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The problem that interests me is easy to state: what justifies the axioms of
set theory? Some observers suggest that decisions on the adoption or rejection of
axiom candidates are not made on rational grounds, that they are subject only
to psychological or sociological or aesthetic constraints. This may be right, but I
think it is too early to concede the point; my working hypothesis is that there are
sound arguments to be made on these issues. As a student of the methodology
of set theory, my job is to try to isolate and elaborate these sound arguments.

In Zermelo's day, for many of the axioms in his first list, the problem of
justification was somewhat less daunting than it is for the candidates in dis-
pute today. Zermelo was faced with a fairly well-developed body of set theoretic
lore; the difficulty was that paradoxes and other uncertainties lurked around
its edges. His goal was to select some particularly fundamental statements to
serve as starting points; this was to be done skillfully, so that the core doctrine
could be deduced without the troublesome outliers. The upshot, for many of
his axioms, was that certain previously-accepted claims were being promoted
to axiomatic status, not that any new claims were being made. The selection
of these particular statements for promotion needed justification—presumably
on grounds of economy, efficiency, and likely consistency—but the problem of
justifying the statements themselves was eased by their previous acceptance.1

The case of the axiom of choice was different. Choice was not a previously-
accepted or uncontroversial claim; what needed justification was not its mere
promotion, but the statement itself. With this case, the problem of what jus-
tifies an axiom arose in a more pressing and poignant form, as did the prior
problem of what sorts of grounds are appropriate for such justifications. The
subsequent, fascinating history is familiar, and the outcome is now stable, so I
won't rehearse it here. But it is important to note that since then, with the ad-
vent of independence results and the subsequent search for new, stronger axioms,
the problem of justification has become ever more acute.

Rather than talk in the abstract about the general problem of justifying ax-
ioms, I want to focus on one particularly salient case: the axiom of constructibil-
ity. The decision on V=L is the first truly momentous one after ZFC, and it is
pivotal for the further development of the subject. Despite the fact that adding
V=L is a safe, economical, and powerful option, settling many of the lingering

1 This is not to say that all Zermelo's axioms, even excluding choice, were uncontro-
versial or that his system was immediately accepted. See Moore [1982], pp. 160-167,
for details.
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open questions, I think it is fair to say that most contemporary set theorists
believe that it should be rejected. An instance of my working hypothesis is the
assumption that there are good grounds for this consensus, and what I want to
explore here is the question of what those good grounds are.

1 Naturalism

Before I take up this project directly, a few words should be said about the
prior question: what sort of arguments are appropriate for the justification of an
axiom candidate (or in our case, for the justification of the rejection of an axiom
candidate)? The standard method of justification in mathematics is proof, but
axioms cannot be proved, so where are we to turn for support? As I've mentioned,
some people think we are free to choose the starting points of our proofs in
any way we please, that we are unconstrained by any rational considerations
(except perhaps consistency). The philosophy behind this view is what I call
'glib formalism', the stance that any relatively consistent extension of ZFC is as
good as any other, that only sociology or aesthetics or personal whim prompt
us to choose one over another.

Now it seems to me that this stance is not consistent with the practice of set
theory; set theorists seriously committed to the project of adding new axioms
to ZFC would hardly pursue the subject in the spirit they do if they believed
the issue could be properly settled by a statement of personal preference or a
vote at an ASL meeting (though, of course, such votes are sometimes taken).
Under these circumstances, the attractions of a realistic philosophy are obvious.
If set theory is the study of an objectively existing world of sets, much as botany
is the study of plants and particle physics the study of the small constituents
of matter, then a correct extension of ZFC is one that faithfully reflects the
structure of that reality of sets; assuming V=L has the other virtues we expect
from axioms— simplicity, generality, power, etc.—we should add V—L to our
list of axioms if all sets are constructible; otherwise, we should reject it. The
question is as substantial as any scientific question; it is a question about the
properties of the objective realm of sets. On this reading, realism is called upon
to support the existing practice of taking the decision on new axioms seriously.

Now it is well-known that the task of fleshing out a realistic account of math-
ematics in general, or of set theory in particular, is a difficult one, fraught with
epistemological and ontological obstacles, but I'm not interested in those prob-
lems here.2 In fact, I think that on closer examination the underlying strategy of
justifying mathematical practice by appeal to philosophical realism should fail
to satisfy either the mathematician or the philosopher of mathematics. I have
various messy metaphilosophical reasons for this belief, but our subject here is
V=L, so I'll just give a quick sketch of the central idea.3

To see why the mathematician might be wary of the strategy of justifying
mathematical practice by appeal to philosophy, consider a set theorist ponder-
2 I discuss them at length, and attempt to answer them, in [1990].
3 For more, see [199?b], [199?c] and [199?d].
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ing the addition of a new axiom. If it were somehow conclusively demonstrated
that realism is not a viable account of mathematics, would he conclude that the
question he is pondering is actually a trivial one, to be decided on whim? Prob-
ably not; more likely, he would continue his pondering in much the same terms
as before. The lack of a suitable metaphysics with which to defend his practice
might be an embarrassment, but he is unlikely to suspend the practice for that
reason. In other words, his assessment of the value of his undertaking is not,
after all, dependent on his belief in the correctness of realism. Realism provided
a handy counter to certain challenges, but it wasn't the true justification.4

To see where the philosopher might also balk at the attempt to justify practice
with metaphysics, consider the situation from the perspective of a philosopher
who is a scientific naturalist; that is, suppose she believes that the practice of
natural science is not answerable to the epistemic standards of any external, a
priori standpoint, that legitimate criticisms of scientific method can only come
from within scientific practice itself. Such a philosopher may well feel that the
same goes for mathematics, that successful mathematical practices should not
bend to criticism developed in psychology departments or philosophy seminar
rooms.5 Having come so far, our philosopher may well also conclude that con-
siderations external to scientific or mathematical practice cannot justify those
practices any more properly than they can criticize them, that justifications must
also proceed from within the practice. And this means, in particular, that efforts
to justify the set theorist's practice on the basis of a philosophical realism about
sets is misguided and ineffective.

