Free monoid completeness of the Lambek calculus allowing empty premises

Mati Pentus ${ }^{2}$

Abstract

We prove that the Lambek syntactic calculus allowing empty premises is complete with respect to the class of all free monoid models (i. e., the class of all string models, allowing the empty string).

Introduction

Lambek syntactic calculus (introduced in [7]) is one of the logical calculi used in the paradigm of categorial grammar for deriving reduction laws of syntactic types in natural and formal languages. The intended models for these calculi are free semigroup models (also called language models or string models), where each syntactic category is interpreted as a set of non-empty strings over some alphabet of symbols. Models for Lambek calculus were studied in [2], [3], [4], [5], [6], etc. Completeness of the Lambek calculus with respect to string models was proved in [9], [10], and [11]. Closely related is the result about completeness with respect to relational semantics [8].

There is a natural modification of the original Lambek calculus, which we call the Lambek calculus allowing empty premises (cf. [2, p. 44]). This calculus appears to be a fragment of the noncommutative linear logic. The natural class of string models for the Lambek calculus allowing empty premises is the class of all free monoid models, where also empty string is allowed.

In this paper we prove that the Lambek calculus allowing empty premises is complete with respect to these models.

[^0]
1 Lambek calculus allowing empty premises

We consider the Lambek calculus allowing empty premises (cf. [2, p. 44]) and denote it by L^{*}. This calculus is a modification of the syntactic calculus introduced in [7].

The types of L^{*} are built of primitive types p_{1}, p_{2}, \ldots, and three binary connectives $\cdot, \backslash, /$. We shall denote the set of all types by Tp . The set of finite sequences of types (resp. finite non-empty sequences of types) is denoted by Tp^{*} (resp. Tp^{+}). The symbol Λ will stand for the empty sequence of types.

Sometimes we shall write $A_{1} \bullet \ldots \bullet A_{n}$ instead of $\left(\ldots\left(A_{1} \bullet A_{2}\right) \bullet \ldots\right) \cdot A_{n}$.
Capital letters A, B, \ldots range over types. Capital Greek letters range over finite (possibly empty) sequences of types.

Sequents of L^{*} are of the form $\Gamma \rightarrow A$. Note that Γ can be the empty sequence.
Axioms: $A \rightarrow A$
Rules:

$$
\begin{array}{cc}
\frac{A \Pi \rightarrow B}{\Pi \rightarrow A \backslash B}(\rightarrow \backslash) & \frac{\Phi \rightarrow A \Gamma B \Delta \rightarrow C}{\Gamma \Phi(A \backslash B) \Delta \rightarrow C}(\backslash \rightarrow) \\
\frac{\Pi A \rightarrow B}{\Pi \rightarrow B / A}(\rightarrow /) & \frac{\Phi \rightarrow A \Gamma B \Delta \rightarrow C}{\Gamma(B / A) \Phi \Delta \rightarrow C}(/ \rightarrow) \\
\frac{\Gamma \rightarrow A \Delta \rightarrow B}{\Gamma \Delta \rightarrow A \cdot B}(\rightarrow \bullet) & \frac{\Gamma A B \Delta \rightarrow C}{\Gamma(A \cdot B) \Delta \rightarrow C}(\bullet \rightarrow) \\
\frac{\Phi \rightarrow B \Gamma B \Delta \rightarrow A}{\Gamma \Phi \Delta \rightarrow A}(C U T)
\end{array}
$$

It is known that the cut-elimination theorem holds for this calculus (cf. [2]). We write $L^{*} \vdash \Gamma \rightarrow A$ if the sequent $\Gamma \rightarrow A$ is derivable in L^{*}.

