, in unpublished work, made conceptional improvements in the Bachmann
approach. In contrast to the definition of Bachmann-style hierarchies, Feferman’s
definition does not require simultaneous assignment of fundamental sequences
to limit ordinals. The definition of the ¢, ’s is uniform for all « since it does not
hinge on a previous assignment of cofinality type 7o to .

The new approach was carried out and pushed further by Aczel, Weyhrauch,
Bridge and Buchholz (cf. [11]) in the early 1970s. Considerable conceptual im-
provements and extensions of ordinal representation systems in the late 1970s
and early 1980s are due to Buchholz, Jéager, Pohlers and Schiitte (cf. [33]).

In this section we shall exhibit three ordinal representation systems which fea-
tured in ordinal analyses of extensions of Kripke-Platek set theory from around
1980 on, the first one being an epitome of the finale of the history reported
above. Their respective definition procedures make use of weakly inaccessible,
weakly Mahlo and weakly compact cardinals. Our objective is to show how large
cardinal assumptions are actually employed for devising ordinal representation
systems, also with the intention to rectify certain opinions held about ordinal
representation systems. Such systems are by no means cooked up or impenetra-
ble. As a rule, they utilize and extend wellknown set-theoretic hierarchies, for
instance Mahlo’s 7- and p-number hierarchies [24].

3.2 Ordinal functions based on a weakly inaccessible cardinal

KPi is a set theory which originates from Kripke-Platek set theory and in ad-
dition has an axiom which says that any set is contained in an admissible set.
Thus the standard models of KPi in L are the segments L, with & recursively
inaccessible. The ordinal analysis for KPi (cf. [21]) used an EORS built from
ordinal functions which had originally been defined with the help of a weakly
inaccessible cardinal. In this subsection we expound on the development of this
particular EORS with an eye towards the role of cardinals therein.
Let

I := “first weakly inaccessible cardinal” (12)
and let

(a— Qa)oz<[ (13)
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be a function that enumerates the cardinals below I. Further let
R = {1} U {241 : € <1} (14)
Variables &, 7 will range over ®!.

Definition 3.1 An ordinal representation system for the analysis of KPi can
be derived from the following functions and Skolem hulls of ordinals defined by
recursion on a:

closure of U {0,1}

under:
Cla,B) = { +, (€~ of) (15)
(€ = 2¢)ecr
(€m — ¥4 (m))e<a
(1) ~min{p < 7 : CHa,p)N7=p A TECYa,p)}. (16)

Note that if p = ¥*(m), then ¢*(7) < 7 and [p,7) N CY(a,p) = B, thus the
order-type of the ordinals below 7 which belong to the Skolem hull C}(a, p) is
p . In more pictorial terms, p is the at* collapse of .
Lemma 3.2 If 7 € CY(e, 1), then ¥*(x) is defined; in particular () < .
Proof: Note first that for a limit ordinal A,
Cla,N) = | CHe,9)
£<A

since the right hand side is easily shown to be closed under the clauses that
define C*(a, A). Thus we can pick w < 5 < 7 such that 7 € C¥(e, ). Now define

no =supCl(a,n) N« (17)
M1 =supCla,mp) N 7
0" = sup 7.
n<w

Since the cardinality of C(«a,7) is the same as that of 7 and therefore less than
m, the regularity of m implies that 7y < . By repetition of this argument one
obtains 7, < m, and consequently 5* < 7. The definition of * then ensures

Cla,pYNn n = UCI(a,nn) Nm =n"<m.

Therefore, ¥(7) < . a

Let €141 be the least ordinal @ > I such that w* = «. The next defini-
tion singles out a subset 7 (I) of C¥(e141,0) which gives rise to an ordinal re-
presentation system, i.e., there is an elementary ordinal representation system

(OR,<,R,4,...), so that
(T, <, R ¥,...) = (OR, <, R,%,...). (18)

is supposed to indicate that more structure carries over to the ordinal
representation system.

« ”»
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Definition 3.3 7 (I) is defined inductively as follows:

1. 0,Ie€T(I).
2. Ifay,...,an € T(I) and w* + - - -+ w* > a1 > ... > ap, then
w* 44w e T(I).
3. faeT(I),0<a<TIand o< 2,4, then 2, € T(I).
4. If a,m € T(I), 7 € CYa,7) and a € CY(a,¥*(7)), then ¢ (x) € T(I).

The side conditions in 3.3.2, 3.3.3 are easily explained by the desire to have
unique representations in 7(I). The requirement o € C¥(a,%*(m)) in 3.3.4
also serves the purpose of unique representations (and more) but is probably
a bit harder to explain. The idea here is that from ¢*(m) one should be able
to retrieve the stage (namely ) where it was generated. This is reflected by
a € CYa, v (m)).