Both these thought experiments point toward a metaphilosophical position
I call mathematical naturalism: the grounds on which to criticize and/or jus-
tify mathematical methods are to be found inside mathematical practice itself;
the practice need not answer to, nor can it look for support from, any exter-
nal standard. So, for example, the mathematical naturalist will come down in
favor of impredicative definitions because they make possible a classical the-
ory of real numbers, an extremely fruitful mathematical construction, but the
same naturalist will dismiss as irrelevant the as-yet-unresolved metaphysical de-
bates concerning the nature of mathematical existence that have been thought
to bear on this topic. Presented with a patently successful mathematical the-
ory, the realist might still protest, 'yes, this theory has all the mathematical
virtues I can imagine, but we must also ask: is it true in the objectively existing
world of sets?'. The naturalist will see this very protest as the importation of
an extra-mathematical standard; if a mathematical theory has all the virtues
mathematics requires, then the naturalist holds that no further question is of
any methodological significance.

4 Cf. Kanamori ([1994], p. 481) on the 'invariance' of mathematics under philosophical
change.

5 Of course, it isn't really a matter of where the criticisms originate, but of what
methods they use: e.g., a criticism of classical analysis based on a mathematician's
philosophical intuition about abstract objects is a non-starter, while a logical criti-
cism coming from a philosopher (e.g. Bishop Berkeley) may be quite to the point.
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The contrast, then, is this: where the realist will ask—is this axiom candi-
date true?—the naturalist will ask—would the adoption of this axiom candidate
produce a fruitful theory—or better yet—would the adoption of this axiom can-
didate further the goals of this practice? I don't pretend that the naturalist's
question is any easier than the realist's—after all, it involves such tricky notions
as 'mathematical fruitfulness' and 'the goals of a mathematical practice'—but
I do contend that the naturalist's question provides a more productive focus
for our inquiry. While the realist is led off into philosophical worries about the
nature of mathematical existence and our access to mathematical truth,6 the
naturalist concentrates instead on considerations squarely inside mathematics.
Judging from historical cases, from Euler's generalization of the notion of func-
tion to the contemporary consensus on the axiom of choice, it is these practical
considerations about the fruits and goals of the practice itself that are in fact
decisive.7

Before leaving this met a-topic, let me make one last observation on the char-
acter of naturalistic arguments. Given that a naturalistic philosopher brings no
special modes of argument from philosophy, every argument she gives must be
based on modes of argument available to any mathematician qua mathemati-
cian; at best, she will make explicit what is already implicit. Unsatisfying as this
may be in dramatic terms, a good naturalistic argument should not strike the
practitioner as late- breaking news; at best, it will fall so far short of originality
as to qualify as a commonplace. Given this goal, the best confirmation of success
would be for the mathematician to shrug and say, Of course, everybody knows
that.' I think there is a non-trivial link between this fact and Wittgenstein's
remark that 'Philosophy only states what everyone admits' ([1953], !599), but I
won't drag this discussion off into the wilds of Wittgensteiniana.8

So, all that said, my goal here will be to sketch an argument against V—L
that is naturalistic in this sense. To do this, I might try to exploit any one
of various commonly heard complaints about V=L. In earlier work, I argued
that V—L is worthy of suspicion as an axiom candidate, because it is closely
allied with a methodological principle, Definabilism, which recommends that
mathematical objects be regarded as definable or constructible in a uniform
way, and Definabilism has a bad track record in the history of mathematics.9 But
grounds for suspicion are not grounds for rejection, and I am after the stronger

6 As in my [1990].
7 I think the 'anomalies' of [1993] are better understood from a naturalistic than

from a realistic point of view. It may seem a stretch to regard the mathematical
considerations that influenced opinion in those cases as evidence for the truth of
the hypotheses in question, realistically understood, but it seems quite plausible to
suppose that they provided good evidence for the mathematical fruitfulness of those
hypotheses, good evidence for the efficacy of those hypotheses in pursuit of the goals
of the relevant practices.

8 I discuss examine this connection in [199?a].
9 See my [1993]. There I suggested that an argument for the stronger conclusion, that

V=L should be rejected, would require a different philosophical backdrop from the
realism presupposed there. Naturalism is the proposed replacement.
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conclusion here. The argument I will sketch rests on the common thought that
V=L is bad because it is 'restrictive'; to make this go, I will have to explain why
restrictiveness is bad, and why V=L is restrictive.

But first, a warning is in order: though I will do my best to present this
argument as convincingly as I can, I will conclude with an examination of where
it goes wrong. I do this for two reasons. First, the difficulties that arise are
rather subtle and suggestive, and I hope that careful attention to their structure
might lead to an improvement of the argument. And second, as a naturalistic
philosopher, the best input I can get is the reactions of an audience like this one,
to the general approach of the argument, to its details, to the possibilities for
improvement. So I hope I will be forgiven for this rather unorthodox procedure.

2 Maximize and Unify

To begin, I want to examine what I take to be one among the many of the
general goals of set theoretic practice. I will suggest that this goal, once isolated,
motivates two methodological maxims, as effective means for the achievement of
that goal. Both these maxims are ultimately relevant to the case against V=L.
First, then, the goal.

Again, as befits a naturalistic argument, the point is quite simple and fa-
miliar. Though Cantor's set theory arose out of his work on the uniqueness of
trigonometric representations, it wasn't long before he was writing that10

. . . pure mathematics ... according to my conception is nothing other
than pure set theory.

