Free monoid completeness of
the Lambek calculus allowing
empty premises

Mati Pentus?

ABSTRACT We prove that the Lambek syntactic calculus allowing empty
premises is complete with respect to the class of all free monoid models (i. e.,
the class of all string models, allowing the empty string).

Introduction

Lambek syntactic calculus (introduced in [7]) is one of the logical calculi
used in the paradigm of categorial grammar for deriving reduction laws
of syntactic types in natural and formal languages. The intended models
for these calculi are free semigroup models (also called language models
or string models), where each syntactic category is interpreted as a set
of non-empty strings over some alphabet of symbols. Models for Lambek
calculus were studied in [2], [3], [4], [5], [6], etc. Completeness of the Lambek
calculus with respect to string models was proved in [9], [10], and [11].
Closely related is the result about completeness with respect to relational
semantics [8].

There is a natural modification of the original Lambek calculus, which we
call the Lambek calculus allowing empty premises (cf. [2, p. 44]). This cal-
culus appears to be a fragment of the noncommutative linear logic. The
natural class of string models for the Lambek calculus allowing empty
premises is the class of all free monoid models, where also empty string
is allowed.

In this paper we prove that the Lambek calculus allowing empty premises
is complete with respect to these models.

1Received September 1996; revised version February 1997.
2The research described in this publication was made possible in part by the Russian
Foundation for Basic Research (project 96-01-01395).
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1 Lambek calculus allowing empty premises

We consider the Lambek calculus allowing empty premises (cf. [2, p. 44])
and denote it by L*. This calculus is a modification of the syntactic calculus
introduced in [7].

The types of L* are built of primitive types p;,ps,..., and three binary
connectives o, \, /. We shall denote the set of all types by Tp. The set
of finite sequences of types (resp. finite non-empty sequences of types)
is denoted by Tp* (resp. Tp*). The symbol A will stand for the empty
sequence of types.

Sometimes we shall write Aje...+A, instead of (... (A1sA2)s...)sA,.

Cabpital letters A, B, ... range over types. Capital Greek letters range
over finite (possibly empty) sequences of types.

Sequents of L* are of the form '>A. Note that I' can be the empty

sequence.

Axioms: A—A

Rules:
II-A\B I'e¢(A\B)A—-C
—-B/A T(B/A)®A—C
TASAB T(A-B)A—C

reA—A

It is known that the cut-elimination theorem holds for this calculus (cf. 2]).
We write L* + I'—> A if the sequent '— A is derivable in L*.
There is an obvious duality phenomenon inherent in L*.

Definition. The function dual: Tp — Tp is defined as follows.

dual(p;) = p
dual(4.B) = dual(B)«dual(A)
dual(A\B) = dual(B)/dual(A)
dual(A/B) = dual(B)\dual(A)

The extension to sequences of types dual: Tp* — Tp* is defined as
dual(4; ... A,) = dual(4,)...dual(4,).

Lemma 1.1 If L* - T—A, then L* \- dual(T')—dual(A).

PROOF. Straightforward induction on the derivation of '->A. W
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2 Free monoid models

We use the following notation. Let V be any alphabet, i.e., any set, the
elements of which are called symbols. We denote by V* the set of all non-
empty words over the alphabet V. By V* we denote the set of all words over
the alphabet V), including the empty word €. Let o denote concatenation.
Evidently V* is a free monoid w.r.t. o. The unit of the free monoid is €.
Throughout the paper calligraphic letters U, V, W will denote alphabets.

If o is a word, then |a| (the length of @) is the number of symbols in a.

We shall use the following shorthand notation. For any sets R C V* and
T C V* we write

RoT = {yeV*| thereare a € R and B €T suchthat aof=1};

RofB=Ro{B}; aoT = {a}oT.

Since this operation on sets is associative, we omit parentheses in expres-
sions like Ry o Rg0...0R,,. In the case of m = 0 we assume that this
expression stands for the set {€}. By R™ we denote the set Ro...oR.

N

m times

We shall denote the set of all subsets of a set S by P(S).

Definition. A free monoid model (W*, w) consists of the free monoid
(W*,0,e) and a valuation w: Tp — P(W*) associating with each type
of L* a subset of W* and satisfying for any types A and B the following
conditions.

(1) w(4+B) = w(4) o w(B)
(2) w(A\B) = {y € W* | w(A) o7 C w(B)}
(3) w(B/A) = {y € W* | yow(4) C w(B)}

For any function w: Tp — P(W*) and for any types A,, ..., Ay, we write
w(A; ... Ay) as a shorthand for w(A;)o...ow(A,). Note that W(A) = {e}.

Definition. A sequent I'— B is true in a model (W*, w) iff W(I") C w(B).
A sequent is false in a model iff it is not true in the model.

The following well-known soundness theorem holds.

Theorem 2.1 If a sequent is derivable in the calculus L*, then the sequent
is true in every free monoid model.

The rest of the paper is devoted to the proof of the corresponding com-
pleteness theorem. In view of the following two lemmas it is sufficient to
consider only sequents with empty antecedent.
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Lemma 2.2 For any types A,, ..., An, B, the sequent A,...A,—B 1is
derivable in L* if and only if the sequent A—(Aje...+A,)\B is derivable
in L*.

Lemma 2.3 For any free monoid model (\W*, w) and for any types A4, ...,
Ay, B, the sequent A; ... Ap,—B is true in (W*,w) if and only if the se-
quent A—(Ags...oA,)\B is true in (W*, w).

3 Quasimodels

In this section we introduce the notion of Tp(m)-quasimodels and describe
an algorithm of constructing a free monoid model as the limit of an infinite
sequence of Tp(m)-quasimodels, which are conservative extensions of each
other.

Definition. The length of a type is defined as the total number of primitive
type occurrences in the type.

lpll =1 [|A-B| = [|All + ||BI|
A\B|| = lAll + Bl [IA/Bll = [All + ||Bll
Similarly, for sequences of types we put ||A; ... An|| = |41l + ... + || Ax]l-

Definition. The set of primitive types occurring in a type is defined as
follows.
Var(p;) = {pi}  Var(4«B) = Var(A) U Var(B)

Var(A\B) = Var(A4) U Var(B) Var(A/B) = Var(A) U Var(B)
Definition. For any integer m, we write Tp(m) for the finite set of types
Tp(m) = {A € Tp| Var(4) C {p1,p2,...,Pm} and [|A] <m}.

By Tp(m)* we denote the set of all finite sequences of types from Tp(m).

Definition. A Tp(m)-quasimodel (W*,w) is a valuation w: Tp — P(W*)
over a free monoid (W*,o,¢) such that

(1) for any A € Tp and B € Tp, if A«B € Tp(m), then w(A+B) C
w(A) o w(B);

(2) for any I' € Tp(m)* and A € Tp(m), if L* + I'—>A, then @W(T) C
w(A);

(3) for any A € Tp(m), if € € w(A), then L* + A—A.

Lemma 3.1 Let (W*,w) be a Tp(m)-quasimodel. Then the following state-
ments hold.
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(i) If AeB € Tp(m), then w(A+B) = w(A) o w(B).
(i) If A\B € Tp(m), then w(A\B) C {y € W* | w(A) oy C w(B)}.
(i) If B/A € Tp(m), then w(B/A) C {y € W* | yow(A) C w(B)}.

PROOF. It is sufficient to note that L* + AB—A.B, L* - A(A\B)—B,
L* + B(B/A)—B, and use (2) from the definition of a Tp(m)-quasimodel.
n

Definition. A sequent '»A is true in a Tp(m)-quasimodel (W*,w) iff
W(T) C w(A).

Definition. A Tp(m)-quasimodel (W*, w) is a conservative extension of
another Tp(m)-quasimodel (V*,v) iff

(1) Vvew;

(2) w(A)NVY* =v(A) for any type A.

Evidently, if (W*,w) is a conservative extension of (V*, v), then for any
type A we have v(A) C w(A).

Lemma 3.2 If (W;5,w2) is a conservative extension of (Wf,w;) and
(W3, w3) is a conservative extension of (W5, ws), then (W3, w3) is a con-
servative extension of (W5, ws).

PROOF. In view of W} C W5 we have w3(A)NWf = ws(A)N(WsNWy) =
(ws(A) NW3)NWYy. Further, (w3(A) N W3) N Wy = wa(A) N WF = wy(A).
]

We shall denote by Z the set of all integers and by N the set of all natural
numbers, including zero.

Definition. We say that a sequence of Tp(m)-quasimodels (W}, w;) (i €
N) is conservative iff, for every i € N, (W}, |, wi41) is a conservative ex-

tension of (W}, w;). (Here m is constant.)

Definition. The limit of a conservative sequence (W}, w;) (i € N) is the
Tp(m)-quasimodel (W2 , ws) defined as follows.

(1) 0o — U Wi
iEN

(2) weo(4) = U wi(4)

iEN

Lemma 3.3 The definition of the limit is correct, i.e., (W2, woo) 15 Teally
a Tp(m)-quasimodel.

PROOF.
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(1) Let AeB € Tp(m) and ¥ € weo(A+B). Then for some n we have
v € wp(AsB) C wn(A) o wy(B). Thus v = a o B, where a € w,(A) and
B € wy(B). Evidently a € ws(A) and § € weo(B), whence y = aof €
Woo(A) 0 Weo(B).