There is an obvious duality phenomenon inherent in L^{*}.
Definition. The function dual: $\mathrm{Tp} \rightarrow \mathrm{Tp}$ is defined as follows.

$$
\begin{aligned}
\operatorname{dual}\left(p_{i}\right) & \rightleftharpoons p_{i} \\
\operatorname{dual}(A \cdot B) & \rightleftharpoons \operatorname{dual}(B) \cdot \operatorname{dual}(A) \\
\operatorname{dual}(A \backslash B) & \rightleftharpoons \operatorname{dual}(B) / \operatorname{dual}(A) \\
\operatorname{dual}(A / B) & \rightleftharpoons \operatorname{dual}(B) \backslash \operatorname{dual}(A)
\end{aligned}
$$

The extension to sequences of types dual: $\mathrm{Tp}^{*} \rightarrow \mathrm{Tp}^{*}$ is defined as

$$
\operatorname{dual}\left(A_{1} \ldots A_{n}\right) \rightleftharpoons \operatorname{dual}\left(A_{n}\right) \ldots \operatorname{dual}\left(A_{1}\right)
$$

Lemma 1.1 If $L^{*} \vdash \Gamma \rightarrow A$, then $L^{*} \vdash \operatorname{dual}(\Gamma) \rightarrow \operatorname{dual}(A)$.
Proof. Straightforward induction on the derivation of $\Gamma \rightarrow A$.

2 Free monoid models

We use the following notation. Let \mathcal{V} be any alphabet, i.e., any set, the elements of which are called symbols. We denote by \mathcal{V}^{+}the set of all nonempty words over the alphabet \mathcal{V}. By \mathcal{V}^{*} we denote the set of all words over the alphabet \mathcal{V}, including the empty word ε. Let \circ denote concatenation. Evidently \mathcal{V}^{*} is a free monoid w.r.t. o. The unit of the free monoid is ε. Throughout the paper calligraphic letters $\mathcal{U}, \mathcal{V}, \mathcal{W}$ will denote alphabets.

If α is a word, then $|\alpha|$ (the length of α) is the number of symbols in α.
We shall use the following shorthand notation. For any sets $\mathcal{R} \subseteq \mathcal{V}^{*}$ and $\mathcal{T} \subseteq \mathcal{V}^{*}$ we write
$\mathcal{R} \circ \mathcal{T} \rightleftharpoons\left\{\gamma \in \mathcal{V}^{*} \mid\right.$ there are $\alpha \in \mathcal{R}$ and $\beta \in \mathcal{T}$ such that $\left.\alpha \circ \beta=\gamma\right\} ;$

$$
\mathcal{R} \circ \beta \rightleftharpoons \mathcal{R} \circ\{\beta\} ; \quad \alpha \circ \mathcal{T} \rightleftharpoons\{\alpha\} \circ \mathcal{T}
$$

Since this operation on sets is associative, we omit parentheses in expressions like $\mathcal{R}_{1} \circ \mathcal{R}_{2} \circ \ldots \circ \mathcal{R}_{m}$. In the case of $m=0$ we assume that this expression stands for the set $\{\varepsilon\}$. By \mathcal{R}^{m} we denote the set $\underbrace{\mathcal{R} \circ \ldots \circ \mathcal{R}}_{m}$.

We shall denote the set of all subsets of a set \mathcal{S} by $\mathbf{P}(\mathcal{S})$.
Definition. A free monoid model $\left\langle\mathcal{W}^{*}, w\right\rangle$ consists of the free monoid $\left\langle\mathcal{W}^{*}, \circ, \varepsilon\right\rangle$ and a valuation $w: \operatorname{Tp} \rightarrow \mathbf{P}\left(\mathcal{W}^{*}\right)$ associating with each type of L^{*} a subset of \mathcal{W}^{*} and satisfying for any types A and B the following conditions.
(1) $w(A \cdot B)=w(A) \circ w(B)$
(2) $w(A \backslash B)=\left\{\gamma \in \mathcal{W}^{*} \mid w(A) \circ \gamma \subseteq w(B)\right\}$
(3) $w(B / A)=\left\{\gamma \in \mathcal{W}^{*} \mid \gamma \circ w(A) \subseteq w(B)\right\}$

For any function $w: \operatorname{Tp} \rightarrow \mathbf{P}\left(\mathcal{W}^{*}\right)$ and for any types A_{1}, \ldots, A_{n}, we write $\vec{w}\left(A_{1} \ldots A_{n}\right)$ as a shorthand for $w\left(A_{1}\right) \circ \ldots \circ w\left(A_{n}\right)$. Note that $\vec{w}(\Lambda)=\{\varepsilon\}$.

Definition. A sequent $\Gamma \rightarrow B$ is true in a model $\left\langle\mathcal{W}^{*}, w\right\rangle$ iff $\vec{w}(\Gamma) \subseteq w(B)$.
A sequent is false in a model iff it is not true in the model.
The following well-known soundness theorem holds.
Theorem 2.1 If a sequent is derivable in the calculus L^{*}, then the sequent is true in every free monoid model.