It can be shown that the foregoing definition of 7(I) is deterministic, that is
to say every ordinal in 7 (I) is generated by the inductive clauses of 3.3 in exactly
one way. As a result, every ¥ € 7(I) has a unique representation in terms of
symbols for 0,I and function symbols for +, (& — £2,), (o, 7 = *(x)). Thus,
by taking some primitive recursive (injective) coding function [---] on finite
sequences of natural numbers, we can code 7 (I) as a set of natural numbers as
follows:

[0,0] ifa=0
[1,0] ifa=1

K(a): [2‘[(a1),'--,€(an)] foa=w*+...4w%
[3,£(8)] if o= 02
[4,£(8),€(m)] if a = ¢P (),

where the distinction by cases refers to the unique representation of 3.3. With
the aid of ¢, the ordinal representation system of (18) can be defined by letting
OR be the image of £ and setting < := {(£(7),£4(d)) : Yy < I A d,y € T(I)} etc.
However, for a proof that this definition of (OR,Q,&, D,.. .) in point of fact
furnishes an elementary ordinal representation system, we have to refer to the
literature (cf. [6, 7, 42]).

3.3 Ordinal functions based on a weakly Mahlo cardinal

In a paper from 1911 Mahlo [24] investigated two hierarchies of regular cardinals.
In view of its early appearance this work is astounding for its refinement and
its audacity in venturing into the higher infinite. Mahlo called the cardinals
considered in the first hierarchy m,-numbers. In modern terminology they are
spelled out as follows:

k is 0-weakly inaccessible iff k is regular;
K is (o + 1)-weakly inaccessible iff k is a regular limit of a-weakly inaccessibles

k is A-weakly inaccessible iff k is a-weakly inaccessible for every o < A
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for limit ordinals A. This hierarchy could be extended through diagonalization,
by taking next the cardinals x such that k is k-weakly inaccessible and after
that choosing regular limits of the previous kind etc.

Mabhlo also discerned a second hierarchy which is generated by a principle su-
perior to taking regular fixed-points. Its starting point is the class of pp-numbers
which later came to be called weakly Mahlo cardinals. Weakly Mahlo cardinals
are larger than any of those that can be obtained by the above processes from
below. Remarkably, Gaifman [16] showed that in a mathematical precise sense
a weakly Mahlo cardinal is the least upper bound of diagonalizing the regular
fixed-point operation from below.

Here we shall define an extension of Mahlo’s m-hierarchy by using ordinals
above a weakly Mahlo to keep track of diagonalization.

The resulting EORS of [35] has been used in [36] to give an ordinal analysis
of KPM. KPM is an extension of KPi by a schema stating that for every
X'1-definable (class) function there exists an admissible set closed under this
function. Its canonical models are the sets L, with u recursively Mahlo.

Let

M := first weakly Mahlo cardinal (19)
and set

RM .= {7 < M : 7 regular, 7 > w}. (20)
Variables «, 7 will range over M.

Definition 3.4 An ordinal representation system for the analysis of KPM can
be derived from the following functions and Skolem hulls of ordinals, defined by
recursion on a:

closure of S U {0, M}

under:
CM(a,8) = { +, (€ — o) (21)
(68 = x*(9))e<a
(Em— 1/’5(7"))601
x*(8) ~ 8" regular 1 < M s.t. CM(a, )" M =1 (22)

$*(r) @ min{p <7 : CM(a,p)Nr=p A T€CM(a,p)}.  (23)
Lemma 3.5 For dll «,
x*:M—->M
t.e. X% ts a total function on M.
Proof: Set
Xo = {p<M:CM(a,p) "M = p}.

We want to show that X, is closed and unbounded in M. As M is weakly Mahlo
the latter will imply that X, contains M-many regular cardinals, ensuring that
x% is total on M.
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Unboundedness: Given n < M, define

o = sup(CM(a, n+1)NM)
41 = sup(CM (@, 7,) N M)
n* = supn,.
n

One easily verifies CM(a,7*) "M = n*. Hence, 7 < * and n* € X,.
Closedness: If X, N A is unbounded in a limit A < M, then

CMa,N) = |J M(a9),
EEXANA

whence
CM(a,\)NM = sup{€:£€XaNA} = A,

verifying A€ X,,. a

For a comparison with Mahlo’s 7, numbers let I, be the function that enu-
merates, monotonically, the a-weakly inaccessibles. Neglecting finitely many ex-
ceptions, the function I, enumerates Mahlo’s 7, numbers.

Proposition 3.6 Set A* := least 7. 1(0) = 7.

(i) Yo < A VE < M I, (€) = x*(€)
(i1) A* = xM(0).
(iii) For all o < M, a sufficient condition for 1,(€) = x*(&) to hold is
wetl <€ <M.
(iv) The diagonal set {k < M : k is k-weakly inaccessible} is enumerated by the
function (o = xM(@))a<Mm-
Ever higher levels of diagonalizations are obtained by the functions x™ M, M M ,
etc.
The preceding gives rise to an EORS 7 (M) (similarly as sketched for 7(I))
which is essentially order isomorphic to CM(epm41,0). This EORS exactly cap-
tures the strength of KPM.

3.4 Ordinal functions based on a weakly compact cardinal

Here we shall venture much further, assuming the existence of a weakly compact
cardinal. The original impetus was to find an ordinal representation system
strong enough for the ordinal analysis of KP + IT3-Reflection (cf. [42]). By II3-
Reflection we mean the schema

¢ — Jz[“z transitive” A z # 0 A ¢7]

where ¢ is a set-theoretic II3-formula and ¢? is the result of restricting all quan-

tifiers to z.
A limit ordinal « is said to be IT3-reflecting if L = II3-Reflection.
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The connection of weak compactness with IT3-Reflection was established by
Richter and Aczel [45]. The first step to evince this analogy consists in an inter-
esting characterization of the notion of weak compactness (or I7{-Indescribability)
in terms of higher type operations.