(2) Let L* + A;... A;—B, where Ay € Tp(m), ..., A; € Tp(m), and
B € Tp(m). Assume that v € Wo(A; ... A;), i.e,, vy =0a10...0aq, where

a1 € Weo(A1), -y 01 € Woo(Ar). Then a3 € w;, (A1), ..., a; € w;, (A;) for
some i1,...,% € N. Put n = max(iy,...,%).
According to Lemma 3.2, a; € w,(Ay), ..., o € wy(A4;), whence v =

@10...00; € Wn(A1...A1) Cwy(B) C we(B).
(3) Obvious. W

Lemma 3.4 The limit of a conservative sequence is a conservative erten-
sion of any of the elements of the sequence.

PROOF. We verify that we(A) N W} = w;(A). For any k < ¢ we have

wi(A) C w;(A). Thus we(A4) = Uw] (A) = U w;(A), whence woo(A4) N

W = (U wij(4)n Wy = U (wJ(A) n W*) Note that w;(A) N W} =
Jjzi j2i

w;(A) for any j > i (according to Lemma 3.2). Now | (w;(A) N W) =

U wi(4) = wi(A). B i>i

Jj2i

4 A simple quasimodel

Definition. We define the non-negative count # as the following mapping
from types to non-negative integers.

#pi = 1
#(AB) = #A+#B
I . [ max(0,#B - #A), if L*+-A—-A\B
#(A\B) = {max(1,#B —#A), if L*/ A—A\B

7 . [ max(0,#A - #B), if L*+A—A/B
#(4/B) = {ma.x(l, #A-#B), if L*/A—A/B

The non-negative count of a sequence of types is defined in the natural way.
By definition, #(A) = 0.

Lemma 4.1 For any type A its non-negative satisfies the inequalities 0 <
#A < ||A|.
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PrOOF. Induction on ||A|. W
Lemma 4.2 If #A =0, then L* - A—A.

PROOF. Induction on ||A||. Induction steps for B\C and B/C are easy. In
the case of B«C' we assume that #(B+C) = 0 and obtain #B = 0, #C = 0,

and
A—-B A-C

A—B.C (=),
| |

Lemma 4.3 If L* F T > A then #I' > #A.

PrOOF. Induction on the length of the derivation.

CASE 1: Axiom.

Obvious. ATl=B

Casg 2: (—\) Given m (=\)

By the induction hypothesis #A + #IT > #B, whence #II > #B — #A.
Obviously, if #I1 > 1, then #I1 > max(1, #B — #A) > #(A\B). Let now
#IM =0and I = C;...C,. Then #C; = 0 for each i < n. According to
Lemma 4.2 L* + A—C; for each i < n. Applying (CUT) n times we derive
L* - A—A\B, whence #(A\B) = max(0,#B — #A). From #B — #A <
#TI = 0 we obtain #(A\B) = 0.

CasE 3: (—/)

Similar. S—A TBAC ()

Case 4: (\—) Given To(A\B)A—C

By the induction hypothesis #® > #A and #I' + #B + #A > #C.

Note that #(A\B) > #B — #A. _ B B ~ _
Hence #T + #® + #(A\B) + #A > #T + #A+ (#B - #A) + #A > #C.
CASE 5: (/—)

Similar.

. r-A A-B
CASE 6: (—e) Given “TASAB (=) .

If #T > #A and #A > #B, then #I + #A > #A + #B = #(A.B).
, TABA-C

Case7: (»—) Given L4 B)ALC (=)

Evidently #(I'(A+B)A) = #(TABA). B

Remark. For any type A, we have #4 = 0 if and only if L* - A—A.
Now we define a Tp(m)-quasimodel (Wg, wo).
Wo = {ao}  wo(A) = {ag | k > #A}

Here af denotes ag o ... o ag. In particular, ag = €.
(.

k times
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Lemma 4.4 (W§,wp) is a Tp(m)-quasimodel for any natural number m.

PROOF. (1) We prove that wo(A+B) C wp(A) o wo(B).

Let af € wo(AsB). We put k; = #A and k2 = k — k;. In view of
k > #(AsB) = #A + #B we have k; > #B. Evidently af = af* 0 a2,
af' € wo(A) and af? € wy(B).

(2) We verify that if L* + Cy...Cr,—A, then wo(Ci) o...0owe(Cyr) C
wo(A). _ _

Let ag' € wo(C;) for every i < n. Then ) ki > > #C; > #A according
to Lemma 4.3. Thus af' o...0af* € wo(A).

(3) In view of Lemma 4.2, if € € wo(A), then L* - A—A. R

5 Witnesses

Definition. We fix a countable alphabet U = {a; | j € N}. By K™ we
denote the class of all Tp(m)-quasimodels (V*,v), such that V C U, V is
finite, and for every A € Tp(m) there is o € v(A) satisfying |a| < m.

Lemma 5.1 The Tp(m)-quasimodel (W5, wo) from Lemma 4.4 belongs to
the class K™.

ProOOF. Immediate from Lemma 4.1. B

Definition. Let (W*, w) be a Tp(m)-quasimodel. Let A, B € Tp, o € W*,
v € W*, and v ¢ w(A\B). We say that o is a witness of v ¢ w(A\B) iff
a € w(A) and a oy ¢ w(B).

Definition. Let (W*, w) be a Tp(m)-quasimodel. Let A, B € Tp, a € W*,
v € W*, and v ¢ w(B/A). We say that a is a witness of v ¢ w(B/A) iff
a € w(A), and yoa ¢ w(B).

Definition. Let X be a class of Tp(m)-quasimodels. We say that the
class K is witnessed iff

(1) for any (V*,v) € K, for any type of the form A\B from Tp(m),
and for any v € V*, if v ¢ v(A\B) then there is a conservative
extension (W* ,w) of (V*,v) in K and (W*, w) contains a witness
of v ¢ w(A\B);

(2) for any (V*,v) € K, for any type of the form B/A from Tp(m),
and for any v € V*, if ¥ ¢ v(B/A) then there is a conservative
extension (W*,w) of (V*,v) in K and (W*, w) contains a witness
of v ¢ w(B/A).

Lemma 5.2 If the class K™ is witnessed, then there is a free monoid model
(V*,v) such that
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(i) for every type E € Tp(m), if L* tf A—E, then the sequent A—E is
false in (V*,v);

(ii) v(E) # 0 for every type E € Tp(m);
(ii) V C U.

At the end of this paper it will be proved that the class K™ is witnessed.
Thus Lemma 5.2 (i) provides a proof of completeness of L* with respect to
free monoid models.

PROOF. Evidently there is a function 0: N — Tp(m) x U* such that for any
C € Tp(m) and for any v € U* there are infinitely many natural numbers i,
for which o(i) = (C, 7).

Starting with the Tp(m)-quasimodel (Wg, wg) from Lemma 4.4, we de-
fine by induction on 7 a conservative sequence (W}, w;) (¢ € N), consisting
of Tp(m)-quasimodels from the class X™.

Assume that (W}, w;) € K™ has been constructed. We define (W}, w;)
as follows.

CASE 1:

If o (i) = (A\B,7), v € W}, v ¢ wi(A\B), and there are no witnesses of y ¢
w;(A\B) in (W}, w;), then we take (W, ,wi;1) to be any conservative
extension of (W}, w;) in K™, containing a witness of v ¢ w;4+1(A\B). Such
a Tp(m)-quasimodel (W}, |, wi;1) exists, since K™ is witnessed.

CASE 2:

Ifo(i) = (B/A,7),y € W}, v ¢ wi(B/A), and there are no witnesses of vy ¢
wi(B/A) in (W}, w;), then we take (W}, ;,w;;1) to be any conservative
extension of (W}, w;) in K™, containing a witness of v ¢ w;4,(B/A).
CASE 3:

Otherwise we put (Wy,;, wit1) = (W), w;).

Let (W2, we) be the limit of the conservative sequence (W}, w;). We
put V= Wg.

Now we define a valuation v: Tp — P(W2,) by induction on the com-
plexity of a type.

v(pi) = Woolpi)
v(AeB) = wv(A)ouv(B)
v(A\B) = {y€V"|v(4)oyCv(B)}
v(B/A) = {y€V"|vov(4) Cv(B)}

Evidently (V*,v) is a free monoid model. Next we verify by induction on
the complexity of C' that weo(C) = v(C) for every C € Tp(m).
Induction step.
Case 1: C=A.B
Obvious from Lemma 3.1 (i).
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Caseg 2: C = A\B

First we prove that if ¥ € weo(A\B) then v € v(A\B). Let vy € woo(A\B).
Take any a € v(A). By the induction hypothesis a € wo,(A). Evidently
@07 € Wy(A(A\B)). Hence a 0y € weo(B) in view of L* + A(A\B)—B.
By the induction hypothesis & o v € v(B). Thus v € v(A\B).

Now we prove that if v € U* and v ¢ wo(A\B) then v ¢ v(A\B). If

v ¢ W, then this is obvious. Let now v € Wi . Recall that Woo = |J W;.
JEN

Thus v € Wy for some j. Evidently, there exists an integer ¢ > j such that

o(i) = (A\B, 7). According to the construction of (Wy,;,wiy1) there is a

witness a € Wy, of v ¢ we(A\B). That is, a € w;41(A4) and aoy ¢

w;4+1(B). Since we, is conservative over w;t+;, we have a € wy(A) and

a0 ¢ weo(B). By the induction hypothesis, a € v(A) and a oy ¢ v(B).

Thus v ¢ v(A\B).

Case3: C=B/A

Similar to the previous case.

Finally, we prove that the free monoid model (V*,v) has the desired
properties (i)—(iii).

(i) Let E € Tp(m) and L* i A—E. We must prove that ¢ ¢ v(E).
According to the definition of a Tp(m)-quasimodel £ ¢ wo(E). In view of
Lemma 3.4 € ¢ weo(E) = v(E).

(i) If E € Tp(m), then af* € wo(E) C woo(E) = v(E).