The rest of the paper is devoted to the proof of the corresponding completeness theorem. In view of the following two lemmas it is sufficient to consider only sequents with empty antecedent.

Lemma 2.2 For any types A_{1}, \ldots, A_{n}, B, the sequent $A_{1} \ldots A_{n} \rightarrow B$ is derivable in L^{*} if and only if the sequent $\Lambda \rightarrow\left(A_{1} \bullet \ldots \cdot A_{n}\right) \backslash B$ is derivable in L^{*}.

Lemma 2.3 For any free monoid model $\left\langle\mathcal{W}^{*}, w\right\rangle$ and for any types A_{1}, \ldots, A_{n}, B, the sequent $A_{1} \ldots A_{n} \rightarrow B$ is true in $\left\langle\mathcal{W}^{*}, w\right\rangle$ if and only if the sequent $\Lambda \rightarrow\left(A_{1} \bullet \ldots \cdot A_{n}\right) \backslash B$ is true in $\left\langle\mathcal{W}^{*}, w\right\rangle$.

3 Quasimodels

In this section we introduce the notion of $\operatorname{Tp}(m)$-quasimodels and describe an algorithm of constructing a free monoid model as the limit of an infinite sequence of $\operatorname{Tp}(m)$-quasimodels, which are conservative extensions of each other.

Definition. The length of a type is defined as the total number of primitive type occurrences in the type.

$$
\begin{gathered}
\left\|p_{i}\right\| \rightleftharpoons 1 \quad\|A \cdot B\| \rightleftharpoons\|A\|+\|B\| \\
\|A \backslash B\| \rightleftharpoons\|A\|+\|B\| \quad\|A / B\| \rightleftharpoons\|A\|+\|B\|
\end{gathered}
$$

Similarly, for sequences of types we put $\left\|A_{1} \ldots A_{n}\right\| \rightleftharpoons\left\|A_{1}\right\|+\ldots+\left\|A_{n}\right\|$.
Definition. The set of primitive types occurring in a type is defined as follows.

$$
\operatorname{Var}\left(p_{i}\right) \rightleftharpoons\left\{p_{i}\right\} \quad \operatorname{Var}(A \cdot B) \rightleftharpoons \operatorname{Var}(A) \cup \operatorname{Var}(B)
$$

$$
\operatorname{Var}(A \backslash B) \rightleftharpoons \operatorname{Var}(A) \cup \operatorname{Var}(B) \quad \operatorname{Var}(A / B) \rightleftharpoons \operatorname{Var}(A) \cup \operatorname{Var}(B)
$$

Definition. For any integer m, we write $\operatorname{Tp}(m)$ for the finite set of types

$$
\operatorname{Tp}(m) \rightleftharpoons\left\{A \in \operatorname{Tp} \mid \operatorname{Var}(A) \subseteq\left\{p_{1}, p_{2}, \ldots, p_{m}\right\} \text { and }\|A\| \leq m\right\}
$$

By $\operatorname{Tp}(m)^{*}$ we denote the set of all finite sequences of types from $\operatorname{Tp}(m)$.
Definition. A $\operatorname{Tp}(m)$-quasimodel $\left\langle\mathcal{W}^{*}, w\right\rangle$ is a valuation $w: \operatorname{Tp} \rightarrow \mathbf{P}\left(\mathcal{W}^{*}\right)$ over a free monoid $\left\langle\mathcal{W}^{*}, \circ, \varepsilon\right\rangle$ such that
(1) for any $A \in \mathrm{Tp}$ and $B \in \mathrm{Tp}$, if $A \cdot B \in \operatorname{Tp}(m)$, then $w(A \cdot B) \subseteq$ $w(A) \circ w(B)$;
(2) for any $\Gamma \in \operatorname{Tp}(m)^{*}$ and $A \in \operatorname{Tp}(m)$, if $L^{*} \vdash \Gamma \rightarrow A$, then $\vec{w}(\Gamma) \subseteq$ $w(A)$;
(3) for any $A \in \operatorname{Tp}(m)$, if $\varepsilon \in w(A)$, then $L^{*} \vdash \Lambda \rightarrow A$.