Zermelo struck a similar theme in the paper containing his first axiomatization:

Set theory is that branch of mathematics whose task is to investigate
mathematically the fundamental notions 'number', Order', and 'func-
tion', taking them in their pristine, simple form, and to develop thereby
the logical foundations of all of arithmetic and analysis. ([1908b], p. 200)

Since then, the idea that set theory provides a 'foundation' for mathematics has
become so much a part of set theoretic orthodoxy as to appear in the opening
sentences of its textbooks; for example, Kunen writes:

Set theory is the foundation of mathematics. All mathematical concepts
are defined in terms of the primitive notions of set and membership . . .
from [the] axioms, all known mathematics can be derived. (Kunen [1980],
p. xi)

This quotation comes from an unpublished paper of Cantor's written in 1884 (see
Grattan-Guinness [1970], p. 84). The translation is from Hallett [1984], p. 125.
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Moschovakis, alert to potential metaphysical disputes,11 puts the point more
carefully to his beginning students:

. . . we will discover within the universe of sets faithful representations of
all the mathematical objects we need, and we will study set theory on the
basis of the lean axiomatic system of Zermelo as if all mathematical
objects were sets. (Moschovakis [1994], p. 34)

The idea is that set theory provides a foundation in the following sense: every
classical mathematical object can be represented by a set, and every classical
mathematical theorem can be proved from the axioms of set theory.

By providing a framework broad enough to supply instances for all structures
of classical mathematics, set theory brings the various subdisciplines into a com-
mon arena, so that interrelations are stressed; for example, one can hardly help
being stuck by the way versions of the same assumption—the axiom of choice—
turn up among the basic premises of so many distinct branches of mathematics.
In some cases—e.g., when the points on a line are modelled by the set theo-
retic reals—set theory provides a more precise account of the structure than had
previously been possible. In other cases—e.g., for the algebraic question 'are all
Whitehead groups free?'—the set theoretic setting demonstrates that the ques-
tion is independent of traditional assumptions, that no proof or disproof on their
basis is possible. In still other cases—e.g. questions about the properties of sim-
ple sets of reals—set theory has shown how strong new hypotheses can resolve
issues that baffled the analysts of the 20s. In light of the benefits, my suggestion
is merely that it is one of the continuing goals of set theoretic practice to provide
such a foundation.

Before drawing any consequences from this suggestion, let me pause a mo-
ment to clarify a few points often raised as objections to set theoretic founda-
tions. The first, and oldest, harkens back to the original foundational programs
of Frege and Hubert, whose aim was to place mathematics on an unshakably
secure basis. Seeing the matter in this light, Zermelo, presenting his axioms,
writes with some regret:

I have not yet even been able to prove rigorously that my axioms are
consistent, though this is certainly very essential; instead I have had
to confine myself to pointing out now and then that the antinomies
discovered so far vanish one and all if the principles here proposed are
adopted as a basis. ([1908b], p. 200-201)

Poincare phrases the same point as a sharp criticism:

11 E.g., in Benacerraf [1965]. Moschovakis's way of putting the point allows for the
common idea that mathematics studies structures, not things; from this perspective,
the job of set theory is to provide instantiations for all mathematical structures.
Thus, set theoretical foundationalists can agree with their critic, MacLane, when he
writes, 'a real number is not a Dedekind cut; that cut is just one possible model of
a protean idea of the reals' ([1992], p. 121).
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We have put a fence around the herd to protect it from the wolves but
we do not know whether some wolves were not already within the fence.
(Kline [1972], p. 1186)

And the same objection appears in the work of MacLane, the most prominent
contemporary critic of set theoretic foundations:

Now in one sense a foundation is a security blanket: If you meticulously
follow the rules laid down, no paradoxes or contradictions will arise. In
reality there is now no guarantee of this sort of security; we have at hand
no proof that the axioms ZFC for set theory will never yield a contra-
diction, while GδdeΓs second theorem tells us that such a consistency
proof cannot be conducted within ZFC. ([1986], p. 406)

Since Gόdel, as MacLane notes, Zermelo's hope of establishing the consistency
of his axioms has been effectively dashed.

What needs emphasizing here is that the contemporary orthodoxy on set
theoretic foundations does not claim to present a foundation in the sense of the
early researchers, does not claim to base mathematics on unshakable premises.
What's claimed is that set theory provides a unified framework in which the
objects of classical mathematics can be modelled, the structures of classical
mathematics instantiated, and the theorems of classical mathematics proved.
Even critics like MacLane are willing to grant this much (see MacLane [1986],
pp. 406, 358).

A closely related worry is expressed by Tiles. Logicians have long realized
that the principles needed to found mathematics cannot all be plausibly claimed
to rest on unsullied mathematical intuition. Russell, in his defense of the Ax-
iom of Reducibility ([1910], pp. 59-60), Zermelo, in his defense of the Axiom
of Choice ([1908a], pp. 186-190), Gδdel, in his discussion of new set theoretic
axioms ([1947], pp. 182-183)—all these thinkers have appealed to so-called ex-
trinsic supports, that is, defenses based on the welcome consequences of an axiom
candidate. Tiles claims that such defenses are inappropriate

. . . to the conception of set theory as providing a logical foundation
for mathematics. To claim this status for set theory it is necessary to
claim an independent and intrinsic justification for the assertion of set-
theoretic axioms. It would be circular indeed to justify the logical foun-
dations by appeal to their logical consequences, i.e. by appeal to the
propositions for which they are going to provide the foundation. ([1989],
p. 208)

But, once again, this critique is only sound if set theory is proposed as a foun-
dation in the epistemic sense, as providing a 'secure given starting point' (Tiles
[1986], p. 208). As long as set theory is only proposed—as it is here—as a unifying
framework, as a shared, basic ontology, this criticism is also off the mark.