Let F : *k — *k. F is k-bounded if for every f : kK — & and € < k, the value
F(f)(&) is determined by less than « values of f, i.e.

Vi€"kIy <kVge kg [v=F Ty = F(f)(&) = F(9)(€)]-
0 < a < kis a witness for F if for every f : k — &,
flaCa = F(f)'aCoe.
Definition 3.7 & > 0is 2-regularif every k-bounded F : *k — *k has a witness.

Theorem 3.8 ([45], Theorem 1.14) (ZFC) & is 2-regular iff & is weakly com-
pact.

2-regularity has a straightforward analogue in terms of recursion theory on or-
dinals (cf. [5, 19]). Let « be an admissible ordinal. A partial function f C k x &
is said to be partial k-recursive if its graph is k-recursively enumerable, i.e. Xi-
definable over L, (where L, denotes the k' level of Godel’s constructible hier-
archy). The partial k-recursive functions can be parametrized by a k-recursively
enumerable predicate of three arguments, with indices from the ordinals < & (cf.
(6], V.4.6 or [47], VIL,1.9). In the following definition we write {£}, to denote
the k-recursive partial function with index &, and write {{}, : K =& &k to mean
that {£} is total on «.

Definition 3.9 Let x be an admissible ordinal and £ < k. {€}, maps k-recursive
functions to k-recursive functions if

VB <k [{Btx ik >k = {{}e(B)}x : 6 = &].

Suppose {£}« maps k-recursive functions to k-recursive functions. An admissible
m < K is a witness for € if € < m and {£}, maps 7-recursive functions to -
recursive functions.

An admissible & is 2-admissible if every £ < & such that {£}, maps k-recursive
functions to k-recursive functions has a witness.

The next result gives the final link for the analogy.
Theorem 3.10 ([45], Theorem 1.16) & is 2-admissible iff k is II3-reflecting.

Turning back to the main objective of this subsection, we recall Mahlo’s
second method of generating large cardinals, the p-numbers (cf. [24, 25, 26, 16]).

Definition 3.11 Mahlo formulated his p numbers by using an operation which
is now known as Mahlo’s operation:

M(X) = {a€X : X N a is stationary in a}.
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The p,-numbers are obtained by iterating this process:

k is 0-weakly Mahlo iff  is regular;
k is (o + 1)-weakly Mahlo iff {7 < k : T is a-weakly Mahlo} is stationary in &
K is A-weakly Mahlo iff k is a-weakly Mahlo for every a < A

for limit ordinals A.

Proceeding similarly as with Mahlo’s first hierarchy, we shall locate the p-number
in a hierarchy based on the first weakly compact cardinal. Let

K := first weakly compact cardinal. (24)

Definition 3.12 defined by recursion on a:

closure of BU {0,K}

under:
C¥(a, f) = { +, (€ — wF) (25)
(68— Z¢(0))e<a
(Eom — PE(T))oce<a
M’ ={p<K:C¥(0,p)nK = p} (26)
and for a > 0:
o« _ C¥(a,m)NK =7 A 7 regular A
M* = {7r <K: (V€ € C¥(a,m) N @)(M¢ is stationary in 7) (27)
E%(8) =~ 6** element of M® (28)

Wg(m) ~ min{p € MPNr: CRa,p)Nm=pAreC¥(e,p)} (29
providing # < « and 7 is regular and w < 7 < K.
The sets M?* are related to Mahlo’s hierarchy as follows:

M° = e-numbers below K (30)
M! = regular cardinals > w below K

M? = weakly Mahlo cardinals below K

M3 = 2-weakly Mahlo cardinals below K

M?® = a-weakly Mahlo cardinals below K

MK = {k < K : k is k-weakly Mahlo}

where w < a < leastp.p € MK,
Let V =, Va be the cumulative hierarchy of sets,
ie Vo =0, Vay1 = {X : X C Vo} and Vi = U, V¢ for limit ordinals A.
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Theorem 3.13 For all @ < ex41, M® is stationary in K and hence Z%(9) is
defined for all § < K.

Proof: Each ordinal K < 8 < €x41 has a unique representation of the form
B=wh + ...+ wP with 8> ;> --> B, and n > 0, denoted
B =nF WP + -4 wPr. Due to uniqueness, we can define an injective mapping

fieks1 — Lk

by letting®

g if <K
f(8) =< {1} if3=K
(27f(131)v v.f(ﬂn)) if,@:NFWﬂl +"'+Wﬁ" andK<ﬁ.

Putting
fla) 1 f(B) : <= a < B,
< defines a well-ordering on a subset of Ly of order type ex41.

To show the Theorem, we proceed by induction on «, or, equivalently, by induc-
tion on .