Lemma 3.1 Let $\left\langle\mathcal{W}^{*}, w\right\rangle$ be a $\operatorname{Tp}(m)$-quasimodel. Then the following statements hold.
(i) If $A \cdot B \in \operatorname{Tp}(m)$, then $w(A \cdot B)=w(A) \circ w(B)$.
(ii) If $A \backslash B \in \operatorname{Tp}(m)$, then $w(A \backslash B) \subseteq\left\{\gamma \in \mathcal{W}^{*} \mid w(A) \circ \gamma \subseteq w(B)\right\}$.
(iii) If $B / A \in \operatorname{Tp}(m)$, then $w(B / A) \subseteq\left\{\gamma \in \mathcal{W}^{*} \mid \gamma \circ w(A) \subseteq w(B)\right\}$.

Proof. It is sufficient to note that $L^{*} \vdash A B \rightarrow A \cdot B, L^{*} \vdash A(A \backslash B) \rightarrow B$, $L^{*} \vdash B(B / A) \rightarrow B$, and use (2) from the definition of a $\operatorname{Tp}(m)$-quasimodel.

Definition. A sequent $\Gamma \rightarrow A$ is true in a $\operatorname{Tp}(m)$-quasimodel $\left\langle\mathcal{W}^{*}, w\right\rangle$ iff $\vec{w}(\Gamma) \subseteq w(A)$.

Definition. A $\operatorname{Tp}(m)$-quasimodel $\left\langle\mathcal{W}^{*}, w\right\rangle$ is a conservative extension of another $\operatorname{Tp}(m)$-quasimodel $\left\langle\mathcal{V}^{*}, v\right\rangle$ iff
(1) $\mathcal{V} \subseteq \mathcal{W}$;
(2) $w(A) \cap \mathcal{V}^{*}=v(A)$ for any type A.

Evidently, if $\left\langle\mathcal{W}^{*}, w\right\rangle$ is a conservative extension of $\left\langle\mathcal{V}^{*}, v\right\rangle$, then for any type A we have $v(A) \subseteq w(A)$.

Lemma 3.2 If $\left\langle\mathcal{W}_{2}^{*}, w_{2}\right\rangle$ is a conservative extension of $\left\langle\mathcal{W}_{1}^{*}, w_{1}\right\rangle$ and $\left\langle\mathcal{W}_{3}^{*}, w_{3}\right\rangle$ is a conservative extension of $\left\langle\mathcal{W}_{2}^{*}, w_{2}\right\rangle$, then $\left\langle\mathcal{W}_{3}^{*}, w_{3}\right\rangle$ is a conservative extension of $\left\langle\mathcal{W}_{1}^{*}, w_{1}\right\rangle$.

Proof. In view of $\mathcal{W}_{1}^{*} \subseteq \mathcal{W}_{2}^{*}$ we have $w_{3}(A) \cap \mathcal{W}_{1}^{*}=w_{3}(A) \cap\left(\mathcal{W}_{2}^{*} \cap \mathcal{W}_{1}^{*}\right)=$ $\left(w_{3}(A) \cap \mathcal{W}_{2}^{*}\right) \cap \mathcal{W}_{1}^{*}$. Further, $\left(w_{3}(A) \cap \mathcal{W}_{2}^{*}\right) \cap \mathcal{W}_{1}^{*}=w_{2}(A) \cap \mathcal{W}_{1}^{*}=w_{1}(A)$.

We shall denote by \mathbf{Z} the set of all integers and by \mathbf{N} the set of all natural numbers, including zero.

Definition. We say that a sequence of $\operatorname{Tp}(m)$-quasimodels $\left\langle\mathcal{W}_{i}^{*}, w_{i}\right\rangle \quad(i \in$ $\mathbf{N})$ is conservative iff, for every $i \in \mathbf{N},\left\langle\mathcal{W}_{i+1}^{*}, w_{i+1}\right\rangle$ is a conservative extension of $\left\langle\mathcal{W}_{i}^{*}, w_{i}\right\rangle$. (Here m is constant.)

