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ABSTRACT We prove that the Lambek syntactic calculus allowing empty
premises is complete with respect to the class of all free monoid models (i. e.,
the class of all string models, allowing the empty string).

Introduction

Lambek syntactic calculus (introduced in [7]) is one of the logical calculi
used in the paradigm of categorial grammar for deriving reduction laws
of syntactic types in natural and formal languages. The intended models
for these calculi are free semigroup models (also called language models
or string models), where each syntactic category is interpreted as a set
of non-empty strings over some alphabet of symbols. Models for Lambek
calculus were studied in [2], [3], [4], [5], [6], etc. Completeness of the Lambek
calculus with respect to string models was proved in [9], [10], and [11].
Closely related is the result about completeness with respect to relational
semantics [8].

There is a natural modification of the original Lambek calculus, which we
call the Lambek calculus allowing empty premises (cf. [2, p. 44]). This cal-
culus appears to be a fragment of the noncommutative linear logic. The
natural class of string models for the Lambek calculus allowing empty
premises is the class of all free monoid models, where also empty string
is allowed.

In this paper we prove that the Lambek calculus allowing empty premises
is complete with respect to these models.

1 Received September 1996; revised version February 1997.
2The research described in this publication was made possible in part by the Russian

Foundation for Basic Research (project 96-01-01395).
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1 Lambek calculus allowing empty premises

We consider the Lambek calculus allowing empty premises (cf. [2, p. 44])
and denote it by L* . This calculus is a modification of the syntactic calculus
introduced in [7].

The types of L* are built of primitive types Pι,p2> •> and three binary
connectives , \, /. We shall denote the set of all types by Tp. The set
of finite sequences of types (resp. finite non-empty sequences of types)
is denoted by Tp* (resp. Tp+). The symbol Λ will stand for the empty
sequence of types.

Sometimes we shall write A\ . . . An instead of (. . . (A\ A^) . . .) An.
Capital letters A, B, ... range over types. Capital Greek letters range

over finite (possibly empty) sequences of types.
Sequents of L* are of the form Γ— >A Note that Γ can be the empty

sequence.
Axioms: A— >A
Rules:

AΠ->B , v v Φ->A
ΓΦ(A\B)Δ-+C

ΠA->B ,
v "U^B/A v " Γ(B/A)ΦΔ-*

-^A Δ-^B . TABΔ-+C

ΓΦΔ->A
(CUT)

It is known that the cut-elimination theorem holds for this calculus (cf. [2]).
We write L* h Γ—>A if the sequent Γ-+A is derivable in L*.

There is an obvious duality phenomenon inherent in L*.

Definition. The function dual: Tp —* Tp is defined as follows.

dual(pi) ^ pi

dusl(A.B) ^ dual(5) dual(A)

dual(A\.B) ^ dual(jB)/dual(A)

dual(A/B) ^ dual(£)\dual(A)

The extension to sequences of types dual: Tp* —> Tp* is defined as

dual(Aι... An) ^ dual(An)... dual(Λι).

Lemma 1.1 //L* h Γ->A, then L* h dual(Γ)-^dual(A).

PROOF. Straightforward induction on the derivation of Γ—>A.



Free monoid completeness of the Lambek calculus allowing empty premises 173

2 Free monoid models

We use the following notation. Let V be any alphabet, i.e., any set, the
elements of which are called symbols. We denote by V+ the set of all non-
empty words over the alphabet V. By V* we denote the set of all words over
the alphabet V, including the empty word ε. Let o denote concatenation.
Evidently V* is a free monoid w.r.t. o. The unit of the free monoid is ε.
Throughout the paper calligraphic letters W, V, W will denote alphabets.

If α is a word, then |α| (the length of α) is the number of symbols in α.
We shall use the following shorthand notation. For any sets K C V* and

T C V* we write

Tl o T τ± {7 e V* I there are α G U and β G T such that α o β = 7};

Since this operation on sets is associative, we omit parentheses in expres-
sions like KI o 7^2 o . . . o 7£m. In the case of m = 0 we assume that this
expression stands for the set {ε}. By Tίm we denote the set 7£ o . . . o 7£.

m times
We shall denote the set of all subsets of a set S by P(5).

Definition. A free monoid model (W*,w) consists of the free monoid
(W*,o, ε) and a valuation w:Ύp — > P(W*) associating with each type
of L* a subset of W* and satisfying for any types A and B the following
conditions.

(1) w(A B) = w(A)o

(2) w(A\B) = {7 € W* I w(A) o 7 C w(B)}

(3) w(B/A) = {7 € W* I 7 o tι (A) C

For any function w: Tp — > P(>V*) and for any types AI, . . . , An, we write
I?(.AI . . . An) as a shorthand for w(Aι)o. . .ow(An). Note that w(A) = {ε}.

Definition. A sequent Γ->B is true in a model (W*,w) iff tϊJ(Γ) C w(.B).
A sequent is /αfee in a model iff it is not true in the model.

The following well-known soundness theorem holds.

Theorem 2.1 If a sequent is derivable in the calculus L* , then the sequent
is true in every free monoid model.

The rest of the paper is devoted to the proof of the corresponding co
pleteness theorem. In view of the following two lemmas it is sufficient
consider only sequents with empty antecedent.

com-
to
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Lemma 2.2 For any types A\, ..., An, B, the sequent A\... An-+B is
derivable in L* if and only if the sequent Λ—>(Aι ... An)\B is derivable
inL*.

Lemma 2.3 For any free monoid model (W, w) and for any types A\, ...,
An, B, the sequent A\... An-*B is true in (W*, w) if and only if the se-
quent Λ—>(Aι ... An)\B is true in (W*,w).

3 Quasimodels

In this section we introduce the notion of Tp(ra)-quasimodels and describe
an algorithm of constructing a free monoid model as the limit of an infinite
sequence of Tp(ra)-quasimodels, which are conservative extensions of each
other.

Definition. The length of a type is defined as the total number of primitive
type occurrences in the type.

INI - 1 \\A B\\ ̂  \\A\\ + \\B\\

iμVB||^μ|| + l|β|| \\AIB\\ ^ \\A\\ + \\B\\
Similarly, for sequences of types we put \\Aι . . . An\\ τ=± \\Ai\\ -f . . . + \\An\\

Definition. The set of primitive types occurring in a type is defined as
follows.

Var(pi) ̂  {pi} Vaτ(A.B) ^ Var(A) U Var(B)

Var( A\B) ^ Var( A) U Var(£) Vaτ(A/B) ^ Var(A) U Var(£)

Definition. For any integer m, we write Tp(m) for the finite set of types

Tp(m)^{AeTp |Var(A)C{ P l ,p 2 , . , . ,p m } and ||A|| < m}.

By Tp(ra)* we denote the set of all finite sequences of types from Tp(ra).

Definition. A Tp(m)-quasimodel (W*,w) is a valuation w:Ύp — > P(W*)
over a free monoid (W*, o, ε) such that

(1) for any A € Tp and B 6 Tp, if A B € Tp(ra), then w(A B) C
w(A)ow(B)'j

(2) for any Γ € Tp(m)* and A G Tp(m), if L* h Γ-^A, then τί (Γ) C

(3) for any A e Tp(m), if ε G w(A), then L* h A->Λ.

Lemma 3.1 Let(W*,w) be aTp(m)-quasimodel. Then the following state-
ments hold.
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(i) // A.B G Tp(m), then w(A B) = w(A)ow(B).

(ii) // A\B G Tp(ra), then w(A\B) C {7 G W* | w(A) o 7 C w(B)}.

(iii) IfB/A G Tp(ra), tfien w(B/A) C {7 G W * | 7 o w(A) C w(B)}.

PROOF. It is sufficient to note that L* h AB->A B, L* h A(A\B)-^B,
L* h B(B/A)-+B, and use (2) from the definition of a Tp(τn)-quasimodel.

•
Definition. A sequent Γ->A is true in a Tp(m)-quasimodel (W*,ιt;) iff
ύ (Γ) C ^(A).

Definition. A Tp(ra)-quasimodel (W*,w) is a conservative extension of
another Tp(?n)-quasimodel (V*,υ) iff

(1) V C W;

(2) w(A) Π V* = v(A) for any type A.

Evidently, if (W*,w) is a conservative extension of (V*, υ), then for any
type A we have v(A) C it; (A).

Lemma 3.2 // (W^,^) *5 a conservative extension of (W^wi) and
(W^wz) is a conservative extension of (W^,^), then (W^vjz) is a con-
servative extension of {Wj , w\ ) .

PROOF . In view of Wf C W2* we have w3 (A) Π Wf = w3 (A) Π ( W$ Π WJ ) =
(^3(A)n>V2*)n>Vί. Further, (^3(^)Π W2*)

We shall denote by Z the set of all integers and by N the set of all natural
numbers, including zero.

Definition. We say that a sequence of Tp(m)-quasimodels (W*, Wi) (i £
N) is conservative iff, for every i G N, (W^j, Wi+i) is a conservative ex-
tension of (W*,Wi). (Here ra is constant.)

Definition. The limit of a conservative sequence (W*, Wi) (i G N) is the
Tp(m)-quasimodel (VV^jWoo) defined as follows.

(1) Woo ̂  U Wi
ι€N

(2) Woo(A) ^ U tι;<(A)
ίeN

Lemma 3.3 TΛe definition of the limit is correct, i.e., (W^, Woo) is really
a Tp(m)-quasimodel.

PROOF.
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(1) Let A B G Tp(m) and 7 G w00(A B). Then for some n we have
7 G wn(A B) ίΞ wn(A) ° Wn(B). Thus 7 = α o /?, where α € wn(A) and
/? G wn(B). Evidently α G Woo(A) and β G tyoo(B), whence 7 = a o β G
tϋoo(A) 0^00(5).

(2) Let L* h AI . . . Az->£, where AI G Tp(m), . . . , A/ G Tp(ra), and
B G Tp(m). Assume that 7 G w<χ>(Aι.. . A/), i.e., 7 = αi o . . . o α/, where
<*ι £ Woo(Aι), . . . , α/ G Woo(Az). Then QI G ti^Ai), . . . , α/ G ̂ (Aj) for
some i i , . . . , i / G N. Put n ̂  max(zι,... ,i/).