For any set E that is closed and unbounded in K, we have to verify that
M® N E # §. Using the induction hypothesis, for all 8 < @, MP is stationary in
K. Define

U= {f(e)}, Uz:={(z,y):z <y}, and Us := | (M? x {£(B)}).

B<La

In what follows,

— fun(G) abbreviates that G is a function;

dom(G), ran(G) denote the domain and the range of G, respectively.
pow(a) denotes the powerset of a;

club(X) says that X is a closed and unbounded class.

G"z is the set {G(y) : yez}.

|

|

The following sentences are satisfied in the structure (Vk, €, Uy, Us, Us, E):

(1) VGVY4[fun(G) A dom(G) = § Aran(G) C On — Iy(G" C v)]

(2) Va3b3p3g[b = pow(a) Afun(g) Adom(g) =b A ran(g) = B A g injective]
(3) Ui £ 0 A Vy36[y < 6 ASEE]

(4) VXVsVt[teU; A (s,t) € Ua Aclub(X) — {y: (y,s) € Us} N X # 0]

Employing the IT}-indescribability of K, there exists 7 < K such that the
structure

(VW,E,Ulﬂﬂ',UQﬂﬂ',Ug}ﬁﬂ‘,Eﬁﬂ')

satisfies:

¢ (z,y) = {{z}. {z, y}}; (@1, Zag1) = ((T1, ..., Tn), Tng1) for n > 2.
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(a) VG Vé[fun(G) A dom(G) = § Aran(G) C On — 3y(G"§ C 7))
(b) Va3b3p3g[b = pow(a) A fun(g) A dom(g) = b A ran(g) = BA g injective |
() Uynm#® A Vy3Is(y<d A d€ENT)

(d) VXVsvtteUi N A((s,t))€UzNmAclub(X) — {y: (y,s)eUsN7}NX # 0]

By virtue of (a), observing that VG is second order, and (b), m must be inacces-
sible. Due to (c), f(a)€Vr and E is unbounded in m; whence m€E. (d) ensures
that

(*) (VB < a)[f(B)€Vr — MP stationary in ).

Next, we want to verify
(+) (VneC¥(a,m))[f(n)EVal.

Set X := {neC¥(a, ) : f(n)€Vr}. Clearly, 7 U {0,K} C X.

Ifp=np w"™+---4+w™ and n1,...,7,€X, then n€X since 7 is closed under
+ and ¢ — w¢ and V, is closed under (-, ).

If B€X N a, then, according to (¥), MP is stationary in =, yielding

=P (8) = f(EP(8)) < m for all 6 X NK.

If k,€,6€X und € < § < @, then f(k) = k < 7 and therefore ¥¢(8) < .
So it turns out that X enjoys all the closure properties defining C¥(a, 7). This
verifies (+). Using (%) and (+), we obtain

(VBeC¥(a, ) N a)[MP” is stationary in 7.
Whence, TeM* N E. a

The desired EORS, which encapsulates the strength of KP + ITs-Reflection,
is essentially isomorphic to (C¥(ex41,0), <).

4 Recursively large ordinals and ordinal representation
systems

The previous section gave ample examples of how large cardinal hypotheses enter
the definition procedures of collapsing functions. The latter are then employed in
the shape of terms to “name” a countable set of ordinals, and when one succeeds
in establishing recursion relations for the ordering between those terms, the set of
terms gives rise to an ordinal representation system. It has long been suggested
(cf. [11], p. 436) that, instead, one should be able to interpret the collapsing
functions as operating directly on the recursively large counterparts of those
cardinals. For example, taking such an approach in Definition 3.1 would consist
in letting
I := first recursively inaccessible ordinal
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and conceiving of @ +— §2, as enumerating the admissible ordinals and their
limits. The difficulties with this approach arise with the proof of Lemma 3.2. One
wants to show that for any admissible 7 satisfying 7 € C!(e, ), one has ¥ (@) <
7. In the cardinal setting this comes down to a simple cardinality argument. To
get a similar result for an admissible 7 one would have to work solely with -
recursive operations. How this can be accomplished is far from being clear as
the definition of C!(a, p) for p < 7 usually refers to higher admissibles than just
m. Notwithstanding that, the admissible approach is workable as was shown in
[39, 41, 48]. A key idea therein is that the higher admissibles which figure in
the definition of ¥ () can be mimicked via names within the structure L, in a
T-Tecursive manner.

The drawback of the admissible approach is that it involves quite horrendous
definition procedures and computations, which when taken as the first approach
are at the limit of human tolerance.

On the other hand, the admissible approach provides a natural semantics
for the terms in the EORSs. Recalling the notion of good X;-definition from
admissible set theory (see [5], I1.5.13), given a set theory T, we say that an
ordinal a has a good X -definition in T if there is a X;-formula ¢(u) such that

Ly = ¢[a] and T + Flzo(x).

In case of KP it turns out that all the ordinals of the corresponding EORS pos-
sess a good X)-definition in KP (cf. [38]). As for KPi, the admissible approach
canonically associates with each ordinal a € 7(I) NI a good Xi-definition in
KPi. However, via this interpretation 7 (I) NI only forms a proper subset of
the KPi-definable ordinals. Therefore, to illuminate the nature of the ordinals
in 7(I), it would be desirable to find another property which distinguishes them
within the KPi-definable ordinals.