(iii) Obvious. W

6 Noncommutative linear logic

In this paper we consider only the multiplicative fragment of linear logic.

Noncommutative multiplicative linear formulas are defined as follows.
We assume that an enumerable set of variables Var = {p1, p2, ...} is given.
We introduce the set of formal symbols called atoms

At = {p'™ | p € Var, n € Z}.

Intuitively, if n > 0, then p™ means ‘p with n right negations’ and p*(~—™)
means ‘p with n left negations’.

Definition. The set of normal formulas (or just formulas for shortness) is
defined to be the smallest set NFm satisfying the following conditions:

1. At C NFm;

2. 1 € NFm;

3. 1 € NFm;

4. if A € NFm and B € NFm, then (A® B) € NFm and (ApB) € NFm.
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Here ® is the multiplicative conjunction, called ‘tensor’, and p is the
multiplicative disjunction, called ‘par’. The constants 1 and 1 are multi-
plicative falsity and multiplicative truth respectively.

By NFm* we denote the set of all finite sequences of normal formulas.
The empty sequence is denoted by A.

Definition. We define by induction the right negation ( )* : NFm — NFm
and the left negation *( ): NFm — NFm.

(pJ.n)J_ — pJ_(n+l)

1+ =1
1t = 1

(A®B)t = (BY)p(4h)
(ApB)t = (B')®(4h)

.L(pJ.n.) N pJ_(n—l)
11 =1
1 = 1L
“(A®B) = ('B)p(*4)
“(ApB) = ('B)®(*4)

The two negations are extended to sequences of normal formulas as follows.

L4:...4,) = tA4,...14
(A;... At = Ar ... 4Af

Remark. Several other connectives can be defined in this logic.
The most popular ones are two linear implications, defined as

A-oB=A' 9B and B-A=Bp 1A

Lemma 6.1 For any A € NFm the equalities +(A+) = A and (+A)* =
A hold true.

ProoOF. Easy induction on the structure of A. W

In [1] V. M. Abrusci introduced a sequent calculus PNCL for the pure
noncommutative classical linear propositional logic. In the same paper two
one-sided sequent calculi SPNCL and SPNCL' were introduced and it was
proved that they are equivalent to PNCL.

We shall use a slightly modified (but equivalent) version of the mul-
tiplicative fragment of SPNCL'. The sequents of this calculus are of the
form —T', where I' € NFm".
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The calculus SPNCL’ has the following axioms and rules.

id —_
e =0
—T'A
—-TLA (L)
—I'(Ap B)A —-T'(A® B)A
Y | S _—=FA . 11
Here capital letters A, B, ... stand for formulas, capital Greek letters

denote finite (possibly empty) sequences of formulas, p ranges over Var,
and n ranges over Z.

Remark. The rule (id) can be written as —(C*)C (or equivalently as

—C (*0)), where C € At. Actually, the restriction C' € At is not essential.
It is imposed in this paper only in order to reduce the number of technical
details in some proofs.

We define an embedding of L* into SPNCL'.

Definition. The function ( ): Tp — NFm is defined as follows.

o= pi
A-B = AQ®B
A\B = A B
A/B = Ap'B

IfI'=A;... A,, then by T we denote the sequence ;ﬁ .. ;1:

Lemma 6.2 For every normal formula A € NFm there is at most one type
B € Tp such that B = A.

PROOF. We define a function §: NFm — Z by induction as follows.

Iny 0, ifnis even
W) = {1, if n is odd
i1 = 0
L = 1

HA®B) = hA+4B
WApB) = hA+4B—1
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It is easy to see that j(AL) = (L A) = 1 — hA. Now we can verify that
if A € Tp, then hA = 0 Thus there are no types A;, A; € Tp such that
A" =74 (because A, =1 and 4y = 0).

Given a formula D = C (where C € Tp), we can automatically decide
what is the main connective in C. If D € Var, then C is primitive. If the
main connective of D is ®, then the main connective of C is .. Finally,

if D = D, p Dy, then the main connective of C is \ or /, depending on
whether 1Dy =1orhD; =0. B

Lemma 6.3 Let I' € Tp* and A € Tp. The sequent > A is derivable
in L* if and only if the sequent —»T'% A is derivable in SPNCL'.

PRrROOF. Both directions are proved using induction on derivation length.
[ |

7 Proof nets

We define proof nets for the multiplicative fragment of the noncommutative
classical linear propositional logic. The concept of proof net introduced here
(an extension of that from [1]) appears to be mathematical folklore.

We prove that a sequent is derivable if and only if there exists a proof
net for this sequent.

Definition. For the purposes of this paper it is convenient to measure the
length of a normal formula using the function ||-||: NFm — N defined in
the following way.

It = 2

I = 2

Iy = 2
IA®B| = [Al+ 2B
IApBI = IAl+I1BI

Remark. We are going to define formally a total order on the set of all 1,
1, ®, p and atom occurrences in a formula (in fact this order coincides with
the natural order from left to right). To make the forthcoming definition
easier, we have used 2 instead of 1 in the base case in the definition of ||-|.

The definition of ||-]| is extended to finite sequences of formulas in the
natural way.

BAi... Anll = [l Axll + ... + [ An]]

We put Al = 0. ‘
The number of formulas in a finite sequence I' is denoted by |I'|. Thus

|A1An|=n
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To formalize the notion of occurrences of subformulas we introduce the
set,
Occ = NFm x Z.

A pair (B,k) € Occ will be intuitively interpreted as a subformula oc-
currence B. Here k in a way characterizes the position of B in the whole
formula.

Definition. We define the function ¢: NFm — N (evaluating the “dis-
tance” of the “main connective” of a formula from its left end) formally as
follows.

@t = 1
col) = 1
c(l) = 1

(A®B) = |4l
(ApB) = |Al

Definition. We define the binary relation ‘a is a subformula of 3’ on
the set Occ formally as the least transitive binary relation < satisfying
(A, k—||A + c(A)) < ((AXB), k) and (B, k+c(B)) < ((AAB), k) for every
A€ {®,p}, A€ NFm, B € NFm, and k € Z.

Definition. The binary relation < on the set Occ is defined in the natural
way: a X B ifand only if a < B or a = f3.

Given a standalone formula A € NFm, we usually associate it with the
pair (A,c(A)) € Occ. Then each subformula occurrence B is associated
with a pair (B, k) € Occ such that (B, k) < (A4, c(A)) and k is (intuitively)
the “||-||-distance” of the “main connective” of B from the left end of A.

Lemma 7.1 Let A € NFm. Then
(i) the set {a € Occ | a < (A,c(A))} contains || Al — 1 elements;

(ii) for every k € Z such that 0 < k < ||Al|, there is a unique formula
B € NFm satisfying (B, k) < (A,c(A))}.

Definition. For any sequence of normal formulas I' = A, ... A,, we con-
struct a finite set

Qr € (NFmU {o}) x N,

where ¢ is a new formal symbol which does not belong to NFm.

The set Qr will act as the domain of all proof structures for the sequent
—I.

Qr = {(B,k + "lAl . A1_1|"> l 1<i<n and (B,k) = <A,;,C(Ai)>}
U{(o, 1 41... Aieall,) | 1 < i < m}
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Example 7.2 Let T = ((¢*3 ® p*8) p p*7) ¢*2. Then Qr = {ay,...,az},
where

a = (0,0),

o = (¢t 1),

a = ((¢°®p?)2)

a3 = (p%,3),

ar = ((@Pep®) pp'’),4),
as = (pJ_7’5>7

ag — <°a 6);

a7 = (ql2,7).

The set Qr can be considered as consisting of six disjoint parts

Qr =02 UQRt Ut UQEUNRUNE,

where
Q= {{o,kII) € Qr};
Q= {(p'" k) ek
Ql": = {(L,k0O) €Qr}
ol = {(1,k1I)er);
Qi‘i’ = {(A®B,k,II) € Qr};
Q8 = {(ApB,kI)eQr}.

We shall often write Q8£° for Qf U Q8.
Lemma 7.3 |Qr| = ||T].
Definition. The invariant b, associating an integer with Qr, is defined as
() = 108°] - 28] — || + Q2.
Definition. For every subset © of Q- we put
b(©) = |92°NO| - |2 N 6| - |9 N[+ L Ne|.
Remark. b(Qc1 ) =b(Q1c) =2 - b(Q0).
Lemma 7.4 For allT
(D) 198+ 19F] + |9} = |QF| + 1QF] + 127,
(ii) if —T is derivable in SPNCL', then b(Qr) = 2.
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PROOF. (i) Easy induction on ||T|.
(ii) Straightforward induction on the length of the derivation in SPNCL'.
]

For each sequent —T" we define two binary relations on Qr.

Definition. Let o € Qr and § € Qr. Then a <r S if and only if a ¢ QF,
B¢ Q, and o < B.

Remark. The relation <r is a strict partial order on Qr.

Definition. Let (A, k,A) € Qr and (B, [, II) € Qr.
Then (A, k,A) <r (B,[,1I} if and only if k£ < [.

Remark. The relation <r is an irreflexive linear order on Qr.
Definition. For any sequent —I' we denote by Qr the triple (Qr, <r, <r).
Lemma 7.5 Let a,8,7 € Qr and a <r B <r 7v.

(1) If o <r v, then B <r 7.

(ii) If v <r o, then B <r a.

Definition. Let (©2,C) be an undirected graph, where § is the set of vertices
and C is the set of edges. Let < be a strict linear order on the set 2. We say
that the graph (Q,C) is <-planar iff for every edge {a, 3} € C and every
edge {v,6} €C,ifa<vy<B,thena<é<foré=aoré=_,.