According to Lemma 3.2, QI G wn(Ai), . . ., on G -u;n(A/), whence 7 =
αi o . . . o αt G ίίΓn(Aι... A t) C wn(B) C w^B).

(3) Obvious.

Lemma 3.4 The limit of a conservative sequence is a conservative exten-
sion of any of the elements of the sequence.

PROOF. We verify that w^A) Π W* = Wi(A). For any k < i we have
wk(A) C Wi(A). Thus ^oo(A) = \Jwj(A) = U tϋj(A), whence Woo(A) Π

3 3>i
W* = (U ti^A)) Π W* = U (^-(A) Π W;). Note that ti ̂ A) Π W* =

j>i J>i
iϋ»(A) for any j > i (according to Lemma 3.2). Now \J (wj(A) Π W*) =

3>i
^ A = ^ A .

4 A simple quasimodel

Definition. We define the non-negative count # as the following mapping
from types to non-negative integers.

#(A B) ^

), if L* h

The non-negative count of a sequence of types is defined in the natural way.

By definition, #(Λ) ̂  0.

Lemma 4.1 For any type A its non-negative satisfies the inequalities 0 <



Free monoid completeness of the Lambek calculus allowing empty premises 177

PROOF. Induction on ||A||.

Lemma 4.2 // #A = 0, then L* h Λ-+ A

PROOF. Induction on ||A||. Induction steps for B\C and B/C are easy. In
the case of B C we assume that #(B C] = 0 and obtain #B = 0, #C = 0,
and

A->£ Λ->C / x

Lemma 4.3 If L* h Γ->A then #Γ >

PROOF. Induction on the length of the derivation.
CASE 1: Axiom.
Obvious.

CASE 2: (->\) Given

By the induction hypothesis_#A -h #Π >_#£, whence #U > #B - #A.
Obviously, if #Π > 1, then #Π > max(l, #B - #A) > #(A\B). Let now
#Π = 0 and Π = CΊ . . . Cn. Then #(?< = 0 for each i < n. According to
Lemma 4.2 L* h Λ-+Cf for each z < n. Applying (CUT] n times we derive
L* h Λ-*A\β, whence #(A\B) = max(0, #B - #A). From #B - #A <
#Π = 0 we obtain #(A\B) = 0.
CASE 3: (-»/)

A , nCASE 4: (\-0 Given

By the induction hypothesis fΦ > #A and #T + #B + #Δ> #C.
Note that #(A\B) _> #B - #A.
Hence #Γ + #Φ + #(A\B) 4- #Δ > #T + #A + (#B - #A) + #Δ > #C.
CASE 5: (/->)
Similar.

CASE 6: (->•) Given "rΔ-*A B ^~"^ '

If #Γ > #A and #Δ > #£, then #Γ + #Δ > #A + #B = φ(A.B).
, x ^ - / x

CASE 7: (.-.) Given T(A.B^_C (-^> -

Evidently #(Γ(A £)Δ) = #(ΓABΔ).

Remark. For any type A, we have #A = 0 if and only if L* h Λ-> A

Now we define a Tp(m)-quasimodel

Wo ̂  {α0} w0(A)

Here αg denotes α0 o . . . o αq. In particular, αg = ε.

k times
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Lemma 4.4 (WQ,WQ) is a Ύp(m)-quasimodel for any natural number m.

PROOF. (1) We prove that wQ(A B) C wQ(A) o wQ(B).
Let α§ G wo(A B). We put kι ^ #A and k^ ^ k — k\. In view of

k > #(A £) = #A + #B we have k2 > φB. Evidently α§ = αg1 o α£2,
afr G wo (A) and α£2 G

(2) We verify that if L* h CΊ . . . Cn->A, then tι o(CΊ) o . . . o tί;0(Cn) C

Let α^ G WQ(C{) for every i < n. Then 53 fcf > ̂  #-d > #A according
to Lemma 4.3. Thus α^1 o . . . o a^n G

(3) In view of Lemma 4.2, if ε G w^(A)^ then L* h

5 Witnesses

Definition. We fix a countable alphabet U = {CLJ \ j G N}. By /Cm we
denote the class of all Tp(m)-quasimodels (V*, v), such that V C U, V is
finite, and for every A G Tp(ra) there is α G f (A) satisfying |α| < m.

Lemma 5.1 The Tp(m)-quasimodel (WQ, WQ) AΌTΠ Lemma 4-4 belongs to
the class )Cm.

PROOF. Immediate from Lemma 4.1.

Definition. Let (W, w) be a Tp(m)-quasimodel. Let A, B G Tp, a G W,
7 G W*, and 7 ^ t/;(A\B). We say that α is a witness 0/7 φ w(A\B) iff
α G w(A) and α o 7 ^

Definition. Let (W*, w;} be a Tp(m)-quasimodel. Let A, B G Tp, α G W*,
7 G W*, and 7 ^ w(B/A). We say that α is a witness 0/7 ^ w(B/A) iff
α G ty(A), and 7 o α ^ w(B).

Definition. Let /C be a class of Tp(m)-quasimodels. We say that the
class /C is witnessed iff

(1) for any (V*,v) G /C, for any type of the form A\B from Tp(ra),
and for any 7 G V*, if 7 ^ υ(A\B) then there is a conservative
extension {W*,w} of (V*,v) in /C and {W*,iϋ} contains a witness

(2) for any (V*,t;) G /C, for any type of the form B/A from Tp(ra),
and for any 7 G V*, if 7 ^ v(B/A) then there is a conservative
extension (W*,w) of (V*,t>) in /C and (W*,iϋ) contains a witness
of 7 £

Lemma 5.2 If the class /Cm ΐs witnessed, then there is a free monoid model
V*,v such that
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(i) for every type E G Tp(ra), if L* \f A-*E, then the sequent A-+E is
false in {V*,v);

(ii) v(E) ^ 0 for every type E G Tp(ra);

(iii) V C U.

At the end of this paper it will be proved that the class /Cm is witnessed.
Thus Lemma 5.2 (i) provides a proof of completeness of L* with respect to
free monoid models.
PROOF. Evidently there is a function σ: N — > Tp(m) x U* such that for any
C G Tp(ττi) and for any 7 G U* there are infinitely many natural numbers z,
for which σ(i) = (C,7).

Starting with the Tp(m)-quasimodel (WQ,WQ) from Lemma 4.4, we de-
fine by induction on i a conservative sequence (W*,Wi) (i G N), consisting
of Tp(m)-quasimodels from the class /Cm.

Assume that (W*,Wi) G /Cm has been constructed. We define {W*,tϋt)
as follows.
CASE 1:
Ifσ(i) = (A\JB,7), 7 G W*, 7 ^ Wi(-A\J3), and there are no witnesses of 7 ^
Wi(A\B) in {W*,Wι), then we take (W*+ 1,Wt+ι) to be any conservative
extension of (W*, Wi) in /Cm, containing a witness of 7 ^ Wi+ι(A\B). Such
a Tp(m)-quasimodel (W*+1,^+ι) exists, since /Cm is witnessed.
CASE 2:
If σ(ϊ) = (B/A, 7), 7 G W*, 7 ^ Wi(B/A), and there are no witnesses of 7 ^
Wi(B/A) in (W*,^), then we take (W*+ι,Wt+ι) to be any conservative
extension of {W*,tt;<} in /Cm, containing a witness of 7 $ Wi+ι(B/A).
CASE 3:
Otherwise we put {W*+

Let (W^Woo) be the limit of the conservative sequence (W*,^). We

put V ^ Woo.
Now we define a valuation υ:Tp — > P(W^) by induction on the com-

plexity of a type.

v(A.B) ^ v(A)oυ(B)

v(A\B) ^ {7 G V* I υ(A) o 7 C v(

^ {7 G V* I 7 o V(Λ) C v(JB)}

Evidently (V*,v) is a free monoid model. Next we verify by induction on
the complexity of C that Woo(C) = v(C) for every C G Tp(ra).

Induction step.
CASE 1: C = A £
Obvious from Lemma 3.1 (i).
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CASE 2: C = A\B
First we prove that if 7 € Woo(A\£?) then 7 € v (A\£). Let 7 € iί;
Take any α G υ(^). By the induction hypothesis α G Woo(A). Evidently
α o 7 G uΓ00(A(A\B)). Hence α o 7 G w^B) in view of L* h A(A\JB)->5.
By the induction hypothesis α o 7 G v(B). Thus 7 G v(A\J5).

Now we prove that if 7 G U* and 7 $ iϋoo(A\S) then 7 ^ υ(A\B). If
7 fέ W£o, then this is obvious. Let now 7 G W^. Recall that Woo = U W? .

Thus 7 G Wj1 for some j. Evidently, there exists an integer i > j such that
σ(i) = (A\B,7). According to the construction of {Wt*+1,Wt+ι) there is a
witness α G W*+1 of 7 φ w^A^B). That is, α G iϋi+ι(A) and α o 7 ^
ιt;i+ι(-B). Since WQO is conservative over Wi+i, we have α G ^oo(^) and
α o 7 ^ 1^00(5). By the induction hypothesis, α G v(A) and α o 7 ^ υ(-B).
Thus 7 ^ v(Λ\B).
CASE 3: C = B/A
Similar to the previous case.

Finally, we prove that the free monoid model (V*,υ) has the desired
properties (i)-(iii).

(i) Let E G Tp(ra) and L* I/ Λ->£. We must prove that ε (£ v(E).
According to the definition of a Tp(m)-quasimodel ε £ WQ(E). In view of
Lemma 3.4 ε £ w^E) = υ(E).

(ii) If E G Tp(ra), then af G Ti;0(JE?) C ti7oo(ί?) = v(E).
(in) Obvious.

6 Noncommutative linear logic

In this paper we consider only the multiplicative fragment of linear logic.
Noncommutative multiplicative linear formulas are defined as follows.

We assume that an enumerable set of variables Var = {pι,p2» •} is given.
We introduce the set of formal symbols called atoms

At ^± {p±n I p G Var, n G Z}.