Definition. The limit of a conservative sequence $\left\langle\mathcal{W}_{i}^{*}, w_{i}\right\rangle \quad(i \in \mathbf{N})$ is the $\operatorname{Tp}(m)$-quasimodel $\left\langle\mathcal{W}_{\infty}^{*}, w_{\infty}\right\rangle$ defined as follows.
(1) $\mathcal{W}_{\infty} \rightleftharpoons \bigcup_{i \in \mathbf{N}} \mathcal{W}_{i}$
(2) $w_{\infty}(A) \rightleftharpoons \bigcup_{i \in \mathbf{N}} w_{i}(A)$

Lemma 3.3 The definition of the limit is correct, i.e., $\left\langle\mathcal{W}_{\infty}^{*}, w_{\infty}\right\rangle$ is really a $\mathrm{Tp}(m)$-quasimodel.

Proof.
(1) Let $A \cdot B \in \operatorname{Tp}(m)$ and $\gamma \in w_{\infty}(A \cdot B)$. Then for some n we have $\gamma \in w_{n}(A \cdot B) \subseteq w_{n}(A) \circ w_{n}(B)$. Thus $\gamma=\alpha \circ \beta$, where $\alpha \in w_{n}(A)$ and $\beta \in w_{n}(B)$. Evidently $\alpha \in w_{\infty}(A)$ and $\beta \in w_{\infty}(B)$, whence $\gamma=\alpha \circ \beta \in$ $w_{\infty}(A) \circ w_{\infty}(B)$.
(2) Let $L^{*} \vdash A_{1} \ldots A_{l} \rightarrow B$, where $A_{1} \in \operatorname{Tp}(m), \ldots, A_{l} \in \operatorname{Tp}(m)$, and $B \in \operatorname{Tp}(m)$. Assume that $\gamma \in \vec{w}_{\infty}\left(A_{1} \ldots A_{l}\right)$, i.e., $\gamma=\alpha_{1} \circ \ldots \circ \alpha_{l}$, where $\alpha_{1} \in w_{\infty}\left(A_{1}\right), \ldots, \alpha_{l} \in w_{\infty}\left(A_{l}\right)$. Then $\alpha_{1} \in w_{i_{1}}\left(A_{1}\right), \ldots, \alpha_{l} \in w_{i_{l}}\left(A_{l}\right)$ for some $i_{1}, \ldots, i_{l} \in \mathbf{N}$. Put $n \rightleftharpoons \max \left(i_{1}, \ldots, i_{l}\right)$.

According to Lemma 3.2, $\alpha_{1} \in w_{n}\left(A_{1}\right), \ldots, \alpha_{l} \in w_{n}\left(A_{l}\right)$, whence $\gamma=$ $\alpha_{1} \circ \ldots \circ \alpha_{l} \in \overrightarrow{w_{n}}\left(A_{1} \ldots A_{l}\right) \subseteq w_{n}(B) \subseteq w_{\infty}(B)$.
(3) Obvious.

Lemma 3.4 The limit of a conservative sequence is a conservative extension of any of the elements of the sequence.

Proof. We verify that $w_{\infty}(A) \cap \mathcal{W}_{i}^{*}=w_{i}(A)$. For any $k \leq i$ we have $w_{k}(A) \subseteq w_{i}(A)$. Thus $w_{\infty}(A)=\bigcup_{j} w_{j}(A)=\bigcup_{j \geq i} w_{j}(A)$, whence $w_{\infty}(A) \cap$ $\mathcal{W}_{i}^{*}=\left(\bigcup_{j \geq i} w_{j}(A)\right) \cap \mathcal{W}_{i}^{*}=\bigcup_{j \geq i}\left(w_{j}(A) \cap \mathcal{W}_{i}^{*}\right)$. Note that $w_{j}(A) \cap \mathcal{W}_{i}^{*}=$ $w_{i}(A)$ for any $j \geq i$ (according to Lemma 3.2). Now $\bigcup_{j \geq i}\left(w_{j}(A) \cap \mathcal{W}_{i}^{*}\right)=$ $\bigcup_{j \geq i} w_{i}(A)=w_{i}(A)$.