Remark. Intuitively, a graph is <-planar if and only if its edges can be
drawn without intersections on a semiplane while the vertices of the graph
are ordered according to < on the border of the semiplane.

Lemma 7.6 If (,Cy) is <-planar and Cy C Cq, then (Q,Cs3) is <-planar.

Lemma 7.7 Let (Q,C) be an undirected graph, where Q = Q; U Qy and
Q1N Q =0. Let < and <’ be two linear orders on Q such that

(Va € Q1)(VB € Q) a < f;
(Va e 0)(VB e Q) B < o
NMae)(VBe ) a< B if a< B;
Vae )VBe Q) a< fifa<’b.

Then (2, C) is <-planar if and only if (Q,C) is <'-planar.

Definition. If C is a set of directed edges, then by C#¥ we denote the
associated set of undirected edges.

C* = {{a, B} | (e, B) € C}
Definition. A proof structure is a quadruple (Qr, A, B, £), where
(A1) AC Q2 x Q8%
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(A2) BCOf x (Rt UQ});
(A3) £ COpt x QpY;

(A4) the relations A, B, and £ are total functions on domains QF, Qf,
and Qp* respectively.

(A5) if (o, B8) € €, then (B, ) € &;

(A6) if (a,8) € £ and a <r 3, then there are p € Var and n € Z such
that o = pt("+1) and g = p*m;

(A7) the graph (Qr, (AUBU £)#) is <p-planar.

If o € QF, then we denote by Ac the only element 8 € Qr such that
(a, B) € A. Similarly for B and €.

Definition. A proof net is a proof structure (Q2r, A, B, £) such that
(A8) b(Qr) =2

(A9) the graph (Qr,<r UA) is acyclic (i. e., the transitive closure of
~<r UA is irreflexive).

Example 7.8 We continue Example 7.2, where
I'= (g 0p®) pptTet?.

Let A = {((12, as>}, B= @v and £ = {(al: a7), (a3) a5)7 (as, 03), (C!7, al)}'
Then (2, A, B, ) is a proof net.

Remark. In the definition of a proof structure one may in addition require
that, if (o, 8) € B and (8,7) € £, then B <r 7.

Before establishing that a sequent is derivable if and only if it has a proof
net we prove some auxiliary lemmas.

Definition. Let I' € NFm*, o, 8 € Qr, and a <r (. Then by @ff’ﬁ we
denote the set {y € Qr | @ <r v <r B} and by Ef‘i’ﬁ we denote the set
{y<raorf<rn}

Lemma 7.9 Let (Qr, A, B, £) be a proof structure, {a, 3} € A#, and a <r
B. Then b(©2P) > 1 and b(EXP) > 1.

PROOF. For shortness we denote © = O and E = E*. We shall verify
only b(©) > 1. The proof of b(Z) > 1 is analogous.

According to Lemma 7.6 the graph (Qr, A#) is <p-planar. Thus the
set A is divided into three disjoint subsets

A=AOUA9UAE,
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where A¥ = {{a, 8}}, A® C O x (OU {e,B}) and A% C E x (EU{a, B}).

Similarly, the graph (Qr, {{a, 8}} U B#) is <p-planar and thus B is di-
vided into two disjoint subsets

B = B® U BE,

where B® C © x © and BE C E x E.
Once again, the graph (Qr, {{a, 8}} U £#) is <p-planar and thus £ is
divided into two disjoint subsets

E=E9UEE,

where £ C © x © and £EE C E x E.

Note that (© U {a, 8}, (4o U A® U B® U £°)#) is an undirected graph.
Furthermore, this graph is <g-planar, where <g is the restriction of <r
on the set O U {a, 8}

Let us draw this <g-planar graph on a semiplane as described after
the definition of a <-planar graph. We denote the segment of the semi-
plane border between a and § by [a,3]. The border segment [, 3] and
the edge {a, 3} surround a closed area, which contains all edges from the
set (A® U B® U £8)#. The edges from (B® U £2)# divide this area into
|(B® U £9)#| 4 1 regions. We are interested in all these regions except the
one adjacent to the edge {a, 8}.

Consider any of these regions. We claim that it has at least one nontrivial
segment of [a, (] at its border. (Otherwise every vertex from QA UQLUQE
adjacent to the region considered would belong to two edges from (B° U
£9)#, but this is impossible.)

Any such segment of [a, ] contains at least one element of Q2 U Q&°.
Thus some elements of Qf U Q£° are adjacent to the region considered. It
is impossible that all of these would belong to Q? (because A is a total
function).

Thus the number of regions considered does not exceed the cardinality
of the set Q£° N O.

1087 N O] > |(B° U E®)#|
Taking into account that

(B%)#| = |B®| = |x n 6|
and 1 1

I(E9)#] = 51%] = I0f* o)
we obtain that
1
Q8 N6 > |9fne| + 5|Q9‘ ne|.
Analogously to Lemma, 7.4 (i) we notice that

(Q&°UuQ®)ne|=|(Qf ututyne| 1.
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Subtracting
IR NI+ QR NO|=I2F N6+ QL NO| + |22 NO| -1

from
2|Qi‘?° ne|> 2|Q% noe|+ lQ{f‘t no|

we obtain the desired inequality
8°NeI- 102 N6|> |9t N6| - |2 ne| +1.
|

Lemma 7.10 Let (Qr, A, B, £) be a proof net, {a, 8} € A#, and a <r .
Then b(©2°) = 1 and b("'a’ﬁ) 1.

PROOF. Note that 2 = b(Qr) = b(O3”) + b(EX?) + b(e, B) = b(OF) +
b(Ep @P) since b(a, B) = 0. It remains to use the previous lemma. W

Proposition 7.11 Let (Qra(a@s)m, A, B,£) be a proof net and A(A® B,
ITH + NAN + Al = (o, ITNl). Then the sequents -AA and —I'BII are
derivable in SPNCL'.

PROOF. Proof structures for -A A and —TI'BII are easily constructed from
the given proof net. To verify that they are proof nets we use Lemma 7.10.
|

Theorem 7.12 A sequent —T is derivable in SPNCL' if and only if there
exists a proof net (o, A, B,E) for the sequent —T.

PRrOOF. Sketch. Proving the ‘only if’ part is easy. To prove the ‘if’ part we
proceed by induction on the cardinality of the set Qi@ U QL.

Induction base. Let Q2 U Q£ = 0. From b(Qr) = 2 we conclude that
either ' = 1...111...L or " = L...1¢g**L...1pt"L... 1. In the
~ latter case ¢ = p and k = n + 1 in view of (A6). Evidently all sequents
—1...111...1 and —»L...1pt™*11 . . 1p'™1l... 1 are derivablein
SPNCL/.

Induction step. Assume now that Qi‘?’ U QF is not empty. We introduce
on Q2 U QL a binary relation < stipulating that o < g if and only if
a <r B or (a,B) € A. In other words, < is the restriction of <r U A on
the set Q¥ U QF.

Accordlng to (A9) there is an element §p € QF UQE maximal with respect
to <. We consider two cases.

CAsE 1: 6 € QF

We can use the induction hypothesis and apply the rule ().

CASE 2: §p € Q®

In view of A belng a function there exists 3 € Q£° such that (6o, 8) € A.
Since & is maximal with respect to <, we have ﬂ € Q3.
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We consider two subcases.
CASE 2a: 3= (0,0) (i.e., B is the least element of Qr w. r. t. <r)
In view of Proposition 7.11 we can use the induction hypothesis and apply
the rule (®).
CASE 2b: (8 # (0,0)
We use Lemma 7.7 and the rules (++(-)), ((- )1 ) to reduce this case
to the previous one. W

Remark. Analogous result can be easily established also for the multi-
plicative fragment of cyclic linear logic defined in [12].

8 Properties of proof nets

Lemma 8.1 Let (Qr,.A,B,E) be a proof structure. If the graph (Qr, <r
UA) contains a cycle, then there exists a cycle

(e, B1,02,B2, ..., n, Br)
such that
(i) ai € QF and B; € QR for each i < n;
(il) a; <r B for each i < n;
(iii) (B:, aiy1) € A for each i < n;
(iv) (Bn,01) € A;

(v) either a; <r B1 <r @z <r ... <r PBn or Bn <r @n <r Bn-1 <r
... <roj.

Definition. Let g:Q2; — 3 be a bijection and R be a binary relation
on Q. Then by R9 we denote the binary relation {(g(a), 9(8)) | (o, B) € R}
on Q.

Proposition 8.2 Let (r, A, B, £) be a proof net. Let T’ be obtained from I’
by replacing an occurrence of a subformula (A®(B®C)) by ((A®B)®C) or
vice versa. Let g denote the unique isomorphism of (Qr, <r) and (Qr, <r/).
Then (s, A9, B9,E9) is a proof net.

PROOF. Sketch. Let I be obtained from I' by replacing an occurrence of
a subformula (A ® (B ® C)) by ((A® B) ® C). Assume that the graph
(Qr, <r UA) is acyclic, whereas the graph (Qr,<p/ UAY) is not. Ap-
plying Lemma 8.1 we find in (Qr/,<p UAY) a cycle of special form
(alh@l’ a27ﬂ2’ LK) an,ﬁn)-

Evidently there is m < n such that 8, = (A® B) ® C,k + || A|| + || B]l)
and am =<r (4, k + c¢(A)) for some k.
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We denote v = (A® B, k+ || A|). In view of (A7) and the special form of
the cycle there must be | < n such that o; <+ A9y < B; or oy = A95. But
then there is another cycle in (Qr/, < UA9) containing the edge (v, A9y
and not involving the vertex B, (see Lemma 7.5). This cycle is mapped
by g~! to a cycle in (Qr, <r UA). Contradiction. W

Proposition 8.3 Let (Qragsec))m A, B,E) be a proof net and
A(A® (B® C), Tl + Al = A(B® C,ITll + I All + I BI)-
Then the sequent —B is derivable in SPNCL'.