Intuitively, if n > 0, then p±n means 'p with n right negations' and p^-™)
means *p with n left negations'.

Definition. The set of normal formulas (or just formulas for shortness) is
defined to be the smallest set NFm satisfying the following conditions:

1. At C NFm;

2. J. € NFm;

3. 1 G NFm;

4. if A G NFm and B G NFm, then (A®B) G NFm and (ApB] G NFm.
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Here ® is the multiplicative conjunction, called 'tensor', and p is the
multiplicative disjunction, called 'par'. The constants _L and 1 are multi-
plicative falsity and multiplicative truth respectively.

By NFm* we denote the set of all finite sequences of normal formulas.
The empty sequence is denoted by Λ.

Definition. We define by induction the right negation ( )J-: NFm -» NFm
and the left negation -L( ): NFm —* NFm.

pX(n+l)

^ ι
τ=± JL

^ _L

The two negations are extended to sequences of normal formulas as follows.

^ ±An...
±Al

Remark. Several other connectives can be defined in this logic.
The most popular ones are two linear implications, defined as

A-oB τ± A-*- pB and Bo- A τ=± B p ^A.

Lemma 6.1 For any A G NFm the equalities ^(A1- ) = A and
A hold true.

PROOF. Easy induction on the structure of A.

In [1] V. M. Abrusci introduced a sequent calculus PNCL for the pure
noncommutative classical linear prepositional logic. In the same paper two
one-sided sequent calculi SPNCL and SPNCL/ were introduced and it was
proved that they are equivalent to PNCL.

We shall use a slightly modified (but equivalent) version of the mul-
tiplicative fragment of SPNCL'. The sequents of this calculus are of the
form ->Γ, where Γ € NFm*.
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The calculus SPNCL' has the following axioms and rules.

>ΓΔ
+Γ.LΔ v '

->ΓA

Here capital letters A, 5, ... stand for formulas, capital Greek letters
denote finite (possibly empty) sequences of formulas, p ranges over Var,
and n ranges over Z.

Remark. The rule (id) can be written as — ̂ (C^ ) C (or equivalently as

— >C ( ̂ C)), where C G At. Actually, the restriction C G At is not essential.
It is imposed in this paper only in order to reduce the number of technical
details in some proofs.

We define an embedding of L* into SPNCL'.

Definition. The function ( ):Tp — > NFm is defined as follows.

^ P

A B τ=±

A\B ^ A1-

'A/B τ± A

If Γ = AI . . . An, then by Γ we denote the sequence A\ . . . An.

Lemma 6.2 For every normal formula A € NFm there is at most one type
B e Tp such that B = A.

PROOF. We define a function t|: NFm — > Z by induction as follows.

hr-n-L«^ _. J°» if ̂  is even
^P } *~ \1, if n is odd

\\l ^ 0

μ. ^ i

\\(ApB) ^ \\A + \\B-1
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It is easy to see that \\(AL) = \\( LA) = I - \\A. Now we can verify that
if A € Tp, then \\A = 0. Thus there are no types ΛI, A2 G Tp such that

A\ = A.2 (because A\ =1 and A^ = 0).

Given a formula D = C (where C G Tp), we can automatically decide
what is the main connective in C. If D € Var, then C is primitive. If the
main connective of D is <g), then the main connective of C is . Finally,
if D = DI <p £>2, then the main connective of C is \ or /, depending on
whether \Ό\ = I or \\Dλ = 0.

Lemma 6.3 Let Γ € Tp* and A^e Tp. TTie sequent Γ-+A is derivable
in L* if and only if the sequent —^Γ-1 A is derivable in SPNCL'.

PROOF. Both directions are proved using induction on derivation length.

7 Proof nets

We define proof nets for the multiplicative fragment of the noncommutative
classical linear propositional logic. The concept of proof net introduced here
(an extension of that from [1]) appears to be mathematical folklore.

We prove that a sequent is derivable if and only if there exists a proof
net for this sequent.

Definition. For the purposes of this paper it is convenient to measure the
length of a normal formula using the function | |:NFm — > N defined in
the following way.

llb̂ ΊII ^ 2
Ill-Mil - 2
111 - 2

\ApBi ^

Remark. We are going to define formally a total order on the set of all 1,
_L, (g), p and atom occurrences in a formula (in fact this order coincides with
the natural order from left to right). To make the forthcoming definition
easier, we have used 2 instead of 1 in the base case in the definition of | |.

The definition of | | is extended to finite sequences of formulas in the
natural way.

.̂..̂ 1^1 !̂ + ... + |̂|
We put |Λ| ̂  0.

The number of formulas in a finite sequence Γ is denoted by |Γ|. Thus

\Aι . . . An| =π.
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To formalize the notion of occurrences of subformulas we introduce the
set

Occ ̂  NFm x Z.

A pair (B,k) G Occ will be intuitively interpreted as a subformula oc-
currence B. Here fc in a way characterizes the position of B in the whole
formula.

Definition. We define the function c:NFm —> N (evaluating the "dis-
tance" of the "main connective" of a formula from its left end) formally as
follows.

c(±) ^ 1

c(l) ^ 1

c(A <8> B) ^

Definition. We define the binary relation *α is a subformula of /?' on
the set Occ formally as the least transitive binary relation -< satisfying
(A,k-\Al + c(A)} -« {(AλB),fc> and (B,k + c(B)) -X ((AλB),k) for every
λ G {&>, p}, A G NFm, 5 G NFm, and k G Z.

Definition. The binary relation ^ on the set Occ is defined in the natural
way: α ^ β if and only if α -< /? or a — β.

Given a standalone formula A G NFm, we usually associate it with the
pair (A,c(A)) G Occ. Then each subformula occurrence B is associated
with a pair (B, k) G Occ such that (J5, k) ^ (A, c(A)) and fc is (intuitively)
the "| | -distance" of the "main connective" of B from the left end of A.

Lemma 7.1 Let A G NFm. Then

(i) the set {a G Occ | a •< (A,c(A))} contains |A| - 1 elements;

(ii) for every fc G Z such that 0 < fc < |A|, there is a unique formula
B G NFm satisfying (B,k) r< (A9c(A))}.

Definition. For any sequence of normal formulas Γ = AI . . . An we con-
struct a finite set

ΩΓ C (NFm U {o}) x N,

where o is a new formal symbol which does not belong to NFm.
The set ΩΓ will act as the domain of all proof structures for the sequent

->Γ.

ΩΓ ^ {(B,k + \\Al...Ai-l\l)\I<i<n and (£,fc ^ ^Λ
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Example 7.2 Let Γ = ((g-1-3 <8>px8) pp^7) q±2. Then ΩΓ = {α0, . . . , «?},
where

(q±3,ί),

αβ — (0,0),

The set ΩΓ can be considered as consisting of six disjoint parts

ΩΓ = Ω£ U Ω£* U Ω^r u Ω£ U Ω® U Ωf,

where

Ωf ^ {{o,fc,Π)GΩr};

Ωp- ^ {(X,fc,Π)eΩ Γ };

Ωf ^ {(l,A;,Π)€Ωr};

Ω® ^ {(A®β,fc,Π)eΩ Γ };

We shall often write Ωjf for Ωf U Ωj?.

Lemma 7.3 |ΩΓ| = |Γ|.

Definition. The invariant b, associating an integer with ΩΓ, is defined as

KΩΓ) HΩΠ - |Ωfl - |ΩrΊ + |Ωf l

Definition. For every subset θ of ΩΓ we put

b(θ) ̂  |Ωf n θ| - |Ω® n θ| - |Ωj!r n θ| + |Ωf n θ|.

Remark. b(Ωc± ) = b(Ω±c) = 2 - b(Ωc).

Lemma 7.4 For all Γ

(i) IΩ^I + |Ωj!r| + IΩJI = |Ωf | + |Ω?| + |Ω?|;
(ii) if-*Γ is derivable in SPNCL', then b(ΩΓ) = 2.
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PROOF, (i) Easy induction on |Γ|.
(ii) Straightforward induction on the length of the derivation in SPNCL'.

•For each sequent — >Γ we define two binary relations on ΩΓ

Definition. Let a e ΩΓ and β € ΩΓ. Then α -<Γ β if and only if α £ Ω£,
β i Ω£, and α X /?.

Remark. The relation -<r is a strict partial order on ΩΓ

Definition. Let (A,fe,Δ> € ΩΓ and (£,/,Π) € ΩΓ.
Then (A, fe, Δ) <Γ (B, Z, Π) if and only if fc < ί.

Remark. The relation <r is an irreflexive linear order on Ωp.

Definition. For any sequent — >Γ we denote by ΩΓ the triple (Ωp, -<r> <r)

Lemma 7.5 Let α,/3,7 £ Ωp and a <r /? <r 7

(i) 7/a-<r7, thenβ ^π.

(ii) 7/7 -<r <*> ^en β -^r Λ

Definition. Let (Ω, C) be an undirected graph, where Ω is the set of vertices
and C is the set of edges. Let < be a strict linear order on the set Ω. We say
that the graph (Ω,C) is <-planar iff for every edge {α,/3} £ C and every
edge {7, 6} € C, if α < 7 < β, then a<6<βoτδ = aoτδ = β.

Remark. Intuitively, a graph is <-planar if and only if its edges can be
drawn without intersections on a semiplane while the vertices of the graph
are ordered according to < on the border of the semiplane.

Lemma 7.6 If (Ω,Cι) is <-planar and €2 C C\, then (Ω,C2) is <-planar.

Lemma 7.7 Let (Ω,C) be an undirected graph, where Ω = ΩI U Ω2 and
ΩI Π Ω2 = 0. Let < and <' be two linear orders on Ω such that

(Vα<EΩι)(V/3eΩ 2 ) α < /?;
(Vα e ΩiXV/3 € Ω2) β <' α;
(Vα € Ωι)(V/3 e ΩI) α < /? ij^α <' /?;
(Vα € Ω2)(V/3 € Ω2) α < ^ ijff α <; /?.