Finally, I suspect that there is another important, generally epistemological
objection lingering the background. The most explicit statement of this objection
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I can find comes from Mathias, a supporter of set theoretic foundations, as a
conjecture on the underlying concerns of his opponents:

Set theory is so rich a theory that it has been claimed for much of this
century to be the foundation of mathematics. In ontological terms this
claim is not unreasonable; but MacLane resists. I would guess that his
reason is not so much that he objects to the ontology of set theory but
that he finds the set- theoretic cast of mind oppressive and feels that
other modes of thought are more appropriate to the mathematics he
wishes to do. ([1992], p. 115)

But again, to claim that set theory provides a unified ontological setting is not
to claim that only set theoretic methods should be employed in mathematics,
that algebraists, analysts, number theorists, geometers should all become set
theorists. To draw a comparison, to say that all entities studied by natural
science are ultimately physical, subject to the laws of physics, is not to say
that biologists, chemists, botanists, and geologists should all become physicists.
I think Mathias puts the point quite well, so I hope I will be forgiven for quoting
him at some length:

One of the remarkable things about mathematics is that I can formulate
a problem, be unable to solve it, pass it to you; you solve it; and then I
can make use of your solution. There is a unity here: we benefit from each
other's efforts. ... But if I pause to ask why you have succeeded where I
have failed to solve a problem, I find myself faced with the baffling fact
that you have thought of the problem in a very different way from me:
and if I look around the whole spectrum of mathematical activity the
huge variety of styles of thought becomes even more evident.
Is it desirable to press mathematicians all to think in the same way? I say
not ... Uniformity is not desirable, and an attempt to attain it, by (say)
manipulating the funding agencies, will have unhealthy consequences.
The purpose of foundational work is mathematics is to promote the unity
[as opposed to the uniformity] of mathematics. ([1992], pp. 113-114)

Assuming then, that one of the goals of set theoretic practice is to provide
a foundation in this sense, what methodological consequences follow? The first
is immediate: if your goal is to provide a single system in which the objects
and structures of mathematics can be modelled and instantiated, in which all
theorems of mathematics can be proved, then you must aim for a single, funda-
mental theory of sets. This admonition to UNIFY is just the flip-side of another
of MacLane's objections; he mentions the independence of CH, the proliferation
of models achieved by forcing, the range of new axiom candidates, and concludes

For these reasons 'set' turns out to have many meanings, so that the
purported foundation of all Mathematics upon set theory totters. ([1986],
pp. 358-359)

The methodological maxim UNIFY simply runs this argument in reverse: if you
wish to provide a foundation, you must settle on a unique theory. If some such
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maxim were not in force, set theorists would not be motivated to decide the
issue of V=L; it would be enough to consider alternative set theories with and
without it.

The second methodological maxim that springs from the goal of set theo-
retic foundations is not much more distant. Contemporary pure mathematics
is a vastly broad-ranging inquiry, dedicated to the notion that mathematicians
should be free to study all and any structures and theories that seem to them
of sufficient mathematical interest. If set theory is to found such a discipline, it
should not impose any limitations of its own: the set theoretic arena in which
mathematics is to be modelled should be as generous as possible; the set the-
oretic axioms from which mathematical theorems are to be proved should be
as powerful and fruitful as possible. This desire to found mathematics without
incumbering it generates the set theoretic maxim I call MAXIMIZE.

To be a bit more specific, I will focus on a particular aspect of the admonition
to MAXIMIZE. Given that set theory is out to provide models for all mathemat-
ical objects and instantiations for all mathematical structures, one way in which
it should MAXIMIZE is in the range of available isomorphism types. After all,
perhaps the most fundamental contribution of set theory to date is its provision
of a continuous structure to model the real numbers. The advice to MAXIMIZE
isomorphism types is still regrettably vague; I will do my best to clarify it as I
apply it.

3 Why V=L is restrictive

My aim now is to argue that V=L is restrictive, but 'restrictive5 is a notoriously
slippery notion. In the case of the continuum hypothesis, for example, arguments
have been offered that purport to show that CH is restrictive, but arguments of
similar structure purport to show that not-CH is restrictive!12 I will be trying to
isolate a sense of the term that provides a bit more guidance than this. As the
idea is to motivate the case against restrictive theories by appeal to MAXIMIZE,
the central claim will be that restrictive theories somehow restrict isomorphism
types. But to say this is not to make matters much clearer.

Let me begin, then, with a crude version of the argument that underlies
the approach I'll be taking. The idea is simply this: there are things like O*1

that are not in L. And not only is 0" not in L; its existence implies the exis-
tence of an isomorphism type that is not realized by anything in L.13 These facts

12 See my [1988], pp. 497-498, 500, for summaries.
13 Suppose Ott exists, and consider the structure (VL,+ι,e). If (y,S)eL is isomorphic to

(K,+ι,e), then S is well-founded and extensional on y. These notions are both abso-
lute for L, so L thinks S is extensional and well-founded on y, and so (since L also
thinks Mostowski's theorem on transitive collapse), L thinks there is a transitive A
such that (A, c) = (y, 5). A given function being such an isomorphism is also absolute
for L, so the two structures must actually be isomorphic. Thus, (A,t) = (V^+i,e),
and they are both transitive, so A = Vω+\. But ^cVω+ι=AcL and L is transitive, so
O^eL. So L thinks V^L, which is impossible.
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wouldn't carry any weight if ZFC+3011 were inconsistent— CONSISTENCY is an
overriding maxim,14 as inconsistent theories are useless — but accumulated evi-
dence suggests that ZFC-j-30" is not inconsistent.15 So it seems that ZFC+V=L
is restrictive because it rules out the extra isomorphism types available from