PROOF. Sketch. The proof structure for — B is copied from the relevant
part of the given proof net. To prove (A8) we apply Lemma 7.10 twice. B

Proposition 8.4 Let (Qra,(a,®8,)m;,A1,B1,&1) be a proof net and
(2ra,(4,8B,)1,, A2, B2, E2) be another proof net. If A1(A; ® By, ||T|| +
1Al + | 41ll) = A2(A2 ® B, [IT|| + [[Azl] + [l A2l) € Qr U {{o, T},
then the sequents >T'A1(A; ® By)IIp and —»T'Ay(As ® By)II; are derivable
in SPNCL'.

PROOF. Sketch. Let $1 = (A1®By, [Tl +1A1ll+1A1ll), B2 = (A2®B,, T
+lAz]l + | 42]l), and a = A18; = Asfs.
To obtain a proof structure for -I'A; (A; ® B2)II; we combine the parts
of the given proof nets corresponding to Gl‘i‘gll( A8y, and E?gﬁ (A2®B2)IL,"
Using Lemma 8.1 one can verify that the proof structure is a proof net.
The claim —T'A3(A; ® B;)II; follows from the other one due to the
symmetry of the conditions of the theorem. W

Proposition 8.5 Let SPNCL' + —B and a € Q£°. Then there are C, D €
NFm and there is a proof net

(nI‘C(.L®(B®L))D$ A: B: 8)

ﬁuclfll) that A(L®(B® L), ITI+ICH+1L]) = ABeL, T+ ICH+ LI+
B|) =a.

PROOF. Sketch. Given a sequence I' € NFm* and a vertex o € Q£° it is easy
to construct two formulas C, D and a proof net (Qrcgp, Ao, Bo, &) such
that Ao(C®D, T +ICI) = a and each edge ((E, &), (F,m))) € AUBoUEs
satisfies k + m = 2||T||.

On the other hand, there is a proof net for the sequent — B. It remains to
combine these two proof nets. Again, Lemma 8.1 is useful for checking (A9).
[ |

Proposition 8.6 Let (Qr(sg(c®p))m; A1, B1,£€1) be a proof net. Let the
sequent —C+ E be derivable in SPNCL'. Then there exists a proof net

(Qr(se(E@D))M A, B, E)
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such that A(B® (E ® D), |T|| + |B]]) = A1(B® (C ® D), |Tl| + | BIl) and
A(E @ D, [Tl + 1Bl + I Ell) = A:(C ® D, Tl + I Bl + [ICI)-

PROOF. Sketch. According to Theorem t-complete there is a proof net
(Rc+ g, A2, By, £2).

There is a natural one-to-one mapping (an anti-isomorphism of linear or-
ders) between the part of Qr(sg(cep))n corresponding to C and the part
of Qc1 g corresponding to C* . We denote the graph of this mapping by G
and the graph of its inverse by G~!.

We define H as the transitive closure of A; UB;UE1UAUB2UEUGUG !
on the disjoint union of Qrsg(cep))n and Q¢+ -

Finally, A, B, and £ are chosen so that AU B U £ coincides with the
restriction of H to the domain excluding C and C+. W

9 Tp(m)-maps

The aim of this section is to introduce Tp(m)-maps (V,,v,) and (V7 v},
which will later be used in the proof of Lemma 10.20, where we construct a
Tp(m)-quasimodel containing a witness for a given word § ¢ v(E\F) (resp.
6 ¢ v(F/E)).

We need some notation. If R and 7 are two binary relations on a set D,
then we define

ROT={(rt)eDxD|(3seD)(r,s)€R and (s,t) € T}.

Evidently, @ is associative.
Given a set D and a function w: Tp — P(D x D) we denote by w the
function from Tp* to P(D x D) defined as follows:

w(A) = {(s,s)|s €D}
B(T4A) = @) o w(A).
Remark. w(I'Il) = @(T") © w(II).

Definition. A Tp(m)-map (D, W, w) consists of a finite set D, a reflexive
linear order W C D x D, and a valuation w: Tp — P(W) such that

(1) forany A € Tp, B € Tp, if AeB € Tp(m), then w(A«B) C w(A)Ow(B);
(2) for any I € Tp(m)*, B € Tp(m), if L* + I'->B, then @(T") C w(B);
(3) for any B € Tp, if (s, s) € w(B) for some s € D, then L* - A—B.

Lemma 9.1 For any given number m € N there is a family of Tp(m)-maps
(Dr, Vr,vr) indezed by sequences of types T € Tp* and there are elements
xr € Dr such that
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(i) (VI € Tp*) (VII € Tp*) Dr C Dnr;

(ii) (VI € Tp*) (VIL € Tp*) Vr C Vnr;
(iii) (VI € Tp*) (VII € Tp*) (V(s,t) € Vnr) if s € Dr then (s,t) € Vr;
(iv) (VT € Tp”) (VII € Tp*) (VA € Tp) vr(A) C vnr(4);

(v) (V' € Tp*) (VII € Tp*) (VA € Tp) (V(s,t) € vnr(A)) if s €
Dr then
(s,t) € vr(4);

(vi) (YT € Tp*) (YA € Tp*) if xr € Da then (3I € Tp*) A =TIT;
(vii) (VI € Tp*) (VC € Tp) (xr,xa) € vr(C) & L* - T'—C;
(Viii) (VF € Tp*) (VB (S Tp) (XBI’,XI‘) € ‘UBF(B).

PRrOOF. The construction of Tp(m)-maps is based on the proof nets intro-
duced in section 7. The domain Dr of the Tp(m)-map corresponding to T'
will be a finite subset of NFm x Occ x NFm®.

Let 't = A; ... An. We define Dy as the set of 3-tuples (B, k, 4; ... 4;)
such that (B, k) € Qf‘?i and j € N is the smallest natural number satisfying
VY EY S

We put xr = (o, T+ |,T*) and Dp = Dy U {xr}.

For any 3-tuple s = (B, k, ®) we denote by § the 2-tuple (B, k). Evidently
the mapping s — 3 establishes a one-to-one correspondence between Dy
and QF7 .

The linear order Vi C Dr X Dr is defined by stipulating that a pair
({(B1, k1, ®1), (B2, k2, ®2)) belongs to Vr if and only if k1 > ks.

Finally, the function vr: Tp — P(Vr) is defined by stating that (s,t) €
vr(C) if and only if there are E € NFm, F € NFm, A € NFm*, I €
NFm®, and there is a proof net (s, A(E@(é@p))n’A’B’g) such that
AEQCAF), T+ I +[Al+IEN) =5 and A(CF T | +IAI+IEN+
Icl) = ¢.

First we verify that for each T’ € Tp* the triple (Dr, Vr,vr) is a Tp(m)-
map for every m € N.

(1) Let (s,t) € vr(A.B).

This means that

e there is a proof net (2, .4, B, ) for a derivable sequent of the form

~TLA(E® ((A® B) ® F))IL;

e AE®((A®B)®F), Tt | + IAl + IE]) =5;
o A(A® B) @ F, T+ || + IAl + IE] + JA) + IBI) =t



194 M. Pentus

Evidently there is u € Dr such that A(A®B, T ||+ A+ I EN+IA]) =
4. Using Proposition 8.2 it is easy to establish that (s,u) € vr(A) and
(u,t) € vr(B), whence (s,t) € vp(A) © vr(B). Thus we have established
that vp(A+B) C vr(A) © vr(B).

(2) Let L* - A; ... A,—B. We must verify that vr(4;)®...©vr(4,) C
vr(B). If n = 0, then we use Proposition 8.5.

Assume now that n > 0. Let (s,u) € vr(A;) and (u,t) € vr(Asz). Ac-
cording to the definition of vr there are proof nets

(1, (10(A @F))m, AL B1, €1)
and
(51 A, (2.0 (D30 Fa)) s A2 B2, E2)

such that A1 (Ey ®(A1®FY), [T+ [+ 1411+ E1l) =3, A (A1 0 Fy, T |+
1210+ DB + A1) = T, A2 (B ® (A3 ® Fy), T | + JAs]l + I E:ll) = 7,

Az(A; ® Fy, T4 || + |A2]l + | E2]l + | A2))) = Z. From Proposition 8.2 and
Proposition 8.4 we obtain a proof net

(51 A, (B:0(A1043)®F))M A Bi €)
such that

A(Er ® (41 ® 43) @ F), IT | + 1Ad) + I EAl) =
5, A((A1 ® A2) @ Fy, ITH | + | AL] + IEL N + 1 Axll + A2ll) = 2.
Thus (s,t) € vr(AjsAz). We have established that vr(A;) © vr(A42) C
vr(A;«Az). By induction on n we obtain vr(A; ... A,) C vp(Age...«A,).

It remains to apply Proposition 8.6.
(3) Let (25, A(E®(§®F))H,A, B, ) be a proof net such that

AE®(B®F), T |+ Al +IEN) = ABRF, T |+ IA]+ I E] + I B)-

According to Proposition 8.3 the sequent — B is derivable in SPNCL'.
Now we verify that the elements xr and Tp(m)-maps (Vr,vr) satisfy

(i) (vii).