T/ien (Ω,C) is <-planar if and only i/(Ω,C) is <' -planar.

Definition. If C is a set of directed edges, then by C# we denote the
associated set of undirected edges.

Definition. A proof structure is a quadruple (Ωp, Λ, B, S), where

(Al) A C Ω® x Ω^;
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(A2) βCΩ^r x(Ω^uΩj);

(A3) ε C ίi£t χ ΩAt.

(A4) the relations A, B, and S are total functions on domains Ω^, Ω^ ,
and Ωp* respectively.

(A5) if (α, / ? )€£ , then(/3,α)€£;

(A6) if (α, β) G 8 and α <Γ /3, then there are p € Var and n € Z such
that α = p-L(n+1) and β = p^71;

(A7) the graph (ΩΓ, (>4 U β U £)#) is <Γ-planar.

If a G Ω® , then we denote by AOL the only element /3 G Ωp such that
(α, β) e A Similarly for β and 8.

Definition. A proof net is a proof structure (ΩΓ, A, B, 8) such that

(A8) b(ΩΓ) = 2;

(A9) the graph (Ωp, -<r U.A) is acyclic (i. e., the transitive closure of
-<r UA is irreflexive).

Example 7.8 We continue Example 7.2, where

Let A = {{α2, α6)}, B = 0, and £ = {<αι, α7>, (α3, αδ>, (αδ, α3), (α7,
Then (Op, ^4, β, f ) is a proof net.

Remark. In the definition of a proof structure one may in addition require
that, if (α, β) € B and (β, 7) € £, then /? <Γ 7-

Before establishing that a sequent is derivable if and only if it has a proof
net we prove some auxiliary lemmas.

Definition. Let Γ € NFm*, α,/3 € ΩΓ, and a <Γ /?. Then by θp"0 we

denote the set {7 € ΩΓ | α <r 7 <r β} and by Ξp we denote the set
{7 <Γ α or β <Γ 7}-

Lemma 7.9 Let (ΩΓ, A,B,£) be a proof structure, {a,β} € A* , and a <Γ

)8. Γ/ien

PROOF. For shortness we denote θ τ=± Q^ίβ and Ξ ̂  Ξp'^. We shall verify
only b(θ) > 1. The proof of b(Ξ) > 1 is analogous.

According to Lemma 7.6 the graph (ΩΓ,*A#) is <Γ-planar. Thus the
set A is divided into three disjoint subsets



188 M. Pentus

where A$ = {{α,/3}}, Λθ C Θ x (θU {α,/J}) and ΛΞ C Ξ x (ΞU {α,/3}).
Similarly, the graph (ΩΓ, {{α,/?}} U β#) is <Γ-planar and thus β is di-

vided into two disjoint subsets

β = βθUβΞ,

where βθ C Θ x θ and βs C Ξ x Ξ.
Once again, the graph (Ωp, {{<*>/?}} U £#) is <r-planar and thus 8 is

divided into two disjoint subsets

ε = £

where £θ C θ x θ and 8 Ξ C Ξ x Ξ.
Note that (θ U {α, /?}, (Λ) U Λθ U βθ U £ θ)#) is an undirected graph.

Furthermore, this graph is <0-planar, where <e is the restriction of <Γ

on the set 0U{α,/3}.
Let us draw this <0-planar graph on a semiplane as described after

the definition of a Oplanar graph. We denote the segment of the semi-
plane border between α and β by [α, /?]. The border segment [α,/3] and
the edge {α, β} surround a closed area, which contains all edges from the
set (Λθ U βθ U £θ)#. The edges from (βθ U £ θ)# divide this area into
|(βθ U E θ)#| + 1 regions. We are interested in all these regions except the
one adjacent to the edge {α,/?}.

Consider any of these regions. We claim that it has at least one nontrivial
segment of [α, β] at its border. (Otherwise every vertex from Ωp1 UΩj. UΩp
adjacent to the region considered would belong to two edges from (βθ U
ε θ)^, but this is impossible.)

Any such segment of [α,/?] contains at least one element of Ωf U Ω£°.
Thus some elements of Ωp U Ωp° are adjacent to the region considered. It
is impossible that all of these would belong to Ωp (because A is a total
function).

Thus the number of regions considered does not exceed the cardinality
of the set Ω£° Π θ.

|Ω^nθ|
Taking into account that

and

we obtain that

Analogously to Lemma 7.4 (i) we notice that

|(Ω£° u Ω®) n θ| = |(Ω£ u Ω£ u Ω£*) n θ|

f° n θ| > |Ω̂ r n θ| + i|ί#
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Subtracting

from

2|Ω£° n θ| > 2|Ωi!r n θ| + |Ω£* n θ|

we obtain the desired inequality

£° n θ| - |Ω® n θ| > |Ωjt n θ| - |Ωj n θ|

Lemma 7.10 Let (ΩΓ, A#,£) be a proof net, {α,/?} G A* , and a <Γ β.

Then b(θp^) - 1 and \>(3£'β) = 1.

PROOF. Note that 2 = b(ΩΓ) = b(θp>/3) + b(Ξ?l/?) + b(α,/3) =

b(Ξp ), since b(α,/3) = 0. It remains to use the previous lemma.

Proposition 7.11 Let (ΩΓΔ(A®B)Π> A#>£) be a proof net andA(A®B,
|Γ| + |Δ| + pi) = (o,|Γ|). Then the sequents ->ΔA and ->Γ£Π are
derivable in SPNClΛ

PROOF. Proof structures for — >ΔA and -+ΓBU are easily constructed from
the given proof net. To verify that they are proof nets we use Lemma 7.10.

•
Theorem 7.12 A sequent — >Γ is derivable in SPNCL' if and only if there
exists a proof net (Ωp, A, B, 8} for the sequent — >Γ.

PROOF. Sketch. Proving the ^nly if part is easy. To prove the 4f part we
proceed by induction on the cardinality of the set Ω® U Ωp.

Induction base. Let Ω® U Ω£ = 0. From b(Ωr) = 2 we conclude that
either Γ = 1 . . . J.1JL . . . 1 or Γ = 1 . . . JLg-1* J_ . . . λ.p Ln± . . . jL In the
latter case q = p and k = n 4- 1 in view of (A6). Evidently all sequents
-»J _____ L1J ____ _L and ->J _____ \_pLn+l J _____ Lp±nJ _____ L are derivable in
SPNCL7.

Induction step. Assume now that Ω® U Ω£ is not empty. We introduce
on Ω® U Ω£ a binary relation <& stipulating that a C β if and only if
α -<r β or (α, β) G A. In other words, <C is the restriction of ^r U A on
the set Ωf UΩ£.

According to (A9) there is an element SQ € Ωp UΩ^ maximal with respect
to <C. We consider two cases.
CASE 1: <50 G Ω£
We can use the induction hypothesis and apply the rule (p).
CASE 2: <5 0 <EΩ®
In view of A being a function there exists β £ Ω °̂ such that (δo,β) G A.
Since δQ is maximal with respect to <, we have β G Ωp.
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We consider two subcases.
CASE 2a: β = (o, 0) (i.e., β is the least element of ΩΓ w. r. t. <r)
In view of Proposition 7.11 we can use the induction hypothesis and apply
the rule (<g>).
CASE2b: /J^(o,0)
We use Lemma 7.7 and the rules (-1 -L( ) ) , ( (• )J~ ̂  ) to reduce this case
to the previous one.

Remark. Analogous result can be easily established also for the multi-
plicative fragment of cyclic linear logic defined in [12].

8 Properties of proof nets

Lemma 8.1 Let (Ωr,A,B,ε) be a proof structure. If the graph
\JA) contains a cycle, then there exists a cycle

such that

(i) Oίi € Ωp and βi € Ω® for each i < n;

(ii) oti -<r βi for each i < n;

(\ιi) (βi, α»+ι) € A for each i < n;

(iv) {/3n,αι)eA

(v) either aλ <Γ βi <r <*2 <r . <r βn or βn <Γ αn <Γ βn-\ <r
... <Γ αi.

Definition. Let g\Ω\ — > ΩZ be a bijection and ΊZ be a binary relation
on ΩI. Then by U9 we denote the binary relation {(g(ot), g ( β ) ) \ (α, β) e 7 }̂
on Ω2.

Proposition 8.2 Let (Ωp, *A, β, f ) 6e α proof net. Let Γ" 6e obtained from Γ
&2/ replacing an occurrence of a subformula (A®(B®C)) by ((A®B)®C) or
vice versa. Letg denote the unique isomorphism o/(Ωp, <r) and (Ωp', <r/)
Γ/ien (ΩΓ',^,β^,fp) is a proof net.

PROOF. Sketch. Let Γ' be obtained from Γ by replacing an occurrence of
a subformula (A 0 (B ® C)) by ((^4 0 B) ® (7). Assume that the graph
(Ωr,^r U^4.) is acyclic, whereas the graph (Ωr',<r; UA9) is not. Ap-
plying Lemma 8.1 we find in (Ωr',<r; ^A9} a cycle of special form

Evidently there is m < n such that βm = ((A ® B) <8> C, A: -f ||| -A| -f ||J5|)
and αm ^r7 (^4, fc H- c(A)) for some fc.
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We denote 7 ̂  (A® B, k + |A|). In view of (A7) and the special form of
the cycle there must be / < n such that α/ <r> Ag '7 <r> βι or αj = A9^. But
then there is another cycle in (ΩΓ', <r' VA9) containing the edge (7,^7
and not involving the vertex βm (see Lemma 7.5). This cycle is mapped
by 9~l to a cycle in (Ωp, -<r U4). Contradiction.

Proposition 8.3 Let (Ωr(A®(B<g>c))π, A#>£) be a proof net and

A(A ® (B ® C), ||Γ|| -f IAD = Λ(B ® C, |Γ| + |Λ| + |B|).

TTien the sequent —>B is derivable in SPNCL/.

PROOF. Sketch. The proof structure for -*B is copied from the relevant
part of the given proof net. To prove (A8) we apply Lemma 7.10 twice.