In the above KPi just served the purpose of an example for a general phe-
nomenon. The same considerations apply to KPM etc.

5 Large Cardinals and ordinal representation systems II

This section is devoted to the strongest large cardinal notions that have been
used in developing ordinal representation systems. These cardinals exhibit strong
indescribability properties which bear some resemblance to supercompact car-
dinals. The resulting ordinal representation systems have been put to use in
ordinal analyses of the subsystems of second order arithmetic based on IT}-
Comprehension for n > 2. When drawing connections to ordinal recursion the-

ory, these cardinals should be viewed as cardinal analogues of stable and n-stable
ordinals.(cf. [19])

Proofs for all results in this section are in [44].
To begin with we recall some definitions from ordinal recursion theory.

Definition 5.1 An ordinal & is said to be stable if L, <; L, i.e. L. is a X-
elementary substructure of L.
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Let p > k. k i1s p-stable if L, <; L,.
Another rendering of stability comes in terms of ordinal recursion theory (cf.
[19], VIIL.5.1):

k 1s stable iff k is closed under all co-partial recursive ordinal functions.
Likewise,
K 1is p-stable iff k is closed under all (0o, p)-partial recursive functions.

The connection of the system of I13-Comprehension (112 — CA hereafter) with

set theory comes through the fact that KP + X' -Separation is a conservative

extension of IT} — CA + BI, where BI is the so-called principle of Bar Induction.
Xn-separation is the schema of axioms

Jz(z = {rx€a: ¢(x)})

for all set-theoretic X, -formulae ¢.
BI is the schema

VX (WO(<x) A Vn[Vm <x n®(m) - &(n)] — Vnd(n))
for all formulae @ of the language of second order arithmetic, where
m<xyn:=2".3"€X.

Assuming Infinity to be among the axioms of KP, the precise relationship is
as follows:

Theorem 5.2 KP + X;-Separation and (II3 — CA) + BI prove the same sen-
tences of second order arithmetic.

The ordinals & such that L, = KP + X)-Separation are familiar from ordinal
recursion theory. They are called nonprojectible (cf. [5]) and are exactly those
ordinals £ > w such that « is a limit of (smaller) k-stable ordinals.

Stronger comprehension is linked to set theories as follows:

Proposition 5.3 Let n > 0.

KP + X, -Collection + X, -Separation
and

(II},; —CA)+ (23, — AC) +BI
prove the same sentences of second order arithmetic.

To characterize the standard models of KP + X,,-Collection + X,,-Separation,
we introduce the notion of n-stability.
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Definition 5.4 An ordinal « is said to be n-stable if L, <, L, i.e. L; is a
Y ,-elementary substructure of L.

For p > k, we say that « is n-p-stable if L, <, L,.

n-stability can be reduced to stability in terms of relativized stability.

Let A C L be aclass. & is stable in A if (L; Ax) <1 (L; A), where A, = LyNA

Let S; be the class of stable ordinals, and for n > 0, let S,4+1 be the class of
ordinals stable in S,,.

Proposition 5.5 (ZFC) k is n + 1-stable iff k is stable in S, .
Similar to the connection between X;-Separation and nonprojectability one has:
Proposition 5.6 The following are equivalent for limit ordinals k:

(i) Ly = Zyn-Collection + X, -Separation.
(ii) For every a € Ly there exists M € L such that a C M and M <, L.

The next definition introduces what we consider to be the cardinal analogue
of stability.

Definition 5.7 Let n > 0. A cardinal & is -shrewd if for all P C V. and every
set-theoretic formula ¢(vg, v1), whenever

VN+7I ': ¢[P, K]v

then there exist 0 < kp, 79 < & such that

Vﬁo+ﬂo l'_' ¢[P N Vios ":0]'

Kk is'shrewd if k is n-shrewd for every 7 > 0.
Corollary 5.8 If k is §-shrewd and 0 < 1 < 6, then k is also n-shrewd.

Apparently, the notion of shrewdness has not been put into the dictionary of large
cardinals. There are some similarities between the notions of 7-shrewdness and
n-indescribability (see [8], Ch.9, §4). However, the notions are quite different in
other aspects. For instance, it is impossible, for any &, that & is k-indescribable.
Therefore, if  is n-indescribable and p < 7, it does not necessarily follow that & is
also p-indescribable (see [8], 9.4.6). Another difference is that if 7 is measurable,
then for every 8, the set {x < 7 : & is f-indescribable} is stationary in 7 whereas
there need not be any m + 2-shrewd cardinals below .

A negative reason for calling the above cardinals shrewd is a shortage of names
for cardinals. A positive reason is the following: If there is a shrewd cardinal &
in the universe, then, loosely speaking, for any notion of large cardinal N which
does not make reference to the totality of all ordinals, whenever there exists an
N-cardinal then the least such is below k. So, for instance, if there are measurable
and shrewd cardinals in the universe, then the least measurable is smaller than
any of the shrewd cardinals.