By way of contrast, consider AFA,16 the anti- foundation axiom (see Aczel
[1988]), which guarantees the existence of non- well-founded sets. It might seem
that reasoning similar to what I've just rehearsed would classify ZFC as restric-
tive, because there are non-well-founded sets available from (ZFC-F)-I-AFA that
are not in WF (the class of well-founded sets). But the similarity is an illusion:
the new, non-well- founded sets do not realize any isomorphism types that are
not realized in WF.1 7

To view the matter from another angle, consider the following style of ar-
gument in favor of V=L: V— L is to be preferred because it makes possible a
deep and rich structure theory; we can say a lot about constructive sets, but
very little about sets in general. Similarly, in algebra, the study of groups is
richer and more productive that the study of arbitrary structures with one bi-
nary operation. The goal of mathematics, after all, is these strong structure
theories, and V=L is better suited to this goal. This general line of thought is
not unknown in the history of mathematics, for example, it seems to have influ-
enced Borel's rejection of arbitrary functions and D'Alembert's earlier rejection
of non-differentiable functions.

Notice, first, that this style of argument is entirely naturalistic, that is, it
is based on an assessment of the goals of mathematics and the most effective
means of reaching them. Let's suppose, as seems plausible to me, that a case
could be made in favor of this preference for strong structure theories. Would
this additional maxim then count against ZFC-f-BO^? The answer, it seems to
me, is no, because the new isomorphism types gained by ZFC+BO^ are gained,
as it were, for free. In moving from ZFC+V=L to ZFC+30", we aren't losing
anything, because we still have L itself; we can MAXIMIZE without sacrificing
the strong structure theory of L. Similar responses could be given to Borel and
DΆlembert.

Let me make one last remark about the virtues of this primitive argument
against V=L before I attempt to tightening it up. Our two methodological

14 There have been episodes in the history of mathematics when CONSISTENCY has
been (temporarily) sacrificed, but given the motivating concern of axiomatic set
theory with the issue of consistency, this is not a likely instance for such a sacrifice.

15 I have in mind the relative consistency results of Jensen and Solovay [1970], the
extended successful work on inner models, and the ordinary inductive evidence that
no one has yet derived a contradiction from ZFCH-30".

16 John Steel first recommended that I consider this case for contrast.
17 If A is a set (possibly non-well-founded) and R is a relation on A, then in ZFC-F,

it can be shown that A is equinumerous with some ordinal α; let f be a one-to-
one correspondence between them. Let S be {< /(#),/(?/) > | < #, t/ > R}. Then
(A,R)^(α,S), which is in V. So (ZFC-F)+AFA adds no new isomorphism types. See
McLarty [1993] for a related discussion.
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maxims—UNIFY and MAXIMIZE—are in obvious tension. Given alternatives
like ZFC-f V=L and ZFC-f 3011, the easiest way to MAXIMIZE would be to allow
both theories, to use whichever theory turns out to be more useful in a given
situation. But UNIFY counsels against this course. The beauty of this case is
that it seems possible to UNIFY—that is, to choose between ZFC-f V=L and
ZFC+3011— while still MAXIMIZING, because the choice of ZFC+30* doesn't
require the sacrifice of any of the content of ZFC-f V=L.

So far so good. But I suspect many will have noticed a serious gap in this
reasoning: we want a criterion of restrictiveness that applies to theories, like
ZFC-f V=L, but our discussions have centered on a model, namely L. The same
switch appeared in the AFA case, when we moved from talk of ZFC to talk
of WF. The pressure to make such a switch is understandable, because we are
concerned with isomorphism types, and these are realized in models, not theories.
To compare theories in these terms, we've actually used interpretations of one
theory in another: to interpret ZFC-f V=L in ZFC-f 3011, we replace a formula
φ with φL, (that is, φ with quantifiers relativized by the requirement 'xeL'); to
interpret ZFC in (ZFC-F)+AFA, we replace φ with φWF (quantifiers relativized
to 'xeWF'). Without some further explanation, it seems this general style of
argument could be turned on its head:18 consider the theory ZFC-f V^L-f'there
is a transitive model of "ZFC-f30 f l"'; call this theory T. Obviously, T proves
there is a transitive model of ZFC+30'; let ^(x) say that x is in the <χ,-least
such model. Then the replacement of φ by φ^ is an interpretation of ZFC+30^
in T. But T also proves that any transitive model of ZFC+30^ is missing some
countable ordinals,19 and hence that there are isomorphism types not realized
by anything satisfying ψ. What does MAXIMIZE now recommend?

Intuitively, what's wrong with this pro-V=L line of reasoning is that an
interpretation of ZFC+3011 using ψ is not comparable to the interpretation
of ZFC+V=L in L or the interpretation of ZFC in WF. The claim that we
can UNIFY while MAXIMIZING in fact rests on the idea that interpreting
ZFC+V=L in L somehow 'preserves' that theory, in a way that the proposed
interpretation of ZFC-f 30^ does not seem to preserve it. To make any progress
here, we need some notion of a fair interpretation of one theory in another.

To get at the idea of 'preserving' or 'fairly interpreting' a theory T, consider
for a moment the point of view of the T- theorist. Obviously, his intention is to
give a theory of V itself. In the cases that interest us, the interpreting theorist
will not agree to this, but perhaps the two can settle on an interpretation in a
substantial approximation to V. In the history of set theory, two such approxi-
mations stand out: the first is Zermelo's 'normal domains' (Zermelo [1930]), now
known as 'natural models' or 'standard complete models', that is, Vκ's for K in-
accessible; the second is proper class inner models, beginning with GδdeΓs L. To
speak crudely, the first compromises on 'tallness' and the second on 'thickness'.

18 This sort of argument, suggested by Tony Martin, was discussed in a different con-
nection in [199?b].

'x^O11' is Π\, so by Shoenfield's Absoluteness Theorem, it is absolute for transitive
models containing all countable ordinals.
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As a first stab at an account of what it is to provide a fair interpretation of a
theory extending ZFC, I propose to focus on interpretations in natural or proper
class inner models.