Proposition 8.4 Let (Ωγ&ι(Aι®B L)τι L,A\,Bι,ει) be a proof net and
£2} be another proof net. If A\(A\ ® #ι, |Γ| -f
® J52,|Γ| + |||Δ2| -f |Λ2|) € ΩΓ U {<o,|Γ|>},

then the sequents — »ΓΔι(Aχ ® £2)112 o,nd — ̂ ΓΔ2(A2 0Sι)Πι are derivable
in SPNCL'.

PROOF. Sketch. Let ft ̂  (Aι®Bι> |Γ|+|Δι|+|Aι|),ft — (^20^2, |Γ|
+|Δ2| + |A2|), and α ̂  Λft = Λ/?2

To obtain a proof structure for -»ΓΔι(.Aι (8)̂ 2)112 we combine the parts

of the given proof nets corresponding to θ££ι(ΛιΘ1,ι)Πι and ̂ %2(A2®B2)n2

Using Lemma 8.1 one can verify that the proof structure is a proof net.
The claim — >ΓΔ2(Λ2 (8) #ι)Πι follows from the other one due to the

symmetry of the conditions of the theorem.

Proposition 8.5 Let SPNCL' h ->£ and a € Ω£°. Then there are C, Ό €
NFm and there is a proof net

such that A(JL 0 (B 0 ±), ||Γ| + |C| + 1±|> = ̂ {B 0 1, ||Γ| + |C| + 1|±|| -h

PROOF. Sketch. Given a sequence Γ G NFm* and a vertex α € Ω{?° it is easy
to construct two formulas (7, D and a proof net (Ωrc®D , A)? ^o> ^o) such
that A(CW |Γ|+|CΊ) = α and each edge ({£, Λ>, (F, m») € Λ)Uβ0Uf0

satisfies Λ + m = 2|Γ|.
On the other hand, there is a proof net for the sequent — >B. It remains to

combine these two proof nets. Again, Lemma 8.1 is useful for checking (A9).

•
Proposition 8.6 Let (Ωr(B®(σ®u))πMι»£?ι>£ι) be a proof net. Let the
sequent -+C1- E be derivable in SPNCL'. Then there exists a proof net

(Ωr(B®(E®D))τι, A β> £)
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such that Λ(B ®(E® £>), ||Γ| + |B|) = Λι (B <8> (C <8> JO), |Γ| +
= Λι(C

PROOF. Sketch. According to Theorem t-complete there is a proof net

There is a natural one-to-one mapping (an anti-isomorphism of linear or-
ders) between the part of ΩΓ(B®(C®D))Π corresponding to C and the part
of Ωc± E corresponding to C1- . We denote the graph of this mapping by Q
and the graph of its inverse by Q~l.

We define H as the transitive closure of ΛiUβiUέiU^UftU&Uί/Uί?-1

on the disjoint union of Ωr(β<g>(c®D))π an<i ^c-1- E
Finally, A, B, and £ are chosen so that A U B U £ coincides with the

restriction of H to the domain excluding C and C-1- .

9 Tp(m)-maps

The aim of this section is to introduce Tp(m)-maps (Vn, vn) and (V^, υ'n),
which will later be used in the proof of Lemma 10.20, where we construct a
Tp(m)-quasimodel containing a witness for a given word δ £ v(E\F) (resp.
δ i v(F/E)).

We need some notation. If Ti and T are two binary relations on a set D,
then we define

U 0 T τ± {(r, t) G D x D I (3s G D) (r, s) E ft and (β, t) € T}.

Evidently, 0 is associative.
Given a set D and a function w: Tp — » P(D x D) we denote by w the

function from Tp* to P(D x D) defined as follows:

ti (A) ^ {(5 ,5) |5€D} ;

ϋl(ΓA) ^ ϋj(Γ)Θw(A).

Remark. w(ΓΠ) = w(Γ) Θ w(U).

Definition. A Tp(m)-map (D, W, w) consists of a finite set D, a reflexive
linear order W C D x D, and a valuation w: Tp — > P(W) such that

(1) for any A G Tp, B e Tp, if A B e Tp(m),thentϋ(Λ S) C w(A)θw(B)]

(2) for any Γ e Tp(m)*, B € Tp(m), if L* h Γ->B, then w(Γ) C w (S);

(3) for any B € Tp, if (5, s) € w(J5) for some s € D, then L* h Λ->jB.

Lemma 9.1 For any given number m G N there is a family ofΎp(m)-maps
(Dp, Vp,t;r) indexed by sequences of types Γ G Tp* and ί/iere are elements
Xr £ DΓ such that
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(i) (vr e Tp*) (vπ e Tp*) DΓ c DΠΓ;

(ϋ) (vr e Tp*) (vπ e Tp*) vr c vπr;

(iii) (VΓ € Tp*) (VΠ € Tp*) (V(M) € VΠΓ) */ a € DΓ then ( s , t ) e VΓ;

(iv) (VΓ e Tp*) (VΠ € Tp*) (VA € Tp) «τ(A) C t>Πr(A);

(v) (VΓ € Tp*) (VΠ e Tp*) (VΛ € Tp) (V(s,ί) € «πr(Λ)) if a
DΓ ί/ien
(a,t)evr(A);

(vi) (VΓ € Tp*) (VΔ 6 Tp*) if χr e DΔ then (3Π € Tp*) Δ = ΠΓ;

(vii) (VΓ € Tp*) (VC € Tp) (XΓ.XΛ) € «τ(C) 4* L* h Γ^C;

(vϋi) (VΓ e Tp*) (VB e Tp) (XBΓ.XΓ) e

PROOF. The construction of Tp(m)-maps is based on the proof nets intro-
duced in section 7. The domain DΓ of the Tp(m)-map corresponding to Γ
will be^a finite subset of NFm x Occ x NFm* .

Let Γ-1 = AI . . . An. We define Dp as the set of 3-tuples (B, k, A\ . . . Aj)
such that (B, k) 6 Ω|£ and j € N is the smallest natural number satisfying
IAι...Ajl>k.

We put χr ̂  (o, if x W , Γx ) and DΓ ̂  Df U {χr}
For any 3-tuple s = (B, k, Φ) we denote by 3" the 2-tuple (B, k). Evidently

the mapping s >— * 3" establishes a one-to-one correspondence between Dp
and ίlj£ .

The linear order Vr C DΓ x DΓ is defined by stipulating that a pair
((BI, k\, Φi), (BZ, k 2, Φz)) belongs to Vr if and only if k\ > k%.

Finally, the function fr 'Tp — > P(VΓ) is defined by stating that ( s , t ) €
vr(C) if and only if there are E € NFm, F e NFm, Δ € NFm*, Π e

NFm*, and there is a proof net (ΩΓJ. A./E®(c®F))τι< A> &> ^) suc^ tnat

A(E®(C®F), ||ΓX 1 + IΔI + pl) = s and A(C®F,

First we verify that for each Γ G Tp* the triple (Dp, Vr, vp) is a Tp(ra)-
map for every m e N.

(1) Let ( s , t ) € vr(A B).
This means that

• there is a proof net (Ω, ^4, β, 8} for a derivable sequent of the form

-+Γ-1 Δ(£ ® ((A ® J3) ® F))Π;

• Λ(E 0 ((105) 0 F), If1- 1 + |||Δ| + |£||) = ?;

• Λ((A 0 5) 0 F, |f -L I 4- |||Δ| + \\E\\ + \\A\I + \\B\\) = t.
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Evidently there is u G DΓ such that A(A®B,
u. Using Proposition 8.2 it is easy to establish that (s,u) G vr(A) and
(u,t) G vp(B), whence ( s , t ) G vp(A) 0 υp(B). Thus we have established
that vp(A B) C vΓ(A) Θ vr(B).

(2) Let L* h AI . . . An^B. We must verify that υΓ(Aι) Θ . . . Θ vr(An) C
vr(B). If n = 0, then we use Proposition 8.5.

Assume now that n > 0. Let (s,u) G vr(Aι) and (u,t) G vr(Az). Ac-
cording to the definition of vγ there are proof nets

and

such that Λ(ί?ι®(ί ®ίι), I?-1 | + |Δι| + |Eι|) = 5, Λ(ί®^ι, II f ̂  || +

|Δ!| + l^il -f Pal) = 2, Λ(^2 0 (%0 F2) Jf -L I + |Δ2|| -f |£2|) = u,
A2(A2 0 F2, |f -1 1 -f |Δ2| 4- 1 2̂|1 H- ||A2|) = t. From Proposition 8.2 and
Proposition 8.4 we obtain a proof net

Δ1(JE71<g)((Λl(8)Λ2)(g)F2))Π2 ' » '

such that

A(E, ̂ ((ί 0 Γ2) 0 F2), |f J 1 + |ΔJ + 1^1) ̂

s, Λ((Al 0 Aa) 0 F2> if
1- 1|| + (ΔJ + |||Eι||| + μj + |Λ2|) = t.

Thus (s,ί) G vγ(Aι Aϊ). We have established that υr(Aι) (•) vr(A2) C
vr(Άι ^2) By induction on n we obtain vr(Aι . . . An) C vp(Aι . . . An).

It remains to apply Proposition 8.6.
(3) Let (ΩfjL Δ(£7(8)(β(g)F))πΆβ)ί

:) be a proof net such that

A(E® (B® F), |f ^ II -f |Δ| + |E|) = ̂ {5® F, |fx ||| + |Δ| + \E\ + |J5|).

According to Proposition 8.3 the sequent — >β is derivable in SPNCL7.

Now we verify that the elements χp and Tp(m)-maps (Vr,^r) satisfy
(i)-(vϋi).

(i) __χ

Evident from (ΠΓ) = f -1 Π-1 .

(ϋ)
Similar.

(iii)
Obvious from the fact that if (Sι,fcι,Φι) G DΓ, (£2,&2,Φ2) G DΓ, and
fci > A:2, then there is Π G NFm* such that Φi = ΠΦ2.