4 A simple quasimodel

Definition. We define the non-negative count $\overline{\#}$ as the following mapping from types to non-negative integers.

$$
\begin{aligned}
\overline{\#} p_{i} & \rightleftharpoons 1 \\
\overline{\#}(A \cdot B) & \rightleftharpoons \overline{\#} A+\overline{\#} B \\
\overline{\#}(A \backslash B) & \rightleftharpoons \begin{cases}\max (0, \overline{\#} B-\overline{\#} A), & \text { if } L^{*} \vdash \Lambda \rightarrow A \backslash B \\
\max (1, \overline{\#} B-\overline{\#} A), & \text { if } L^{*} \forall \Lambda \rightarrow A \backslash B\end{cases} \\
\overline{\#}(A / B) & \rightleftharpoons \begin{cases}\max (0, \overline{\#} A-\overline{\#} B), & \text { if } L^{*} \vdash \Lambda \rightarrow A / B \\
\max (1, \overline{\#} A-\overline{\#} B), & \text { if } L^{*} \forall \Lambda \rightarrow A / B\end{cases}
\end{aligned}
$$

The non-negative count of a sequence of types is defined in the natural way.

$$
\overline{\#}\left(A_{1} \ldots A_{l}\right) \rightleftharpoons \overline{\#} A_{1}+\ldots+\overline{\#} A_{l}
$$

By definition, $\overline{\#}(\Lambda) \rightleftharpoons 0$.
Lemma 4.1 For any type A its non-negative satisfies the inequalities $0 \leq$ $\overline{\#} A \leq\|A\|$.

Proof. Induction on $\|A\|$.
Lemma 4.2 If $\overline{\#} A=0$, then $L^{*} \vdash \Lambda \rightarrow A$.
Proof. Induction on $\|A\|$. Induction steps for $B \backslash C$ and B / C are easy. In the case of $B \cdot C$ we assume that $\overline{\#}(B \cdot C)=0$ and obtain $\overline{\#} B=0, \overline{\#} C=0$, and

$$
\frac{\Lambda \rightarrow B \quad \Lambda \rightarrow C}{\Lambda \rightarrow B \cdot C}(\rightarrow \bullet) .
$$

Lemma 4.3 If $L^{*} \vdash \Gamma \rightarrow A$ then $\overline{\#} \Gamma \geq \overline{\#} A$.
Proof. Induction on the length of the derivation.
Case 1: Axiom.
Obvious.
Case 2: $(\rightarrow \backslash)$ Given $\frac{A \Pi \rightarrow B}{\Pi \rightarrow A \backslash B}(\rightarrow \backslash)$.
By the induction hypothesis $\overline{\#} A+\overline{\#} \Pi \geq \overline{\#} B$, whence $\overline{\#} \Pi \geq \overline{\#} B-\overline{\#} A$.
Obviously, if $\overline{\#} \Pi \geq 1$, then $\overline{\#} \Pi \geq \max (1, \overline{\#} B-\overline{\#} A) \geq \overline{\#}(A \backslash B)$. Let now $\overline{\#} \Pi=0$ and $\Pi=C_{1} \ldots C_{n}$. Then $\overline{\#} C_{i}=0$ for each $i \leq n$. According to Lemma 4.2 $L^{*} \vdash \Lambda \rightarrow C_{i}$ for each $i \leq n$. Applying ($C U T$) n times we derive $L^{*} \vdash \Lambda \rightarrow A \backslash B$, whence $\overline{\#}(A \backslash B)=\max (0, \overline{\#} B-\overline{\#} A)$. From $\overline{\#} B-\overline{\#} A \leq$ $\overline{\#} \Pi=0$ we obtain $\overline{\#}(A \backslash B)=0$.
CASE 3: $(\rightarrow /)$
Similar.
CASE 4: $(\backslash \rightarrow) \quad$ Given $\frac{\Phi \rightarrow A \quad \Gamma B \Delta \rightarrow C}{\Gamma \Phi(A \backslash B) \Delta \rightarrow C}(\backslash \rightarrow)$.
By the induction hypothesis $\overline{\#} \Phi \geq \overline{\#} A$ and $\overline{\#} \Gamma+\overline{\#} B+\overline{\#} \Delta \geq \overline{\#} C$.
Note that $\overline{\#}(A \backslash B) \geq \overline{\#} B-\overline{\#} A$.
Hence $\overline{\#} \Gamma+\overline{\#} \Phi+\overline{\#}(A \backslash B)+\overline{\#} \Delta \geq \overline{\#} \Gamma+\overline{\#} A+(\overline{\#} B-\overline{\#} A)+\overline{\#} \Delta \geq \overline{\#} C$.
Case 5: $(/ \rightarrow)$
Similar.
CASE 6: $(\rightarrow \bullet)$ Given $\frac{\Gamma \rightarrow A \Delta \rightarrow B}{\Gamma \Delta \rightarrow A \cdot B}(\rightarrow \bullet)$.
If $\overline{\#} \Gamma \geq \overline{\#} A$ and $\overline{\#} \Delta \geq \overline{\#} B$, then $\overline{\#} \Gamma+\overline{\#} \Delta \geq \overline{\#} A+\overline{\#} B=\overline{\#}(A \cdot B)$.
CASE 7: $(\bullet \rightarrow)$ Given $\frac{\Gamma A B \Delta \rightarrow C}{\Gamma(A \cdot B) \Delta \rightarrow C}(\bullet \rightarrow)$.
Evidently $\overline{\#}(\Gamma(A \cdot B) \Delta)=\overline{\#}(\Gamma A B \Delta)$.
Remark. For any type A, we have $\overline{\#} A=0$ if and only if $L^{*} \vdash \Lambda \rightarrow A$.
Now we define a $\operatorname{Tp}(m)$-quasimodel $\left\langle\mathcal{W}_{0}^{*}, w_{0}\right\rangle$.