Formally, then, suppose that we are working in the language of set theory,
that a is a variable that ranges over ordinals, and that φ is a formula with one
free variable.

Definition I "T shows φ is an inner model" iff
(i) for all σ in ZFC, T \- σ*, and
(ii) T h Vα<£>(α) or T h 3κ(Innac(κ) Λ Vαf a < K -> φ(a))), and
(in) T \-MxMy((xeyf\φ(y))-> φ(x)).

This definition allows for natural models, proper class inner models, and trun-
cations of proper class inner models at inaccessible levels (a simultaneous com-
promise on 'tallness' and 'thickness').

Definition 2 φ is a fair interpretation of T in T' (where T extends ZFC) iff
(i) T' shows ψ is an inner model, and
(ii) for all σcT, T1 V σ*.

I've required that T extend ZFC because the fair interpretations all start as
models of ZFC.

On this definition, there is a fair interpretation of ZFC+V=L in ZFC+3011

(namely, xeL), but there is no fair interpretation of ZFC+ΞO11 in ZFC+V=L
(because 'x^O11' is absolute for fair interpretations). There is also a fair interpre-
tation of ZFC in (ZFC-F)-hAFA (namely, 'xeWF').

The next step is to add the idea of providing new isomorphism types.

Definition 3 T' maximizes over T iff there is a φ such that
(i) φ is a fair interpretation of T in T\ and
(ii) T' \- 3x3RCx2VyV S Cy2((φ(y) Λ φ(S)) -+ (x, R) ? ( y , S ) ) .

If T' also extends ZFC, then clause (ii) can be replaced by the simpler

(ii)' r h 3z(~ φ(X))

because (in the presence of Foundation), an extra set is an extra isomorphism
type. For good measure,

Definition 4 T' properly maximizes over T iff T' maximizes over T and T does
not maximize over T9.

Using this definition, what we observed in the original, informal argument can be
rephrased as: ZFC+BO" properly maximizes over ZFC-fV^L, but (ZFC-F)+AFA
doesn't even maximize over ZFC.20

20 Our previous informal argument is not quite enough to establish this second claim,
as the definition of fair interpretation now allows for (ZFC-F)H-AFA to interpret
ZFC in models other than WF. Given that Con(ZFC- F)-»Con((ZFC-F)+AFA) (see
Moschovakis [1994], pp. 259- 262), (ZFC-F)-hAFA cannot prove the existence of an
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At this point, it's tempting to call a theory 'restrictive' when there is a
(probably consistent) theory that properly maximizes over it. But this isn't quite
right. For example, ZFC-f 'there is an inaccessible' properly maximizes over ZFC,
but we wouldn't want to call ZFC restrictive on that account, because ZFC can
be extended to ZFC+'there is an inaccessible'. It seems reasonable to say that
ZFC doesn't go as far as it might, but not to say that it restricts. For T to be
restrictive, the maximizing theory, T', should at least contradict T. So,

Definition 5 definition: T' inconsistently maximizes over T iff T properly max-
imizes over T and T' is inconsistent with T.

In fact, even this isn't quite enough. To see this, consider the supposition
that there are arbitrarily large measurable cardinals:

T = ZFC + VαΞx(MC(x)Λar > α)

This is surely seems a generous theory, one whose fair interpretations ought to
realize lots of isomorphism types, but it can be maximized over by a theory that
seems to restrict:21

T' = ZFC + ax(Inacc(x)Λx=sup{2/|MC ί(2/)})

It would surely be counterintuitive to classify T as restrictive on the grounds of
T', and I think the reason can be made clear in the present terms. T' provides
something that T cannot prove to exist, namely, a set of measurable cardinals
with an inaccessible, but not measurable supremum. In that sense, T' is richer
than T. But nothing in T precludes what T' provides; that is, T can be extended
to:

T" = T + ax(Vy(yex-»MC(y)Λlnacc (sup(x))Λ ~MC(sup(x)))

Now T" maximizes over T', which suggests, once again, that though T doesn't
go as far as it might, it also doesn't restrict. The term 'restrictive' ought to be
reserved for theories that actually rule out a certain line of development. So,

Definition 6 T' strongly maximizes over T iff
(i) T' inconsistently maximizes over T, and
(ii) there is no consistent T" extending T that properly maximizes over T'.

Obviously, allowing inconsistent T" would void the definition. In most interesting
cases, we won't be able to prove the consistency of a candidate for T", so the
conclusion to be drawn will be that whatever evidence we have for the consistency
of a candidate T" is also evidence that T' doesn't strongly maximize over T.

Finally, the proposal is:

inaccessible. Now suppose (ZFC-F)-f AFA interprets ZFC in L rather than WF. The
argument of footnote 16 then shows that (A,R) is isomorphic to a set in WF. If
(ZFC-F)+AFA could prove that this set is not in L, it could prove the existence
of a non-constructible, well-founded set. To see that (ZFC-F)+AFA cannot do this,
modify Moschovakis's construction by beginning from L rather than WF; the result
will be a model of (ZFC-F)+AFA+WF=L.

21 This example is also due to Tony Martin.
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Definition 7 T is restrictive iff there is a consistent T' that strongly maximizes
over T.

Once again, we will often be unable to prove the consistency of a candidate T5,
but evidence for its consistency will be evidence for the restrictiveness of T. In
our case, we know that no extension of ZFC-f V^L will allow a fair interpretation
of ZFC-f 30",22 so we can be as confident that it establishes the restrictiveness
of ZFC-f V=L as we are of the consistency of ZFC-f 30". But we can do better
than this by observing that we have the best possible evidence that ZFC-f V^L
is consistent (it is consistent if ZFC is), and thus, even better grounds on which
to conclude that ZFC-f V—L is restrictive.