(iv)
We verify that υp(A) C vur(A). Let (5, ί) G vp(A). This means that there is
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a proof net (Ωfj. Δ(BΘ(Λ®F))Π' A B, S) such that A(E® (A®F), ||f x | +

|Δ| + |£|) = a and A(A® F, |f •"• | + ||Δ| + |£| + |£|) = t. Let Π =
BI . . . Bn. Then one can easily construct another proof net (fl', A', B', £')
for the sequent

-^f LB^l'
L ...Rι± (Bl®...®ίΓn

such that A'(E ® (A®F), |f x ||| + ||ΠX || + ||Π| + |1| + |Δ|| + |£|) = s
and A'(Ά®F, |f •«• ffl + ̂  | + |Π| + ffl±| + ||Δ|| + |£| + |A|) = £ Thus

(v)
Similar to (iii).

(vi)
Follows from the definition of Dp.

(vii)
Let L* h Γ— >C. According to Lemma 6.3 and Theorem 7.12 there is a proof
net for the sequent Γ1- C. By an easy modification we obtain a proof net

(Ωf -i (i®(c®i))> A β> £>) such that Λ(1 ® (̂  ® X) I?-1 1 + ffllffl) = Xr and

For the converse assume that (Ωf x Δ(£?®(C®F))Π> ̂ » ^» ̂ ) ιs a PΓO°f net

such that A(E <g> (C <8> F), |f-11|| + |Δ| + |E|) = χr and A(C ® F, if-11|| +

|Δ| 4- \\E\l + |C|) = XΛ Using Proposition 7.11 twice we can obtain a
proof net for —^Γ1- C.

(viii)
Let Γ = AI ... An. It is easy to construct a proof net

such that Λ(l ® (B ® (A\ ® . . . ® ίQ)), |f-11|| -f IB1-1|| -f-11|) = χβAl...An

and ^4(5 ® (ί ® . . . ® >C), if-11|| 4- \\B^ \\ + |1||| -f \\B\\) = χAl...An. "

Definition. For any two integers m and n, we write LSTm>n for the fol-
lowing finite subset of Tp(ra)*.

LSTm,n ̂  {A i . . . AI I 1 < / < n, AI G Tp(m), . . . , A f G Tp(m)}

Lemma 9.2 For any given number m G N there is a family ofΎp(m)-maps
(DΛ, Vn, vn) indexed by n G N, ίΛere Z5 an element g, and there is a family
of elements hp indexed by Γ € Tp(ra)*, such that

(i) (Vn) g G Dn;

(ii) (Vn) (VΓ G LSTm,n) ΛΓ € Dn;

(iii) (Vn) (VΓ G LSTm,n) (VC G Tp(m)) (h r , f f> € vn(C) 4Φ L* h Γ-^C;
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(iv) (Vn) (VΓ G LSTm|n_!) (VB G Tp(m)) (hBΓ,hΓ) G vn

PROOF. Take arbitrary m, n G N. We construct the Tp(m)-map (Dn, Vn,
vn), using the Tp(m)-maps (Dp, Vr,^r) from the previous lemma.

We put Dn ;=± \J Dp. Let Vn be any linear order containing
Γ6LSTm>τl

the binary relation \J Vp. The valuation vn is defined by vn(C) ̂
ΓGLSTm>n

U vr(C)
Γ€LSTm,n

We put g τ=± %Λ and ftr ̂  χr
It remains to check that (Dn, Vn,vn) is a Tp(m)-map.
(1) Obvious.
(2) Let L* h AI . . . Afc—>£, A» G Tp(ra), and B G Tp(ra). Assume that

(SQ,SI) G v n (Aι) v . . , (sfc_ι,Sfc) G vn(Afc). Then there is Δ G LSTm>n such
that (50, si) G v&(Ai).

By induction on i < k it can be proved that (si,Si+ι) G v&(Ai+ι) for
the same Δ. Thus (SQ,SIC) G v&(B) C υn(B).

(3) Obvious.

We shall also need the dual of Lemma 9.2.

Lemma 9.3 For any given number m G N there is a family ofΎp(m)-maps
(D^, Vjj, v'n) indexed by n G N, there is an element g', and there is a family
of elements ftp indexed by Γ G Tp(ra)*, such that

(i) (Vn) </ G D'n;

(ii) (Vn) (VΓ G LSTm,n) ft'Γ G D'n;

(iii) (Vn) (VΓ G LSTm,n) (VC G Tp(m)) ((/, ft'Γ) G t/n(C) Φ> L* h Γ-^C;

(iv) (Vn) (VΓ G LSTmjn_!) (VB G Tp(m)) (ft'Γ, ft'Γβ) G v'n(B).

10 Construction of witnesses

In this section we prove that the class /Cm is witnessed.
We assume being given a number m G N, a Tp(m)-quasimodel (V*, v) G

/Cm, two types E and F such that E\F G Tp(m), and a word <5 G V* such
that δ φ v(E\F). We fix m, V, v, E, F, and <5 until the end of this section.
Our aim is to find a Tp(m)-quasimodel (W*,w) G /Cm and a word C € W*
such that C G w(E), ζ o <5 ^ w(F), and (VV*, tt;) is a conservative extension
of (V*,t;).

First, we put n ̂  |5| +1. For the given m and n we take the Tp(m)-map
(D'n, V'n, O from Lemma 9.3. Let k τ± \Ό'n\. The reflexive linear order V^
is isomorphic to the natural order < of the set [0, k — 1] ̂  {i G Z | 0 < i <
fc-l}.
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Throughout this section we shall identify Dn with [0, k-1] and the linear
order V'n with <.

Let E, 2 ,2/1,3/2» 2/fc be any fc+2 distinct elements ofU = {α, | j e N},
which do not occur in V. We denote y ^ {#, 2,2/1,2/2 > ,2/fc} and put
w^ v\jy.

We shall work with subwords of

(xm o yι o zm) o(χmoy2ozrn)o...o (χm oyko zm).

Here xm τ=± x o ... o x.

m times
To define the mapping w we need several auxiliary words and sets. For

any integers s and t such that 0 < s < £ < f c w e define the word π(s, t) € y*
as follows:

π(s, t) ̂  (xm o 2/s+i o *m) o (χm o 2/s+2 o zm) o . . . o (xm o yt o zm).

By definition, π(s,s) = ε for every s.
Note that i f O < r < s < £ < A ; , then π(r, 5) o π(s, ί) = π(r, ί).
We shall denote by Subword(/2) the set of all subwords of β. Formally,

Subword(/3) ̂  {α G W* | β = 71 o α o 72 for some 71,72 € W*}.

We define the finite set Ti as follows.

U τ± {p € V* I p o a = δ for some α e V*}

We define several functions associating subsets of W* with sequences of
types from Tp(ra). For any θ € Tp(ra)* we put

uo(θ) ^ {π(s, t) I 0 < 5 < t < k and (5, t) G <(θ)};

^ { π ( 5 , f c ) o p | 0< 5 < A:, p € 7^, and 3Δ G Tp(m)*,

We define some subsets of W* .

Mi ^ {α € W* I α ^ V* and α ^ Subword(π(0, k) o 6)}

M2 ^ z o W *

M τ±

We define a function Subst^iW* -* P(W*) and two valuations

δ:Tp(m) -* P(W*) and ^:Tp(m) -* P(W*)
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Subst.M(ε) ^ {ε}

SubstM(a oq) τ=± SubstM(a) o ({q} U Λί) if α G W* and q G W

Informally, for every word β G W*, the set Subst^i(/J) consists of all
words that are obtained replacing some (may be none) of symbol occur-
rences in β by words from the set M.

v(A) τ=± \J SubstM(α)
α€υ(Λ)

w(A) τ± u(A)\Jΰ(A)

Finally, we put ζ ̂  π(g',k).

Lemma 10.1 ζ G u(E).

PROOF. From L* h E-+E and Lemma 9.3 (iii) we obtain (#', h'E) G v'n(E).
(#',fc) G u2(£).

Lemma 10.2 ζ o δ £ u(F).

PROOF. Assume, for the contrary, that π(g',k) o δ £ u(F). Evidently
π(0',fc) G y+ and δ G V+. Thus π{^,fc) o δ G u2(F). According to the
definition of ι*2 there is Δ G Tp(m)* such that |Δ| < |5|, δ G v(Δ)
and (g',h'E^ G vή(F). From n = |<5| H- 1 we get |Δ| < n — 1, whence
ΐ Δ G LSTmjn. From Lemma 9.3 (iii) we obtain L* h £Δ->F. Applying
the rule (-*\) we derive L* h Δ-*JE7\F, whence v(Δ) C υ(E\F). Thus
5 G υ(E\F). Contradiction.

Lemma 10.3 IfQ<r<s<k, A e Tp(m), and (r,s) G v'n(A), then
π(r,s) G w(-4).

PROOF. Let (r,s> G <(^) If r < s, then π{r,s) G tio(-A)- If r = β, then
L* h Λ-^A and thus ε G v(Λ).

Lemma 10.4 If A B G Tp(m), then u(A B) C u(A)ou(B).

PROOF. Let A B G Tp(m) and 7 G u(A B).
CASE 1: 7 G uo(A B)
By definition 7 = π(r,t), 0 < r < t < fc, (r,ί> G v*n(A B) = ^(A B) for
some r and ί.

Since (V^,^) is a Tp(m)-map, there is s G [0, A: — 1] such that (r, s) G
<(A) and <M) e ι/n(B).

Now 7 = τr(^,t) = π(r, θ) oπ(s,ί) G uv(A) o UQ(B) according to
Lemma 10.3.
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CASE 2: 7 G u2(A B)
By definition 7 = π(r, k) o p, p G ft, Δ G Tp(ra)*, |Δ| < |p|, p € #(Δ),
(r ,/ ι^)G<(A.B),0<r<fc.

Again, there is s such that (r, 5) G ^ή(^) anc^ (5> ̂ Δ) G vή(^) Accord-
ing to Lemma 10.3, π(r, 5) € u0(A). On the other hand π(s, fc) op G
whence 7 € 1*0 (^4) ° ^(B).
CASE 3: 7 G v(A J3)
Obvious from υ(A B) C υ(A) o υ(J3).

We define

m times

and establish several properties of M and T.