295

A way of evincing the analogy between shrewdness and stability more closely
consists in relating shrewdness to power recursion with search over the set-
theoretic universe. Power recursion has been studied by Moschovakis [28] and
Moss [29]. Central examples of power recursive functions (not requiring search)
are a — V, and a + R,. However, limitations of space prevent us from going
into details.

As suggested by 5.5, we shall also consider a notion of shrewdness with regard
to a given class.

Let L,.¢ denote the language of set theory. Let U be a fresh unary predicate
symbol. Given a language £ let £(U) denote its extension by U.

If A is a class, we denote by (Vy;.A) the structure (Vu;€; AN V,). For an
L;e:(U)-sentence ¢, let the meaning of “(V,;.A) = ¢” be determined by inter-
preting U(t) ast € AN V,.

Definition 5.9 Let A be a class. Let n > 0. A cardinal & is A-5-shrewd if for
all P C V, and every formula ¢(vo, v1) of Lse:(U), whenever

(Vitn; A) = 6[P, &],
then there exist 0 < kp, o < k such that
(Vionos A) E 0[P N Vi, Ko]-
K is A-shrewd if k is A-n-shrewd for every n > 0.
Corollary 5.10 If k is A-d-shrewd and 0 < 1 < §, then & is A-n-shrewd.

To situate the notion of shrewdness with regard to consistency strength in
the usual hierarchy of large cardinals, we recall the notion of a subtle cardinal.

Definition 5.11 A cardinal « is said to be subtle if for any sequence (Sq : @ < &)
such that S, C a and C closed and unbounded in &, there are § < § both in C

satisfying
Ss N B = Ss.

Since subtle cardinals are not covered in many of the standard texts dealing
with large cardinals, we mention the following facts (see [22], §20):

Remark 5.12 Let x(w) denote the first w-Erdos cardinal.

(i) {m < k(w) : m is subtle} is stationary in k(w).
(11) “Subtlety” relativises to L, i.e. if 7 is subtle, then L |= “m 1s subtle”.

Lemma 5.13 Assume that 7 is a subtle cardinal and that A C V. Then for
every B C m closed and unbounded in v there exists k € B such that

(Va; A) E “k 15 A-shrewd ”.
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There are similarities between the cardinal notions of shrewdness and supercom-
pactness. To bring out this analogy, we introduce two new cardinal notions. The
first of them embodies considerable consistency strength.

Definition 5.14 Let A be a class. Assume n > 0. k is strongly A-n-reducible if
for every P C V4, there exist 0 < kg, o < & and Q C Vi, 4y, and an elementary
embedding i such that Q NV, = PNV, and

i (Vno+no; €A Q) — <Vn+n;€;A; P)

with critical point ko and ¢(ko) = k.

Kk is strongly A-reducible if k is strongly A-n-reducible for all 7 > 0.

K is strongly n-reducible if k is strongly V-n-reducible. « is strongly reducible
if k is strongly n-reducible for all > 0.

Using elementary equivalence (=) of structures instead of elementary embed-
dability one arrives at the following notion:

Definition 5.15 Let A be a class. If n > 0, & is A-n-reducible if for every
P C Vi4q there exist 0 < ko, 70 < £ and @ C Vi,44, such that

(Veotno: € k05 A; Qs 2)aevey = (Vietn; € 65 A; P T)aev,,- (31)

k is A-reducible if k is A-n-reducible for every 7. k is n-reducible if x is V-5-
reducible. k is reducible if k is n-reducible for every 7.

Note that @ NV, = P NV, springs from (31).

To make the foregoing definition resemble more closely the definition of strong
reducibility, notice that in the situation of (31) there exists a partial embedding
p from Vi 4p, into Viy, satisfying p [ Viggne = 1d [ Vio4n, and p(ko) = &.
Moreover, p can be canonically extended so as to being defined on all elements
of Vio+no Which are definable in the structure (Vi,4no; €; D5 ko5 A; Q; Z)zev,, -

We will use

P (Viotno; € A4;Q) — (Vi € A; P)

as a shorthand for conveying the foregoing situation.

The aspired analogy between shrewdness and strong reducibility resides in
the fact that (weak) reducibility is closely related to shrewdness.

Proposition 5.16 If k is A-p-shrewd and 0 < n < p, then k is A-n-reducible.

The circle of analogies will be completed by the next proposition, which also
shows that the notion of a strongly reducible cardinal is equivalent to supercom-
pactness.

Definition 5.17 « is §-supercompact if there is a transitive class M and an
elementary embedding

j:V—M
such that crit(j) = x and § < j(x), and °M C M.
K is supercompact if k is §-supercompact for every § > «.
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Proposition 5.18 « is strongly reducible iff k is supercompact.

A similar equivalence can be shown for A-supercompact cardinals (cf. [51], 6.7).
Proposition 5.19 « is strongly A-reducible iff k is A-supercompact.

Sufficiently strong ordinal representation systems for the analyses of the systems
(1} — CA) utilize the notion of .A-reducibility for classes A which depend on
the given n. The pertaining collapsing functions are obtained from inverses of
partial elementary embeddings as explained in 5.15. The details will appear in
[44].

6 Large sets in constructive set theory

Ideally, one wants to have mathematical results which allow one to state how
it is that large cardinals come to be utilized in proof-theoretic ordinal analyses.
Something that suggests more than merely an analogue. One idea pursued here
is, that one should study the same notion of largeness in different settings. To
give an example, we start off with a definition.