In these terms, we can state clear grounds for claiming that ZFC-f V=L is re-
strictive. Furthermore, MAXIMIZE will, at the very least, tell us that restrictive
theories should be rejected, so we can also state clear grounds for the consensus
against V=L. We are left with a wide range of theories that strongly maximize
over ZFC-f V=L, including ZFC+V^L, ZFC-f 30», ZFC+MC, and for that mat-
ter, such duds as ZFC+V^L+~Con(ZFC).23 The next step would be to examine
the rational grounds for a choice between these.

4 What goes wrong

So, that's the argument that I would like to claim provides a rational grounding
for the view that V=L should be rejected. The fact that it goes wrong in more
complicated cases may well not surprise those long accustomed to the endless
richness and variety of set theory. I suspect this very richness and variety partly
accounts for the enduring fascination of set theory over the past 100 years.

In any case, what's gradually emerged is that the proposed criterion for
restrictiveness produces both false negatives (theories that seem restrictive, but
are not so classified) and false positives (theories that don't seem restrictive, but
are so classified). What I'll be reporting is actually just the current state of play
in ongoing discussions I've had with several much more knowledgeable persons,
especially Tony Martin, John Steel and Sarah Resnikoff.

Let me start with the false negatives. After V=L, it is natural to ask what the
criterion has to say about various theories of the form ZFC+'V=the canonical
inner model with such-and-such large cardinals', the expectation being that they
will be strongly maximized over by theories of the form ZFC-f'the next larger
large cardinal exists'. In fact, this pattern is satisfied for a considerable distance.
For example, ZFC+'there are two measurable cardinals' (ZFC-f 2MC) provides
a fair interpretation of ZFC-f'V=the canonical inner model with one measurable
cardinal' (ZFC+V=L[U]). Furthermore, ZFC+V=L[U] implies that there is no
(uncountable) inner model of ZFC-f 2MC, so neither it nor any extension of

22 In any extension of ZFC+V=L, the only candidates for fair interpretations of

ZFC-f-3011 are L and models of the form Lκ for K inaccessible. Neither of these could

think 30*, or even V^L.
23 Thanks to John Steel for bringing this one up.
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it can fairly interpret ZFC+2MC. Thus, ZFC+2MC strongly maximizes over
ZFC+V=L[U], and the later is restrictive, as seems right.

But, as Steel has noted, trouble arises at the level of two Woodin cardinals,
at ZFC+V=L[E], where L[E] is the canonical inner model with two Woodins.
Surprisingly, this theory can be extended to provide definable proper class in-
ner models for such theories as ZFC-f'there are five Woodins', ZFC+'there is
a supercompact', and so on.24 Thus, on our definitions, none of these theories
strongly maximizes over ZFC+V=L[E]. This seems wrong, perhaps for reasons
along the following lines: the inner models that the extensions of ZFC+V—L[E]
provide for the larger large cardinals are not 'canonical' (e.g. they are not 'iter-
able'), so to interpret a theory like ZFC-f'there are five Woodin cardinals' in this
way is not to 'preserve' it or to interpret it 'without loss'. This example suggests
that defining 'fair interpretation' as interpretation in a mere inner model is too
weak, a weakness that was masked in the case of V=L because the so-called 'fair'
interpretation of V=L in L is, in fact, optimal.

So, it seems that any more worthy successor to the argument proposed here
would need a better notion of 'fair interpretation'. I have nothing to offer at
this moment, but Martin points out that the prospect of strengthening this
definition raises another interesting possibility. Recall that T' maximizes over T if
T' provides a fair interpretation of T and an isomorphism type not represented in
that fair interpretation. The isomorphism type provision is redundant whenever
T' includes Foundation and T' is inconsistent with T, that is to say, in most
of the cases that interest us. The only case in which it's done any real work is
that of (ZFC-F)H-AFA. But if 'fair interpretation' were redefined so as to allow
for a fair interpretation of (ZFC-F)+AFA in ZFC - which doesn't seem so far-
fetched, given that our best understanding of models of AFA is already based on
interpretations in terms of ordinary set theoretic graphs - then the extra clause
would be doing no work at all and could be eliminated. The connection back
to MAXIMIZE would then be simplified: instead of singling out a particular
thing we want to maximize—isomorphism types—we could rest with the simple
thought that if T' fairly interprets T, in the new robust sense, then whatever T
provides, T' will preserve. So a better notion of fair interpretation might simplify
the over- all argument considerably.

Let's turn now to the false positives. Again, the example is due to Steel.
Start, this time, with ZFC+'there is a measurable cardinal' (ZFC+MC) and
consider the following theory, T:

ZFC+ΞQt+Vα < ωι La[tf] £ ZFC (ZFC+σ).

O1" codes the canonical inner model of ZFC+MC, so T provides a truly fair
interpretation of ZFC+MC. On the other hand, MC implies that if Ot exists,

The trick, as it's been explained to me, is that the canonical model with two Woodins
is Σ"4-correct, and inner models of the larger large cardinals can be coded by Λ\
reals. The relevant extension of ZFC+V=L[E] simply adds the claim that the larger
large cardinal axiom is true relativized to the formula defining the appropriate inner
model.
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then there is a countable a such that Lα[0f] \= ZFC,25 that is, ZFC+MCI— σ.
Now suppose ZFC+MC has an extension, T', with a fair interpretation of T.
Then T' proves there is an inner model M|=T, so in particular, M\= σ. σ is Σ£,
and thus absolute upwards for models like M, so T'h σ. But ZFC+MCCT', so
T'h~ σ, too. Thus, T' is inconsistent. It follows that T strongly maximizes over
ZFC+MC, and thus, that ZFC-f MC is restrictive. I suppose most people would
consider this a misclassification.