Lemma 10.5

(i) If β G W*, α G Subword(/3), and a G MI, then β G

(ii) M2 o W* C

(iii) W* o

PROOF, (i) According to the definition of Λ^i, if β G W* and β £ Λίi,
then /3 G V* or Ŝ G Subword(π{0, fc) o 5). But then one has also α G V* or
a G Subword(π(0, k) o fi), whence α ^ Λ^I.

Lemma 10.6

(i) M o M C M

(ii) T C M

PROOF.

(i)
Let α G M and /? G M. We verify that α o β G Λl If α G .Mi then
α o /? G Mi. If α G MI then α o /? G M2. If β € MI then α o β G Λίi. If
β GΛ^ 3 then α o / ? G X 3

The only complicated case is α G Λ<3 and β G Λ^, i.e., α = α' o x and
β = zo β' . Note that then x o z G Subword(α o β) and x o z G Λ^I. Thus

(ϋ)
Follows from (i).

We introduce some subsets of W* .

pQ ;=± {π(s,ί) I 0 < 5 <t < k}

pl - {π(s,k)\Q<s<k}

P2 — P! o U

p — p0 u Pi
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Note that ε G K and thus PI C P2. Note that uQ(Θ) C P0, u2(θ) C P2,
andu(Θ) C

Lemma 10.7 If A € Tp(ra), then T C w(A).

PROOF. Since (V*,v) £ /Cm, we can choose a word α £ v(A) such that
|α| < m. Evidently M o . . . o Λ4 C Subst<^(α) C ϋ(A) C w(A). In view of

|α| times

M oM. C M and taking into account that |α| < m, we have ^Λ o . . . o Mj C

m times
M o . . . o Λj Thus T = r , M o . o Λ t C w(>l).

|α| times m times

Lemma 10.8

(i) p n V* = 0

(ϋ) P n M = 0

(iii) V* n M = 0

PROOF.

(i)
Evident.

(«)
Let a £ P. Then the leftmost symbol of a is x and the rightmost sym-
bol of α belongs to V U {z}. Thus α ^ Λ42 and α ^ .Λ/ίa. Note that
P C Subword(π{0, k) o δ). Thus α £ MI

(iii)
Obvious.

Lemma 10.9

(i) υ(A) C u(A)

(ii) u(Λ) C υ(A) U P

Lemma 10.10

(a) V* o M C M

(b) ΛΊ o V* C M

(c) PoMCT

(d) MopCT

(e) V + o p C T

(f) Po o V+ C T
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(g) PI o {β G w+ i β i n] c T

(h) 7/0 < r < s < k, 0 < a1 < t < k, and s ± s1 ', then π(r, s)oπ(s', t) G T.

PROOF.
(a)

Let α G V+ and β € M. We verify that α o β G M. If β G ΛΊi then
α o j3 G Λίi. If /? G Λΐs then α o β E Λίs. The only complicated case is
β = z o β'. Note that in that case α o z G Subword(α o /?) and α o 2 G M i .

(b)
Let α G Λί and β G V+ . We verify that α o β G Λf. If α G MI then
α o / ? G Λ ί ι . I f α G Λ<2 then α o /? G Λ^2 The only complicated case is
α = α' o x. In this case x o β G Subword(α o /?) and x o β G Λf i .

(c)
Let 7 = α o /?, where a £ P and β £ M.
CASE 1: α G 7>o U Pi
By definition 7 = π(s, ί) o /?, where 0 < s < t < k.

Evidently 7 = xo . . . oχo<ft, where φ = xo ys+l o zm o π(s -f 1, ί) o /?. We

m— 1 times

must verify that φ £ M.
If /? G Λίi then 0 G Λίi. If /? G Ala then φ G X3 Let now β G «M2, i.e.

β = zoβ'. Evidently zm+l G Subword(2/s+1 o zm o π(s -f 1, t) o z o /37 and

CASE 2: α G ̂ 2 and a£Pι
By definition 7 = π(s, /c) o p o /?, p G 7?,, /? ̂  ε.

Evidently 7 = x o . . . o a: o^>, where 0 = χoy s+1 O2moπ(5 + 1, k) opoβ.

m—l times
The only complicated case is β G M<ι, i.e., β = zoβ'. Note that p o 2? G
Subword(0) and p o z G M\.

(d) and (e)
Let α G jM U V+ and β G P. We must prove that α o /? G vΛ< o . . . o M..

m times

CASE 1: β = π ( s , t ) G P0

Evidently aoβ = φozo...oz, where φ = (a o π(s, t - 1) o xm o yt o z).

m—l times
Obviously z G Mi. It remains to verify that φ e M.
CASE la: α G Λίi
Obvious from Lemma 10.5 (i).
CASE Ib: α G Λ<2
Obvious from Lemma 10.5 (ii).
CASE Ic: a G Λίa

Note that the rightmost symbol of α is x and the first m symbols of the
word π(s, t - 1) o xm o yt o z are xm. Thus xm+1 G Subword(^). In view of
χm+ι £ ̂ 1 we
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CASE Id: α e V+
Evidently α o x £ Subword(^). On the other hand, a o x e V"1" o y+ and
V+ o y+ C MI. According to Lemma 10.5 (i'), φ G MI.
CASE 2: β € P2

By definition β = π(s,k) o p, p £11.
Now αo/3 = (ftoz o o zo(zop), where </> is the same as in the previous

m— 2 times

case. We have already verified that z £ ΛΊ and φ £ M. Evidently z o p £

(f)
Let α € £>o and β £ V+. By definition α = π(s, t), 0 < 8 < t < fe.

Evidently ao β = x o . . . o xo(/>, where φ — xo ys+ι o zm o π(s 4- 1, ί) o /?.

7n— 1 times

Note that ytozmoβ £ Subword(^). On the other hand, ytθz™Όβ £ MI,
since ί ̂  /c. Thus </> € Λ4ι.

(g)
Let α G Pi, j9 € W*, and β φ U. By definition α = τr(s, fc>, where 0 < s <
k.

Evidently α o β = xo . . . oxo^, where φ = xo ys+1 o 2m o π(s -f 1, fc) o /3.

m— 1 times

Note that z o β £ Subword(0). On the other hand, z o β e Λί i, since /? is
not a left subword of δ (see the definition of Tί). Thus 0 G M\.

(h)
Evidently π(r, 5) o π(5x, t) = φo z o ... o g, where

?n— 1 times

0 = (τr(r, 5) o π(5', ί — 1) o rrm o yt o 2:).

We only need to prove that φ G M. Note that ι/s o zm o χm o yβ/+ι €
Subword (</>). On the other hand ys o 2:m o χm o j/β/+ι G Λ4ι, since s ^ s' .
According to Lemma 10.5 (i7), ^ € M\.

To make the formulation of the following lemmas more readable we in-
troduce two subsets of W*.

Q ^ PUV*(JM

Qoo ^ {ε} U Q U (Q o Q) U (Q o Q o Q) u . . .

Lemma 10.11

(i) ToQCT

(ϋ) Q o T C T

(iii) P o V* C P U T
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(iv) PoPCPuT

(v) (p U T) o Q C (p U T)

(vi) Qo(7>uT)

PROOF.
(i)

Evident from Lemma 10.10 (d), (b), and Lemma 10.6.

(ϋ)
Evident from Lemma 10.10 (c), (a), and Lemma 10.6.

(in)
Let α € P and β € V*. We must prove that α o β £ P u T. If /? = ε, then
aoβ = atP. Let /3 € V+.
CASE 1: α € PO
According to Lemma 10.10 (f), α o β e T.
CASE 2: α = π{s, k)op£p2

If poβ £U, then α o /? e P2, else α o /? G T in view of Lemma 10.10 (g).
(iv)

Let α G P and β εP.We must prove that α o /J G P U T.
CASE 1: aepQUPi
By definition α = π(r, 5), where 0 < r < s < k.
CASE la: β ePQ\JPι
By definition β = π(s', ί), where 0 < 5' < t < k.

If 5 = s', then a o β — π(r, 5) o π(s,f) = π(r, ί) G P according to
the definition of the function π. If 5 φ sx, then α o β G T according to
Lemma 10.10 (h).
CASE Ib: β £P2
Evidently αo /? 6 a o PI oil. According to case la, α o β e (P U T) o 7£ C
(P U T) o V*. From (iii) and (i) we obtain (P U T) o V* C P U T.
CASE 2: aeP2la£ PI
By definition α = π(s, A:) o p, /9 € 7£, p ̂  ε.

Evidently, P2oP = Pι oKoP Cpl o (Vop).
Prom (ii) and Lemma 10.10 (e) we get Pl o (V+ o p) C PI o T C T.

(v)
Immediate from (i), (iv), (iii), and Lemma 10.10 (c).

(vi)
Immediate from (ii), (iv), and Lemma 10.10 (e), (d).

Lemma 10.12

(i) Q o o o P o Q ^ C p u T

(ϋ) Qoo o P o Qoo o M o Qoo C T

(iii) Qoo o M o Q^ o p o Qx C T
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PROOF.
(i)

Prom Lemma 10.11 (vi) we obtain

(P U T) C P U T.

From Lemma 10.11 (v) we obtain

(P U T) o Q^ C P U T.

Thus (Qoo op)oQ00C(PuT)oQ00Cp(jT.

(ϋ)
According to (i), Lemma 10.10 (c), and Lemma 10.6 (QooopoQ^oM. c T.
It remains to apply Lemma 10.11 (i).

(iii)
According to (i), Lemma 10.10 (d), and Lemma 10.6 M o(Q00opoQ00) C T.
It remains to apply Lemma 10.11 (ii).

Lemma 10.13 Let Δ G Tp(ra)*, Π G Tp(ra)*, and ε G u(Δ). Then

= vn(U) and vn(ΠΔ) = vn(Π).

PROOF. Evidently ε G i/(Δ).
Let Δ = AI . . . AI. Take arbitrary i < I. Evidently, ε G Ai and thus

L* h Λ— >A;. We obtain ( s , s ) G vn(^ί) for every 5 G [0, k — 1]. Hence
(β, 5) G ̂ n(Δ) for every 5 G [0, k - I].