(i)

Evident from (ﬁ\I‘)L =T
(ii)

Similar.
(iii)

Obvious from the fact that if (By, k1, ®,) € Dr, (B2, k2, ®2) € Dr, and
k1 > ko, then there is IT € NFm* such that ®; = I1®,.
(iv)

We verify that vr(A) C vnr(A). Let (s, t) € vr(A). This means that there is
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a proof net (¢ A (gg(agr))m A B) €) such that A(E® (A®F), T+ Il +

Al + IEl) = 5 and A(A® F, [T+ | + Al + IE] + | All) = 7. Let I1 =
B; ...B,. Then one can easily construct another proof net (', A’, B',£’)
for the sequent

—T*+B, ...B; (B1®...8B,® L)YA(E® (AQF))

such that A'(E ® (A® F), [T || + T+ | + 0] + § L) + 1Al +1E|) =3
and A(A®F, [T | + T+ | + JT0§ + L1 + §A0 + IE] + JAl) = £ Thus
(s t) € vr[r(A)

(v)
Similar to (iii).

(vi)
Follows from the definition of Dr.

(vii)

Let L* - T'—C'. According to Lemma 6.3 and Theorem 7.12 there is a proof
net for the sequent TLC. By an easy modification we obtain a proof net
(Qa. (1®(C®1)),A B, &) such that A(1® (C®1), T || + J1]|) = xr and
AC®1,IT+ | + 1) + IC) = xa.

For the converse assume that (g, A(EQ(E®F))ID A, B, ) is a proof net
such that A(E® (C ® F), |IT* ||+ JAl + | El) = xr and A(C ® F, [T || +
Al + NEN + []|C'|||) = xa. Using Proposition 7.11 twice we can obtain a
proof net for ST C.

(viii)

Let ' = A; ... A,. It is easy to construct a proof net

(.

LAt B e(Be(de..eam)) b B E)

such that A(1® (B® (41 ® ... ® 4,)), T | + 1B+ | + I1I) = x84, . .
and A(B® (A1 ®...® A.), IT4 | + B | + 1] + I BY) = x4,..4,. W

Definition. For any two integers m and n, we write LST,, ,, for the fol-
lowing finite subset of Tp(m)*.

LSTmpn = {A1... A |1 <1< n, Ay € Tp(m), ..., A € Tp(m)}

Lemma 9.2 For any given number m € N there is a family of Tp(m)-maps
(Dr, Vi, vn) indezed by n € N, there is an element g, and there is a family
of elements hr indezed by I' € Tp(m)*, such that

(i) (¥n) g € Dn;
(i) (Vn) (VI € LSTm ) hr € Dy,
(iii) (Vn) (VT € LSTm ) (VC € Tp(m)) (hr,g) € vo(C) & L* -T—C;
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(iv) (Vn) (VI € LSTy n-1) (VB € Tp(m)) (hpr, hr) € va(B).

PROOF. Take arbitrary m,n € N. We construct the Tp(m)-map (D,, V,,
Un), using the Tp(m)-maps (Dr, Vr,vr) from the previous lemma.
We put D, = U Dr. Let V,, be any linear order containing

[ELSTm,n
the binary relation |J  Vr. The valuation v, is defined by v,(C) =
TELSTm,n
'Ur‘(C )
TELSTm,,

We put g = xa and hr = xr.

It remains to check that (D,, V,,v,) is a Tp(m)-map.

(1) Obvious.

(2) Let L* - A; ... Ax—B, A; € Tp(m), and B € Tp(m). Assume that
(80, $1) € Vn(A1),- -+, (8k—1, Sk) € vn(Ak). Then there is A € LST,, », such
that (so, 31> € ’UA(Al).

By induction on ¢ < k it can be proved that (s;,s;+1) € va(Aiy1) for
the same A. Thus (sg, sk) € va(B) C va(B).

(3) Obvious. W

We shall also need the dual of Lemma 9.2.

Lemma 9.3 For any given number m € N there is a family of Tp(m)-maps
(DL, V1, vl) indezed by n € N, there is an element ¢, and there is a family
of elements hy. indexed by T’ € Tp(m)*, such that

(i) (¥n) ¢’ € Dy;

(i) (Yn) (VT € LSTpm ) hh € D.,;
(iii) (¥n) (VT € LSTpm ) (VC € Tp(m)) (¢, by € v4,(C) & L* F T—=C;
(v) (¥n) (VT € LSTm,n_1) (VB € Tp(m)) (hfs, hing) € v (B).

10 Construction of witnesses

In this section we prove that the class K™ is witnessed.

We assume being given a number m € N, a Tp(m)-quasimodel (V*,v) €
K™, two types E and F such that E\F € Tp(m), and a word § € V* such
that 6 ¢ v(E\F). We fix m, V, v, E, F, and § until the end of this section.
Our aim is to find a Tp(m)-quasimodel (W*, w) € K™ and a word { € W*
such that ¢ € w(E), (06§ ¢ w(F), and (W*,w) is a conservative extension
of (V*,v).

First, we put n = |6|+1. For the given m and n we take the Tp(m)-map
(D7, V7., v;,) from Lemma 9.3. Let k = |DJ,|. The reflexive linear order V/,
is isomorphic to the natural order < of the set [0,k—1]={i€Z|0<i <
k—1}.
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Throughout this section we shall identify D, with [0, k—1] and the linear
order V/, with <.

Let z, 2, y1, Y2, - .- Yk be any k+2 distinct elements of U = {a; | j € N},
which do not occur in V. We denote Y = {z,2,y1,¥2,...,¥x} and put
WwW=Vu.

We shall work with subwords of

(z™oy10z™)o (g™ oy202™)o...0(xz™ oyk 0 2z™).

Here 2™ = zxo...0x.
N’

m times
To define the mapping w we need several auxiliary words and sets. For

any integers s and t such that 0 < s <t < k we define the word 7 (s, t) € Y*
as follows:

m(s,t) = (" oys4102™) 0 (™ 0ys4202™)0...0 (™ oy 0 2™).
By definition, (s, s) = ¢ for every s.
Note that if 0 < r < s <t < k, then 7(r, s) o (s, t) = m(r,t).
We shall denote by Subword(3) the set of all subwords of 3. Formally,
Subword(3) = {a € W* | B=m10a0v; for some 7,72 € W*}.
We define the finite set R as follows.

R = {peV*|poa=4§ for some a€ V*}

We define several functions associating subsets of W* with sequences of
types from Tp(m). For any © € Tp(m)* we put

uw(©) = {m(s,t)|0<s<t<k and (s,t) €, (O)};
up(®) = {m(s,k)op|0<s<k, peR, and 3IA € Tp(m)*,
|A[ < pl, p € T(D), (s,hpa) € VL(O)};
uw(@) = up(0)Uux(0)U (o).

We define some subsets of W*.

M; = {aeW*|ag¢V* and a ¢ Subword(n(0,k) 0 6)}
My = zoW*

Mz = Wrox

M MiUMyUMs

1

We define a function Substa: W* — P(W*) and two valuations
#: Tp(m) — P(W*) and w: Tp(m) — P(W*).
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Substpm(e) = {e}
Substpm(cog) = Substpy(a)o({gfUM) if a€ W* and ge W

Informally, for every word B € W*, the set Substq(3) consists of all
words that are obtained replacing some (may be none) of symbol occur-
rences in B by words from the set M.

9(A) = U Subst p(a)
a€v(A)
w(A) = u(A)Ud(A)

Finally, we put ¢ = (¢, k).
Lemma 10.1 { € u(E).

PRrOOF. From L* F E—E and Lemma 9.3 (iii) we obtain (¢’, h'’y) € v}, (E).
Thus 7(¢’, k) € uz(E). ®

Lemma 10.2 (o6 ¢ u(F).

PROOF. Assume, for the contrary, that m(¢’,k) 0 § € u(F). Evidently
m(g’,k) € Y* and § € V*. Thus 7(¢’,k) 0 § € ua(F). According to the
definition of ug there is A € Tp(m)* such that |A] < |6], § € F(A)
and (¢',h’gp) € v (F). From n = |§] + 1 we get |A| < n — 1, whence
EA € LST,, .. From Lemma 9.3 (iii) we obtain L* - EA—F. Applying
the rule (—\) we derive L* + A—E\F, whence 9(A) C v(E\F). Thus
6 € v(E\F). Contradiction. W

Lemma 10.3 If0 < r < s < k, A € Tp(m), and (r,s) € v}, (A), then
w(r, s) € u(A).

PROOF. Let (r,s) € v} (A). If r < s, then 7(r,s) € ug(A). If r = s, then
L*F A—A and thus e € v(A). B

Lemma 10.4 If A.B € Tp(m), then u(A«B) C u(A) o u(B).

PROOF. Let A+B € Tp(m) and v € u(A+B).
CASE 1: v € up(AsB)
By definition v = n(r,t), 0 < r < t < k, (r,t) € v/.(A+B) = v/,(A+B) for
some 1 and t.

Since (V',v!) is a Tp(m)-map, there is s € [0,k — 1] such that (r,s) €
v}, (A) and (s,t) € v, (B).

Now v = m(r,t) = =w(r,8) o m(s,t) € up(A) o up(B) according to
Lemma 10.3.
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CASE 2: v € uy(A+B)
By definition v = m(r,k) o p, p € R, A € Tp(m)*, |A] < |p|, p € T(A),
(r,hga) € v, (AsB), 0 <1 < k.

Again, there is s such that (r, s) € v, (A) and (s, h'’z,) € v},(B). Accord-
ing to Lemma 10.3, m(r, s) € ug(A). On the other hand (s, k) o p € ua(B),
whence v € up(A) o ug(B).