Definition 6.1 A non-empty set A is regular if A is transitive, and for every
a€ Aandset RCax AifVe € a3y ((z,y) € R), then there is a set b € A such
that

Ve€adyeb((z,y) € R) AN Vye bz € a({z,y) € R).

In particular, if R : a — A is a function, then the image of R is an element of
A.

In the context of ZFC we have that V, is regular iff k is a regular cardinal.
The analogy between admissible sets and regular sets is drawn by restricting the
class of relations (or functions) to the A-recursive ones. In contradistinction to
the latter approach we suggest a study of regularity such that the only changes
being made take place in the surrounding environment.”

The particular environment will be Aczel’s constructive set theory, CZF.
As for the main question raised above, we have no conclusive answers, but the
results presented here might give some new insights. Proofs will be published
elsewhere.

This section deals with large cardinal properties in the context of intuition-
istic set theories. Since in intuitionistic set theory € is not a linear ordering on
ordinals the notion of a cardinal does not play a central role. Consequently, one
talks about “large set properties” instead of “large cardinal properties”. Fried-
man and Scedrov [14] studied large set properties in the context of IZF. When
stating these properties one has to proceed rather carefully. Classical equiva-
lences of cardinal notion might no longer prevail in the intuitionistic setting ,
and one therefore wants to choose a rendering which intuitionistically retains the
most strength. On the other hand certain notions have to be avoided so as not

7 Feferman [13] is in a similar vein, but undertakes a different approach.
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to imply excluded third. To give an example, cardinal notions like measurability,
supercompactness and hugeness have to be expressed in terms of elementary
embeddings rather than ultrafilters.

The axioms of 1ZF are Extensionality, Pairing, Union, as usual, and the
following:

Infinity JaVu[u€z & (B€z V vez(u=vU{v}))]

Set Induction Vz[Vy € z¢(y) — ¢(z)] - Vzo(x)
Separation Va3bVz[z € b & z € a A ¢(z)]

Collection Va[Vz € adyé(z,y) - Ve € aIy € bo(z, v)]
Powerset VzIyVz(z€y ¢ z C z)

for all set-theoretic formulae ¢.

Regarding proof-theoretic strength, the upshot of [14] is that the equiconsis-
tency of ZF and IZF propagates to extensions with large set axioms. The proof
employs a ——-interpretation.

Theorem 6.2 (Friedman and S¢edrov, [14]) IfLSA is a large set aziom pertain-
ing to any of the large cardinal axioms asserting the existence of an inaccesstble,
Mahlo, measurable, supercompact or n-huge cardinal, then:

IZF + LSA and ZF + LSA are equiconsistent.

To be of interest, the latter systems should not imply excluded third. This follows
from the next theorem.

Theorem 6.3 (Friedman and Séedrov, [14]) With LSA as above, the theory
IZF + LSA has the disjunction property and the number existence property.
Moreover, 1ZF + LSA is equiconsistent with 1ZF + LSA + Church’s thesis.

For our purpose the foregoing results appear to be disappointing since large set
assumptions retain their consistency strength on the basis of IZF. The situation
changes radically when we exchange IZF for CZF. The latter theory is due to
Aczel (cf. [1, 2, 3]) and extends Myhill’s constructive set theory CST (cf. [30])
which grew out of endeavours to discover a (simple) formalism that relates to
Bishop’s constructive mathematics as ZFC relates to classical Cantorian math-
ematics. The novel ideas were to replace Powerset by the (classically equivalent)
Exponentiation Axiom and to discard full Comprehension while retaining full
Collection. Aczel extended CST to CZF and corroborated the constructiveness

of the latter theory by interpreting it in Martin-Lof’s intuitionistic type theory
(cf. [27]).

6.1 The System CZF

In this subsection we will summarize the language and axioms for Aczel’s con-
structive set theory or CZF. The language of CZF is the first order language
of ZF whose only non-logical symbol is €. The logic of CZF is intuitionistic
first order logic with equality. Its non-logical axioms comprise Ertensionality,
Pairing, Union in their usual forms, and Infinity and Set Induction as stated

for IZF. CZF has additionally axiom schemata which we will now proceed to
summarize.
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Restricted Separation
VadbVz[z € b < = € a A $(z)]

for all restricted formulae ¢. A set-theoretic formula is restricted if it is con-
structed from prime formulae using -, A, V, —,Vz€y, and Jz€y only.

Strong Collection

Va[Vz € adyé(z,y) —
3b[Ve € a3y € bd(z,y) AVy € b3z € a ¢(z,y)]]

for all formulae ¢.

Subset Collection

YaVb3cVu [V.z' €adyebo(z,yu) —
AdecVeeayedo(e,y,u) AVyedIz € aqS(z,y,u)]]
for all formulae ¢.
The mathematically important axiom of Dependent Choices (DC) could be

included among the axioms of CZF without changing any essential properties
of CZF, including its interpretation in type theory.

The Subset Collection schema easily qualifies for the most intricate axiom of
CZF. To explain this axiom in different terms, we introduce the notion of full-
ness.