Lemma 10.14 Let θ G Tp(τn)* and B G Tp(ra). Then u(Q] o 14
u(ΘB) U T.

PROOF. Let 7 G u(θ) o u(£). Then 7 = α o β for some α G ιx(θ) =
uo(θ) U u2(θ) U v(θ) and /3 G u(B) = tio(B) U w2(B) U v(B). We consider
the corresponding nine cases and prove that α o β G uβ(ΘB) U ti2 (θjB) U
i7(θjB) U T.

CASE 1: α G u0(θ)
By definition α = τr(r, 5), 0 < r < 5 < fc, (r, s) G ι4(θ).
CASE la: β G u0(£)
By definition β = π{5x,ί), 0 < 5' < ί < jfe, (s',t) G <(S).

If 5 7^ 5', then α o /3 G T in view of Lemma 10.10 (h).
If 5 = s', then α o /J = π(r, 5) o π(s, ί) = π(r, ί) G ̂ o(θ^), since (r, t) G

CASE lb: βεu2(B)
By definition β = π{5 ;,fc) o p, p G Λ, Δ G Tp(m)*, |Δ| < |p|, p G v(Δ),

If 5 / s7, then ao β = π(r, s) o π(s', A ; ) o p G T o p C T o V * C T i n view
of Lemma 10.10 (h) and (i).

lfs = s', then αo/J = π(r, fc)op G U2(Θ5), since (r, /4Δ) G <
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CASE Ic: β G v(B)
li&φε, then α o β G PQ o V+ C T in view of Lemma 10.10 (f).

If /? = ε, then α o β = a G u0(θ) C uQ(ΘB) in view of Lemma 10.13.

CASE 2: α G u2(θ)

α = 7r(r,fc) op, p G ft, Δ € Tp(ro)*, |Δ| < |p|, p € t/(Δ), (r, Λ'βΔ) G ι£(θ),
0< r < fc
Note that α € PI o V*.
CASE 2ab: β G M0(S) U u2(£) C p
In view of Lemma 10.10 (g) we have ao β ePi o (V* op) CT.
CASE 2c: /? G υ(B)
If poβ gπ, then α o β = π(r, fc) o (p o /?) G T in view of Lemma 10.10 (g).

Now we prove that if p o β G K then α o /J G u2(θ£). We take Δ' = ΔB
and p' = poβ. Evidently p o β G v(Δ) o υ(B) = v(ΔB).

If /? ^ ε, then |Δ'| = |Δ| + 1 < \p\ -f 1 < |p| + \β\ = \p'\. Further,
\EΔ\ = \Δ\ + 1 < l / c / l < |deZία| = n - 1. By Lemma 9.3 (iv) we have

Thus (r, h'E±B) G <(θ) 0 ι/n(B) =
If β = ε, then α o /? = α G u2(θ) C n2(θ-B) in view of Lemma 10.13.

CASE 3: α G υ(θ)
CASE 3ab: /3 G uQ(B) U ti2(β) C P
If α 7^ ε, then in view of Lemma 10.10 (e) we have aoβeV*oPζ.T.

If α = ε, then α o β = β G u(B) C ϊz(ΘB) in view of Lemma 10.13.
CASE 3c: β G υ(B)
Evidently α o β G v(θ) o v(B) = v(QB).

Lemma 10.15 Let I > 0, Bι G Tp(m), . . . , Bt G Tp(m). Then

u(Bι) o...o u(Bι) C u(Bι ...Bι)(jT.

PROOF. Induction on /.
Induction base. For / = 0 we have to prove that {ε} C u(Λ) ϋT. Indeed,

ε G v(A) C ti(A).
Induction step. We must prove that if u(Bι)o . . .ou(Bι) C tx(Bι . . . B ι ) ( J

T then u(Bι) o . . . o u(B{) o u(Bι+ι) C u(Bl . . . BtBw) U T. In view
of the induction hypothesis, it is sufficient to verify that (u(B\ . . . Bι) U
T) o u(B|+ι) C u(Bι . . . BιBι+ι) U T.

From Lemma 10.14 we obtain u(Bι . . . Bι)ou(Bι+ι) C u(Bl . . . 5/Bz+ι)U
T. According to Lemma 10.11 (i), T o u(Bι+ι) C T.

Lemma 10.16 // BI, . . . , Bj, C G Tp(m) and L* h Si . . . Bj-^C, ίften

PROOF. Let Bi,...,B|,C € Tp(m) and L* h Bl...Bl-*C. According
to Lemma 10.15, u(Bι) o ...o u(Bι) C u(Bι . . . Bt) U T. It remains to
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prove that u(Bl ...Bt)C u(C). This follows from v(Bι . . .£/) C v(C] and
v*n(Bι . . . BI) C ι/n(C) (cf. the definition of u at page 197).

Lemma 10.17 Let A G Tp(ra). Then

(i) v(A) C ΰ(A);

PROOF, (i) Let α G υ(A). Evidently α G Subst^(α) C ϋ(A).
(ii) By induction on |α| we prove that Subst^(α) C {a} U M for

any a G V*. For the induction step it is sufficient to verify that ({a} U
M) o ({ς} U Λί) C {α o 9} U M whenever α G V* and q G V. This follows
from Lemma 10.10 (a), (b) and Lemma 10.6 (i).

Lemma 10.18 If A £ Tp(τn), then w(A) Π V* = υ(A).

PROOF. Let A G Tp(ra). According to Lemma 10.9 (ii) and Lemma 10.8 (i)
u(A)Γ}V* = υ(A).

According to Lemma 10.17 (ii) and Lemma 10.8 (iii) ϋ(A) Π V* = υ(A).
m

Lemma 10.19 (W*,w) is aTp(m)-quasimodel.

PROOF. We verify the conditions (1), (2) and (3) from the definition of a
Tp(m)-quasimodel at page 174.

(i)
Let A B G Tp(ra) and 7 G w(A B). We must prove that 7 G w(A) ow(B).
CASE 1: 7 G u(A B)
Obvious from Lemma 10.4.
CASE 2: 7 G ϋ(A B)
By definition, 7 G Subst^^') for some 7' G υ(A B) C v(A) o v(B). Thus
y = a' o /?', where a1 G v(A) and β' G v(B). Evidently, SubstM(77) =
Subst^ία') o SubstM(/3') C v(A) o v(B).

(2)
Let AI, . . . , Aj , B € Tp(τn), L* h AI . . . A^^B, αx G τι (Aι), . . . α/ G tι (Az).
We must prove that ot\ o . . . o α/ G w(B).
CASE 1: (Vi<I)αi G n(Λ)
According to Lemma 10.16, a\ o . . . o α/ G w(£) U T.
In view of Lemma 10.7, a\ o . . . o α/ G w(B).
CASE 2: (Vj <0«j e β^-)
This means that for every index j < / there is a word /3j G v(Aj) such that
α^ G Substj^(βj). Evidently, OL\ o . . . oαj G Subst^(^ι o . . . o/3z). Note that
jSio. . .o/Jj G v(Aι)o. . .ov(Ai) Q v(B)ι since (V*,v) is a Tp(m)-quasimodel.
Thus a\ o . . . o α/ G i)(B).
CASE 3: (3i <ΐ)otii u(Ai) and (3j < I) α^ i ϋ(Aj)
Evidently α^ G v(Ai). From Lemma 10.17 (ii) we obtain α^ G v(-Aί) U M.
In view of v(Ai) C w(Ai) we have α* ^ υ(-At). Thus α^ G M.
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Evidently α, € u(Aj) C υ(Aj) U P. On the other hand, from Lemma
10.17 (i) we obtain a0 £ v(Aj). Thus otj € P.

Note that oth e Q for every h < I. According to Lemma 10.12 (i) and (ii),
QI o . . . o OLi € T. It remains to apply Lemma 10.7.

(3)
Immediate from Lemma 10.18.

Lemma 10.20

(i) (W*,w) e/Cm;

(ii) (W*,w) is a conservative extension of (V*,v);

(iii) C €

(iv) ζo

PROOF, (i) Obvious.
(ii) Immediate from Lemma 10.18.
(iii) Obvious from Lemma 10.1.
(iv) Follows from Lemma 10.2, Lemma 10.17 (ii), and Lemma 10.8 (i), (ii).

•
Lemma 10.21 The class JCm is witnessed.

PROOF. Immediate from Lemma 10.20 and its dual for F/E.

11 Main result

Theorem 11.1 Let Γ € Tp* and A G Tp. Then L* h Γ->A if and only
if the sequent Γ-+A is true in every free monoid model over a countable
alphabet.

PROOF. The 'only if part coincides with Theorem 2.1. The 'if part is
immediate from Lemma 10.21, Lemma 5.2, Lemma 2.2, and Lemma 2.3.

Theorem 11.2 Let Γ G Tp* and A € Tp. Then L* h Γ-»A if and only
if the sequent Γ-+A is true in every free monoid model over a two symbol
alphabet.

PROOF. Following the proof of Theorem 11.1 we reduce the proof to the
case of a sequent Λ— >F and we find a free monoid model (V*,v), where
V C {aj \ j e N} such that ε ^ v(F) and v(A) ^ 0 for every A € Tp(ra).
Herem=||F||.

We take W ̂  {6, c] and define a function g: V* — > W* as follows.

g(a,j) τ=± boco . ocob g(a°β) τ± g(a) o g(β)

j times
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Note that g is injective.
Now we put w(pi) τ=± {#(7) | 7 G v(pi)} for every primitive type pi and

define w(A) for complex types by induction according to the definition of
a free monoid model (cf. p. 173).

By induction on the complexity of A it is easy to prove that w(A) =
{#(7) I 7 € V(A)} for every A G Tp(ra). In the proof of {7 E W* |
w(A) o 7 C w(B)} C w(A\B) we use Lemma 5.2 (ii) and the fact that if
α' G V*, /?' <E V*, 7 G W*, and p(α') 07 = 0(0') then there is 7' G V* such
that 7 = 0(7').

Similarly for the dual case {7 € W* | 7 o w(A) C w(£)} = w(B/A).
Other cases of the induction step are trivial.
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