CASE 3: v € v(A+B)
Obvious from v(A+B) C v(A) o v(B). W

We define
T=Mo...oM

m times

and establish several properties of M and 7.
Lemma 10.5
(1) If B € W*, a € Subword(), and a € M1, then B € M,.
(i) Mz oW* C M,
(i) W* o M3 C M3
PROOF. (i) According to the definition of My, if 8 € W* and 8 ¢ My,

then 8 € V* or B € Subword(m(0, k) o §). But then one has also a € V* or
« € Subword(m(0, k) 0 §), whence a ¢ M;. R

Lemma 10.6

(i) Mo MCM

(i) T M
PRrOOF.

@)
Let « € M and 8 € M. We verify that ao f € M. If a € M; then
aoBeEM;. Ifae Mythenaof € My. If B € M; then aof € M. If
B € M3 then oo § € M3s.

The only complicated case is & € M3 and § € My, ie,, a =’ ox and
B = z o f3'. Note that then z o 2 € Subword(a 0 8) and z 0 z € M;. Thus
aofl e M.

(ii)
Follows from (i). W

We introduce some subsets of W*.

Py = {n(s,t)|0<s<t<k}
P = {n(s,k)|0<s<k}
Py = P1oR

P = PyUPe
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Note that € € R and thus P; C P;. Note that up(0) C Po, uz(0) C Ps,
and u(©) C PUV*.

Lemma 10.7 If A € Tp(m), then T C w(A).

PROOF. Since (V*,v) € K™, we can choose a word o € v(A) such that
|a| < m. Evidently Mo...oM C Substr(a) C 9(A) C w(A). In view of
N e

|} times

MoM C M and taking into account that |a| < m,wehave Mo...o M C
(At Rt ad

m times
Mo...oM ThusT=Mo...oMCw(4). R

|a| times m times

Lemma 10.8
(i) Pny*=0
(i) PN M =0
(iii) V*NM =10
PRrooF.
(@)
Evident.
(i)
Let a € P. Then the leftmost symbol of a is  and the rightmost sym-
bol of o belongs to V U {z}. Thus @ ¢ My and a ¢ Mj;. Note that
P C Subword(7(0, k) 0 §). Thus o ¢ M;.
(iit)
Obvious. W
Lemma 10.9
(1) v(A) € u(4)
(ii) u(A) Cv(A)UP
Lemma 10.10
(a) V*oMCM
(b) MoV*C M
(c) PoMCT
(d) MoPCT
(e) VtoPCT
(f) PooVtCT
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(8) Pro{BeW* |B¢R}CT

(h) If0<r<s<k,0<s¢ <t<k, ands+ s, thenm(r,s)on(s' t) € T.

PRrROOF.
(a)
Let @ € V* and B € M. We verify that a o8 € M. If 3 € M; then
aofl € My. If B € M3 then a o3 € Mj3. The only complicated case is
B = zo (3. Note that in that case a 0 2 € Subword(a:o 8) and a0 z € M;.
(b)
Let « € M and § € V*. We verify that ao 8 € M. If a € M; then
aofl € My. If a € M3 then ao 8 € Ms. The only complicated case is
a = a' oz. In this case £ o 3 € Subword(a o 3) and T o 3 € M;.

(c)
Let y = ao 3, where @ € P and § € M.
CASE1l: a € PyUP;
By definition v = w(s,t) o 3, where 0 < s < t < k.
Evidently y =g o...0zo¢, where ¢ =0y, 102mom(s+1,t) o 5. We
m—1 times
must verify that ¢ € M.
If 3 € M; then ¢ € M. If B € M3 then ¢ € M3. Let now 5 € My, i.e.
B = zo (3. Evidently 2™*! € Subword(ys+1 0 2™ o (s + 1,t) 0 20 #' and
Zm+1 € Ml.
CASE2: a€Pyand a ¢ Py
By definition v = n(s,k)opo B, p€ER, p #¢€.
Evidently vy =z o...0zod, where ¢ = xoysy10z™om(s+ 1,k)opof.
m—1 times
The only complicated case is 3 € My, i.e., 8 =20/ Note that poz €
Subword(¢) and po z € M;.

(d) and (e)

Let « € MUVt and B € P. We must prove that aof e Mo...o M.
m times
CASE 1: B=m(s,t) € Po
Evidently a0 8 = ¢ o zo...0z, where ¢ = (aom(s,t —1) oz™ oy 0 2).
m—1 times

Obviously z € M. It remains to verify that ¢ € M.
CASE la: aa € M,
Obvious from Lemma 10.5 (i).
CASE 1b: a € M»
Obvious from Lemma 10.5 (ii).
CASE 1lc: o € M3

Note that the rightmost symbol of  is = and the first m symbols of the
word 7(s,t — 1) oz™ o y; o z are ™. Thus z™+! € Subword(¢). In view of

™+l € M, we have ¢ € M.
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CAsE 1d: aeVt
Evidently a o z € Subword(#). On the other hand, a oz € V* o Y* and
Vt oYt C M,;. According to Lemma 10.5 (i), ¢ € M;.
CASE 2: B € Py
By definition 8 = w(s,k) o p, p € R.
Now aofl = ¢ozo...0zo(zop), where ¢ is the same as in the previous
S

m—2 times
case. We have already verified that z € M and ¢ € M. Evidently zo0p €
M.

()
Let a € Py and § € V*. By definition a = 7(s,t),0 < s <t < k.
Evidently aof=go...0zo¢, where ¢ = zoys4102mom(s+ 1,t) 0.

m—1 times

Note that y; o 2™ o 8 € Subword(¢). On the other hand, y; 0 2™ 0 § € M;,
since t # k. Thus ¢ € M;.

(2)
Let a € Py, B € W*, and B ¢ R. By definition o = 7 (s, k), where 0 < s <
k

Evidently aof=go...o0zo¢, where ¢ =z oys4102monm(s+1,k)of.

m—1 times

Note that z o 8 € Subword(¢). On the other hand, 2z 0o 8 € M, since 3 is
not a left subword of § (see the definition of R). Thus ¢ € M;.

(h)
Evidently 7(r,s) om(s’,t) = ¢ozo... 02, where

m~—1 times
¢ = (m(r,s)om(s',t—1)oz™ oy, 02).

We only need to prove that ¢ € M. Note that y; 0 2™ o 2™ oy €
Subword(¢). On the other hand y; 0 2™ 0 2™ o Y5141 € M, since s # §'.
According to Lemma 10.5 (i), ¢ € M;. &

To make the formulation of the following lemmas more readable we in-
troduce two subsets of W*.

Q = PUV'UM
Q0 = {e}UQU(QoQ)U(QoQoQ)U...

Lemma 10.11
(i) ToQCT
(i) Qo T CT
(iif) PoV*CPUT
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(iv) PoPCPUT
(v) (PUT)oQC(PUT)
(vi) Qo (PUT)C (PUT)

PRrOOF.

(i)

Evident from Lemma 10.10 (d), (b), and Lemma. 10.6.

(i)

Evident from Lemma 10.10 (c), (a), and Lemma 10.6.

(iii)

Let a € P and B € V*. We must prove that o8 € PUT. If 8 = ¢, then

aof=aecP.Let feVt.

CASE1l: a€ Py

According to Lemma 10.10 (f), a0 S € 7.

CASE 2: a=7(s,k)op€ Py

If poB€R, thenaof € Py, else aof €T in view of Lemma 10.10 (g).
(iv)

Let o € P and 3 € P. We must prove that ao € PUT.

CASE 1: a€ PyUP;

By definition a = w(r,s), where 0 < r < s < k.

CASE la: B € Py UP;

By definition 3 = w(s’,t), where 0 < s’ <t < k.

If s = &, then ao B = 7(r,s) on(s,t) = w(r,t) € P according to
the definition of the function 7. If s # ', then a o § € T according to
Lemma 10.10 (h).

CASE 1b: B € Py

Evidently ao 8 € aoP; o R. According to case la, aof € (PUT)oR C
(PUT) o V*. From (iii) and (i) we obtain (PUT)oV*C PUT.

CASE2: a € P, a ¢ P

By definition a = w(s,k)op, p € R, p # €.

Evidently, PooP=P;oRoP C Pio(V*oP).

From (ii) and Lemma 10.10 (e) we get Pyo(VtoP)CP; 0T CT.

v)

Immediate from (i), (iv), (iii), and Lemma 10.10 (c).

(vi)

Immediate from (ii), (iv), and Lemma 10.10 (e), (d). ®

Lemma 10.12

(i) QwoPoQsx CPUT

(i) QuoPoQuoMoQu CT
(i) Qoo 0 M0 Qo 0P 000 CT
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ProoFr.
(i)
From Lemma 10.11 (vi) we obtain
Qo (PUT)CPUT.
From Lemma 10.11 (v) we obtain

(PUT)o0Qu CPUT.

Thus (Qoo ©P) 0 Qoo C(PUT)0Q CPUT.

(i)
According to (i), Lemma 10.10 (c), and Lemma 10.6 (Qoc0P0Quc)oM C T.
It remains to apply Lemma 10.11 (i).

(iii)
According to (i), Lemma 10.10 (d), and Lemma 10.6 Mo(Q0P0Qs) C 7.
It remains to apply Lemma 10.11 (ii). W

Lemma 10.13 Let A € Tp(m)*, II € Tp(m)*, and ¢ € u(A). Then
vn(Al'I) = vn(l'I) and vn(HA) = 'v,,(II)

ProoF. Evidently € € 9(A).

Let A = A;...A;. Take arbitrary i < [. Evidently, ¢ € A; and thus
L* + A—A;. We obtain (s,s) € vp(A;) for every s € [0,k — 1]. Hence
(s,8) € Un(A) for every s€ [0,k —1]. W

Lemma 10.14 Let © € Tp(m)* and B € Tp(m). Then u(©) o u(B) C
u(@B)UT.