The diagnosis of what has gone wrong in this case involves a careful look at
the theory T. T is a way of saying that 0^ exists, but is not contained in any
transitive set model of ZFC.26 This isn't as strong as saying that ZFC-h30^ is
inconsistent, but it is in the same ballpark. Granted, ZFC+MC can't be extended
to provide a fair interpretation of this theory, but should it? This line of thought
suggests that some theories, perhaps including T, are so poorly constructed that
they don't deserve to be fairly interpreted; if so, another theory's failure to do
so would not count against it.

Looking back, we realize that among the theories listed as strongly max-
imizing over ZFC-fV=L was ZFC-f-V^L-f ~Con(ZFC). This didn't cause any
discomfort in the case of V—L because there were also other, more attrac-
tive theories strongly maximizing over it; at the time, I simply referred to
ZFC-|-V^L-|-~Con(ZFC)as a 'dud' that appears among the range of these theo-
ries, presumably one that would not be in the running (for good reasons) when
we set out to chose between them. But what if the only theories strongly max-
imizing over a given theory are duds? Would it still seem reasonable to classify
it as restrictive?

Of course, the trick is to specify what counts as a dud and why. I don't have
anything worked out to say about this, though I will come back to the problem
again in a moment. However, I think it is worth remarking that we need not
require that such an account be fully formalizable in set theory. Though the
criterion for restrictiveness we have been considering so far is a formal one, the
arguments for MAXIMIZE and UNIFY are not, and it seems to me quite unlikely
that any complete theory of the various forces that influence theory choice in set
theory will be fully formalizable. The point is that an argument can be sound,
rational, and legitimately compelling without being formal.

In any case, the false positives I know of do seem to rest on theories that
deserve to be called 'duds', for reasons that must for now remain unspecified. But
before leaving the topic of unattractive theories entirely, I'd like to call attention
to a more subtle worry that concerns me even in the central case in which
the criterion does work, that is, in the case of V=L. Recall that another of the
theories that strongly maximizes over ZFC+V=L is the simple ZFC-f V^L. This

25 If K is a measurable cardinal and 0^ exists, then Vκ is a model of ZFC to which 0^
belongs. This model has a submodel of the form !/«[()*] which is also a model of ZFC.
£«[()*], in turn, has a countable, transitive, elementary submodel containing 0*. This
last must be of the form LQ[0^] for some countable α.

26 By essentially the argument of the previous note, if 0^ is contained in some transitive
set model of ZFC, it is contained in one of the form LQ[0^] for some countable a.
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is surely not a dud in the sense of theories like ZFC+~Con(ZFC), but it is an
unattractive theory, nevertheless. It is too weak to settle any of the outstanding
open questions; though it does, strictly speaking, provide a new isomorphism
type, it tells us nothing about that type, which makes it pretty much unusable.
It is as if a physicist were to conclude that the known elementary particles—A,
B, and C—do not exhaust the range of such particles, and then propose as a
new physical theory the claim 'There are particles that are not of types A, B or
C'. Not a good physical theory. Nor is ZFC+V^L a good set theory.

This observation leads to an interesting quasi-historical question: when Scott
([1961]) proved that the existence of a measurable cardinal implies the falsity of
V=L, did this increase confidence in measurable cardinals or decrease confidence
in V=L? If V=L was justifiably regarded as restrictive at that time, simply due
to the unattractive ZFC+V^L, we would expect Scott's proof to increase the
confidence in MC. If, on the other hand, the weakling ZFC-f V^L is not enough
to establish the restrictiveness of V=L, then we would expect Scott's proof to
decrease confidence in V—L, by showing that there is something of interest that
is ruled out by it. On this second line of thought, for a theory to count as
truly restrictive, the theory maximizing over it must have some attractions of its
own: it must imply the existence of an isomorphism type about which something
interesting is known, or more generally, it must have other virtues, perhaps linked
to other goals of set theoretic practice.

In fact, it seems more plausible to suppose that the evidence of Scott's the-
orem would do both things at once. On the one hand, V=L was already under
legitimate suspicion for its association with Defmabilism, so implying its nega-
tion would be a plus for MC. On the other hand, MC was already known to enjoy
other virtues; e.g., it implies the existence of small large cardinals, which can be
regarded as efforts to extend Cantor's successful methods. On these grounds, its
clash with MC would count against V=L. So the success of MC and the failure of
V=L appear intertwined, and more important, considerations other than mere
restrictiveness seem to be involved.

But whatever the best analysis of this episode, I think it might well be reason-
able to require that the maximizing theory have independent virtues before clas-
sifying the maximized theory as restricth'e. Again, I would expect these virtues
to be linked to other identifiable goals of set theory, e.g., that of providing a rich
theory of sets of real numbers, or of extending Cantor's original methods. If a
modification of our account of 'maximizing' along these lines proved feasible and
desirable, it might well solve the problem of dud theories along the way; pre-
sumably, they would not be particularly virtuous. But this is mere speculation.

In sum, then, if we hope for an account of restrictiveness along the pro-
posed lines, we face difficulties with spelling out both aspects of the primitive
underlying argument. On the one hand, we need a more robust notion of 'fair in-
terpretation'; we have not fully captured the idea of 'preserving' the maximized
theory 'without loss'. On the other hand, we also need a more discerning ap-
proach to the idea of a theory 'giving more1; to do this, a theory must be more
worthy than those we've called 'duds' and perhaps it must have independent
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virtues of its own. I have no clear sense of the prospects for these improvements,
though I seriously doubt they will be easy; but I retain the conviction that the
consensus against V=L is rationally justified, and that the grounds can be clearly
articulated, if perhaps not fully formalized. In any case, I hope it goes without
saying that I would welcome your reflections on this or any other line of thought
on these matters.27
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