Definition 6.4 For sets A, B let 4B be the class of all functions with domain
A and with range contained in B.
Let mv(# B) be the class of all sets R C Ax B satisfying Vu€ A JveB (u, v)ER.
A set C is said to be full in mv(4B) if C C mv(4B) and

YRemv(#B)3SeCS CR.

Additional axioms we shall consider are:
Ezponentiation: YaVy3dz z = "y.

Fullness: YzVy3z “ z full in mv(y)”.

Proposition 6.5 Let CZF~ be CZF without Subset Collection.

(i) CZF~ I Subset Collection > Fullness.
(ii) CZF - Exponentiation.

Let TND be the principle of excluded third, i.e. the schema consisting of all
formulae of the form 4 vV —-A.
The first central fact to be noted about CZF is:
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Proposition 6.6 CZF + TND = ZF.

Proof: Note that classically Collection implies Separation. Powerset follows clas-
sically from Exponentiation. 0

To stay in the world of CZF one has to keep away from any principles that
imply TND. Moreover, it is fair to say that CZF is such an interesting theory
owing to the non-derivability of Powerset and Separation. Therefore one ought
to avoid any principles which imply Powerset or Separation.

In what follows we shall investigate largeness notions corresponding to inac-
cessibility, Mahloness and weak compactness. Bowing to the demands of brevity,
we content ourselves with listing the definitions and results.

6.2 Inaccessibility

Let Reg(A) be the statement that A is a regular set (cf. (6.1)). The next axiom
comprises that the universe is a union of regular sets.

Regular Eztension Aziom (REA)
Vz3y[z C y A Reg(y)]

Definition 6.7 A set I is said to be inaccessible if Reg(l) and I is a model
of CZF + REA in a strong sense, i.e. the structure (I,€ [ (I x I)) is a model

of Pairing, Union, Infinity, restricted Separation, and REA and the following
holds:

(A) VA, BeI3Cel “C is full in mv(4B)”

Due to Reg(I) and (A), (I,€ | (I x I)) is also a model of strong collection and
subset collection.

Corollary 6.8 The following theories are the same theories, i.e. they prove the
same formulae:

(i) CZF + 3l inac(I) + TND
(i1) ZF + I inac(I)

They are equiconsistent with ZFC + 3k “k inaccessible cardinal”

Theorem 6.9
CZF +Vz3I [zel A “I inaccessible”)

can be interpreted in
KP +Vadk [a€k A “k recursively inaccessible”).

The interpretation preserves validity of ITs-sentences. The theories have the same
proof-theoretic strength.
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6.3 Mahloness

Definition 6.10 A set M is said to be Mahlo if it is inaccessible and for each
set R C M x M, whenever

VeeM FyeM (z,y)ER,
then for every u€M there exists an inaccessible /€ M with u€l and:
Veel Iyel (z,y)ER.

Definition 6.11 Let A, o be sets. A is a-inaccessible iff A is inaccessible and
for all fe€a:
VYac A3B€A[a€B A “B is [-inaccessible].

Proposition 6.12 (CZF) If M is Mahlo then M is M-inaccessible.

Corollary 6.13 CZF + 3M “M Mahlo” + TND and ZF + IM “M Mahlo”

are the same theories.
They are equiconsistent with ZFC + A7 “m Mahlo cardinal”.

Theorem 6.14
CZF +VedM [xeM A “M Mahlo”)
can be interpreted in
KP + Va3k [a€k A “k recursively Mahlo ordinal”].

The interpretation preserves validity of I1,-sentences. The theories have the same
proof-theoretic strength.

6.4 Weak compactness

Theorem 3.8 suggests 2-regularity as the natural rendering of weak compactness
in CZF. However, due to the absence of the axiom of choice in CZF, we prefer
to introduce a slightly different notion.

Definition 6.15 Recall that mv(4B) = {RC A x B : Yue A JveB (u,v)ER}.
An inaccessible set K is called 2-strong if the following holds true for all sets
S:
Vremv (¥ K)VueK 3e€K wveK[z C R A (z,u,v)ES] =
3IeK (inac(I) A YREmv(*I)Vuel 3xeIIvellx C R A (x,u, v)ES]).
Corollary 6.16 (CZF) If K is 2-strong, then for any formula ¢,

YRemv(X K)VueK 3z€K veK[z C R A ¢(z,u,v)] =
3I€K (inac(I) A Yremv('I)Vuel 3xel3velx C R A 4(x,u,v)])].
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Lemma 6.17 (ZFC) For all ordinals k, V is 2-strong iff k is weakly compact.

Definition 6.18 Let o, C be sets. C is a-Mahlo if C is inaccessible and for all
BEa:

YRemv(“C)3BEC [“B is f-Mahlo” A Vz€B JyeB(z,y)ER].
Proposition 6.19 (CZF) If C is 2-strong, then C is C-Mahlo.
Theorem 6.20

CZF +Vz3K [z€K A “K 2-strong”]
can be interpreted in
KP +Va3k [a€k A “k II3-reflecting”].

The interpretation preserves validity of I15-sentences. The theories have the same
proof-theoretic strength.
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