PROOF. Let v € u(©) o u(B). Then v = a o (3 for some a € u(©) =
up(0) Uuz(©) UT(O) and B € u(B) = ug(B) Uug(B) Uv(B). We consider
the corresponding nine cases and prove that a o 8 € ug(©B) U ua(©B) U
7(©B)UT.
CASE 1: «a € u(0)
By definition a = 7(r,s), 0 < r < s < k, {r,8) € v/, (©).
CASE la: 8 € uo(B)
By definition § = 7(s’,t), 0 < 8’ <t <k, (¢,t) € v}, (B).

If s # s, then ao 8 € T in view of Lemma 10.10 (h).
Hs= s, then ao B = 7(r,s) om(s,t) = m(r,t) € uo(OB), since (r,t) €
v (©) ® v/, (B) = v, (©B).
CASE 1b: (3 € uy(B)
By definition 8 = m(s’,k) o p, p € R, A € Tp(m)*, |A| < |p|, p € T(A),
(s, hgp) €V, (B),0< s <k.

Ifs# s, thenaof=n(r,s)om(s',kyope€TopC ToV*CT in view
of Lemma 10.10 (h) and (i).

If s = s', then aof = m(r, k)op € ua(©B), since (r, h'z,) € V7, (©)OV.,(B)
=/ (©B).
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CASE lc: B € v(B)
If B#¢,thenaof € PooV* C T in view of Lemma 10.10 (f).

If 3=¢, then aof =a € up(0) C up(OB) in view of Lemma 10.13.
CASE 2: o € uy(0)
a=mn(rk)op, p€ R, A€ Tp(m)*, |A| < |pl, p € H(A), {r, Kpa) € 74(O),
0<r<k
Note that a € P; o V*.

CASE 2ab: 3 € uo(B) Uug(B) C P

In view of Lemma 10.10 (g) we have a0 S € Py o (V*oP) C T.

CASE 2c: 3 € v(B)

IfpoB¢R,then aof =m(rk)o(poB) €T in view of Lemma 10.10 (g).

Now we prove that if po 3 € R then o3 € u2(©B). We take A’ = AB
and p’ = po (3. Evidently po 3 € 9(A) o v(B) = #(AB).

If 8 #¢,then |A'] = |A|+1 < |p|+1 < |p| +|B] = |¢|. Further,
|[EA| = |A]+1 < |p/| < |delta] = n — 1. By Lemma 9.3 (iv) we have
(Wear Koas) € vi(B). ]

Thus (r, Kpa ) € UL(6) © v4(B) = 4,(OB).

If 3 =¢, then a0 f = a € uz(0) C uz(OB) in view of Lemma 10.13.

CASE 3: a € 4(0)

CASE 3ab: 3 € uo(B)Uug(B) C P

If @ # ¢, then in view of Lemma 10.10 (e) we have co f € V* o P C T.
If a=¢,then ao =0 € u(B) C u(OB) in view of Lemma 10.13.

CASE 3c: 3 € v(B)

Evidently a0 3 € 4(©) ov(B) = 4(6B). B

Lemma 10.15 Letl >0, B; € Tp(m), ..., By € Tp(m). Then
u(B1)o...ou(B)) Cu(By...B)UT.

PROOF. Induction on I.

Induction base. For [ = 0 we have to prove that {e} C u(A) U7 . Indeed,
e € U(A) C u(A).

Induction step. We must prove that if w(Bi)o...ou(B;) C u(B1... B))U
T then u(Bj) o...ou(B)) o u(Biy1) € w(B1...BiBi41) UT. In view
of the induction hypothesis, it is sufficient to verify that (u(Bjp...B;) U
T) o ’U,(B[.H) - U(Bl . BlBl+1) uT.

From Lemma 10.14 we obtain u(B ... B;)ou(Bj4+1) € w(B; ... BiBi41)U
T. According to Lemma 10.11 (i), T ou(Bi41) € 7. B

Lemma 10.16 If By,...,B;,C € Tp(m) and L* + B; ... Bi—C, then
u(By)o...ou(B) Cu(C)UT.

PROOF. Let Bi,...,B;,C € Tp(m) and L* + B;...B—C. Accgrding
to Lemma 10.15, u(B1) o ...ou(B;) € w(B1...B)) UT. It remains to
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prove that u(Bj ... B;) C u(C). This follows from #(B; ... B;) C v(C) and
vi(Bi...B;) C v,(C) (cf. the definition of u at page 197). W

Lemma 10.17 Let A € Tp(m). Then
(i) v(4) € 3(A);
(il) 9(A) Cv(A)UM.

PROOF. (i) Let a € v(A). Evidently a € Subst(a) C 9(A).

(ii) By induction on |a| we prove that Substy(a) C {a} UM for
any o € V*. For the induction step it is sufficient to verify that ({a} U
M) o ({g} UM) C {aoq} UM whenever a € V* and g € V. This follows
from Lemma 10.10 (a), (b) and Lemma 10.6 (i). W

Lemma 10.18 If A € Tp(m), then w(A) N V* = v(A).

PROOF. Let A € Tp(m). According to Lemma 10.9 (ii) and Lemma 10.8 (i)
u(A) NV* = v(A).

According to Lemma 10.17 (ii) and Lemma 10.8 (iii) 9(A4) N V* = v(A).
|

Lemma 10.19 (W* w) is a Tp(m)-quasimodel.

PRrROOF. We verify the conditions (1), (2) and (3) from the definition of a
Tp(m)-quasimodel at page 174.

(1)
Let A+B € Tp(m) and v € w(A+B). We must prove that v € w(A) ow(B).
CASE 1: v € u(A.B)
Obvious from Lemma 10.4.
CASE 2: v € #(A«B)
By definition, y € Substaq(y’) for some v’ € v(A+B) C v(A) o v(B). Thus
v = o o, where o € v(A) and §' € v(B). Evidently, Substpy(7') =
Subst aq(a') o Subst aq(8') C 5(A) o B(B).

(2)
Let Ay,...,A;,B€ Tp(m),L* Ay ... A;—B, 03 € w(4y),...04 € w(A).
We must prove that a; o...0 ¢ € w(B).
Case 1: (Vi <)oy € u(4y)
According to Lemma 10.16, ajo...0a; € u(B)UT.
In view of Lemma 10.7, aj 0...0a; € w(B).
Casg 2: (Vj <1)a; € 9(A;)
This means that for every index j < [ there is a word 3; € v(A;) such that
a; € Substpq(G;). Evidently, ajo...o0a; € Substp(B10...00;). Note that
Biro...00; € v(A1)o...ov(A;) C v(B), since (V*,v) is a Tp(m)-quasimodel.
Thus a3 0...0q € 9(B).
CAse 3: (Fi <1)a; ¢ w(A;) and (35 <)oy ¢ 9(A;)
Evidently a; € 9(A;). From Lemma 10.17 (ii) we obtain a; € v(4;) U M.
In view of v(A;) C u(A;) we have o; ¢ v(4;). Thus a; € M.
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Evidently a; € u(A;) € v(A;) UP. On the other hand, from Lemma
10.17 (i) we obtain a; ¢ v(A;). Thus a; € P.

Note that ap € Q for every h < I. According to Lemma 10.12 (i) and (ii),
ajo...oa; € 7. It remains to apply Lemma 10.7.

®3)

Immediate from Lemma 10.18. W
Lemma 10.20
(i) (W*,w) e K™
(if) (W*,w) is a conservative extension of (V*,v);
(iii) ¢ € w(E);
(iv) ¢oé ¢ w(F).

PROOF. (i) Obvious.

(ii) Immediate from Lemma 10.18.

(iii) Obvious from Lemma 10.1.

(iv) Follows from Lemma 10.2, Lemma 10.17 (ii), and Lemma 10.8 (i), (ii).
n

Lemma 10.21 The class K™ is witnessed.

PROOF. Immediate from Lemma 10.20 and its dual for F/E. R

11 Main result

Theorem 11.1 Let T’ € Tp* and A € Tp. Then L* + T'—A if and only
if the sequent I— A is true in every free monoid model over a countable
alphabet.

PROOF. The ‘only if’ part coincides with Theorem 2.1. The ‘if’ part is
immediate from Lemma 10.21, Lemma 5.2, Lemma 2.2, and Lemma 2.3. W

Theorem 11.2 Let I" € Tp* and A € Tp. Then L* - I'—A if and only
if the sequent I'—> A is true in every free monoid model over a two symbol
alphabet.

ProoF. Following the proof of Theorem 11.1 we reduce the proof to the
case of a sequent A—F and we find a free monoid model (V*,v), where
V C {a; | j € N} such that ¢ ¢ v(F) and v(A) # 0 for every A € Tp(m).
Here m = || F||.

We take W = {b, c} and define a function g: V* — W* as follows.

gaj) =bogco...ocob g(aof) = g(a)og(f)

j times
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Note that g is injective.

Now we put w(p;) = {g(7) | ¥ € v(p;)} for every primitive type p; and
define w(A) for complex types by induction according to the definition of
a free monoid model (cf. p. 173).

By induction on the complexity of A it is easy to prove that w(A) =
{9(7) | ¥ € v(A)} for every A € Tp(m). In the proof of {y € W* |
w(A) oy C w(B)} C w(A\B) we use Lemma 5.2 (ii) and the fact that if
o €V*, B €V*, v W* and g(a’) oy = g(B') then there is 4/ € V* such
that v = g(v').

Similarly for the dual case {y € W* | vy o w(4) C w(B)} = w(B/A).
Other cases of the induction step are trivial. B
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