$$
\mathcal{W}_{0} \rightleftharpoons\left\{a_{0}\right\} \quad w_{0}(A) \rightleftharpoons\left\{a_{0}^{k} \mid k \geq \overline{\#} A\right\}
$$

Here a_{0}^{k} denotes $\underbrace{a_{0} \circ \ldots \circ a_{0}}_{k \text { times }}$. In particular, $a_{0}^{0}=\varepsilon$.

Lemma $4.4\left\langle\mathcal{W}_{0}^{*}, w_{0}\right\rangle$ is a $\operatorname{Tp}(m)$-quasimodel for any natural number m.
Proof. (1) We prove that $w_{0}(A \cdot B) \subseteq w_{0}(A) \circ w_{0}(B)$.
Let $a_{0}^{k} \in w_{0}(A \cdot B)$. We put $k_{1} \rightleftharpoons \overline{\#} A$ and $k_{2} \rightleftharpoons k-k_{1}$. In view of $k \geq \overline{\#}(A \cdot B)=\overline{\#} A+\overline{\#} B$ we have $k_{2} \geq \overline{\#} B$. Evidently $a_{0}^{k}=a_{0}^{k_{1}} \circ a_{0}^{k_{2}}$, $a_{0}^{k_{1}} \in w_{0}(A)$ and $a_{0}^{k_{2}} \in w_{0}(B)$.
(2) We verify that if $L^{*} \vdash C_{1} \ldots C_{n} \rightarrow A$, then $w_{0}\left(C_{1}\right) \circ \ldots \circ w_{0}\left(C_{n}\right) \subseteq$ $w_{0}(A)$.

Let $a_{0}^{k_{i}} \in w_{0}\left(C_{i}\right)$ for every $i \leq n$. Then $\sum k_{i} \geq \sum \overline{\#} C_{i} \geq \# A$ according to Lemma 4.3. Thus $a_{0}^{k_{1}} \circ \ldots \circ a_{0}^{k_{n}} \in w_{0}(A)$.
(3) In view of Lemma 4.2, if $\varepsilon \in w_{0}(A)$, then $L^{*} \vdash \Lambda \rightarrow A$.

5 Witnesses

Definition. We fix a countable alphabet $\mathcal{U}=\left\{a_{j} \mid j \in \mathbf{N}\right\}$. By \mathcal{K}^{m} we denote the class of all $\operatorname{Tp}(m)$-quasimodels $\left\langle\mathcal{V}^{*}, v\right\rangle$, such that $\mathcal{V} \subset \mathcal{U}, \mathcal{V}$ is finite, and for every $A \in \operatorname{Tp}(m)$ there is $\alpha \in v(A)$ satisfying $|\alpha| \leq m$.

Lemma 5.1 The $\operatorname{Tp}(m)$-quasimodel $\left\langle\mathcal{W}_{0}^{*}, w_{0}\right\rangle$ from Lemma 4.4 belongs to the class \mathcal{K}^{m}.

Proof. Immediate from Lemma 4.1.
Definition. Let $\left\langle\mathcal{W}^{*}, w\right\rangle$ be a $\operatorname{Tp}(m)$-quasimodel. Let $A, B \in \operatorname{Tp}, \alpha \in \mathcal{W}^{*}$, $\gamma \in \mathcal{W}^{*}$, and $\gamma \notin w(A \backslash B)$. We say that α is a witness of $\gamma \notin w(A \backslash B)$ iff $\alpha \in w(A)$ and $\alpha \circ \gamma \notin w(B)$.

Definition. Let $\left\langle\mathcal{W}^{*}, w\right\rangle$ be a $\operatorname{Tp}(m)$-quasimodel. Let $A, B \in \operatorname{Tp}, \alpha \in \mathcal{W}^{*}$, $\gamma \in \mathcal{W}^{*}$, and $\gamma \notin w(B / A)$. We say that α is a witness of $\gamma \notin w(B / A)$ iff $\alpha \in w(A)$, and $\gamma \circ \alpha \notin w(B)$.
Definition. Let \mathcal{K} be a class of $\operatorname{Tp}(m)$-quasimodels. We say that the class \mathcal{K} is witnessed iff
(1) for any $\left\langle\mathcal{V}^{*}, v\right\rangle \in \mathcal{K}$, for any type of the form $A \backslash B$ from $\operatorname{Tp}(m)$, and for any $\gamma \in \mathcal{V}^{*}$, if $\gamma \notin v(A \backslash B)$ then there is a conservative extension $\left\langle\mathcal{W}^{*}, w\right\rangle$ of $\left\langle\mathcal{V}^{*}, v\right\rangle$ in \mathcal{K} and $\left\langle\mathcal{W}^{*}, w\right\rangle$ contains a witness of $\gamma \notin w(A \backslash B)$;
(2) for any $\left\langle\mathcal{V}^{*}, v\right\rangle \in \mathcal{K}$, for any type of the form B / A from $\operatorname{Tp}(m)$, and for any $\gamma \in \mathcal{V}^{*}$, if $\gamma \notin v(B / A)$ then there is a conservative extension $\left\langle\mathcal{W}^{*}, w\right\rangle$ of $\left\langle\mathcal{V}^{*}, v\right\rangle$ in \mathcal{K} and $\left\langle\mathcal{W}^{*}, w\right\rangle$ contains a witness of $\gamma \notin w(B / A)$.

Lemma 5.2 If the class \mathcal{K}^{m} is witnessed, then there is a free monoid model $\left\langle\mathcal{V}^{*}, v\right\rangle$ such that
(i) for every type $E \in \operatorname{Tp}(m)$, if $L^{*} \nvdash \Lambda \rightarrow E$, then the sequent $\Lambda \rightarrow E$ is false in $\left\langle\mathcal{V}^{*}, v\right\rangle$;
(ii) $v(E) \neq \emptyset$ for every type $E \in \operatorname{Tp}(m)$;
(iii) $\mathcal{V} \subseteq \mathcal{U}$.

At the end of this paper it will be proved that the class \mathcal{K}^{m} is witnessed. Thus Lemma 5.2 (i) provides a proof of completeness of L^{*} with respect to free monoid models.
Proof. Evidently there is a function $\sigma: \mathbf{N} \rightarrow \operatorname{Tp}(m) \times \mathcal{U}^{*}$ such that for any $C \in \operatorname{Tp}(m)$ and for any $\gamma \in \mathcal{U}^{*}$ there are infinitely many natural numbers i, for which $\sigma(i)=\langle C, \gamma\rangle$.

Starting with the $\operatorname{Tp}(m)$-quasimodel $\left\langle\mathcal{W}_{0}^{*}, w_{0}\right\rangle$ from Lemma 4.4, we define by induction on i a conservative sequence $\left\langle\mathcal{W}_{i}^{*}, w_{i}\right\rangle(i \in \mathbf{N})$, consisting of $\operatorname{Tp}(m)$-quasimodels from the class \mathcal{K}^{m}.

Assume that $\left\langle\mathcal{W}_{i}^{*}, w_{i}\right\rangle \in \mathcal{K}^{m}$ has been constructed. We define $\left\langle\mathcal{W}_{i}^{*}, w_{i}\right\rangle$ as follows.
Case 1:
If $\sigma(i)=\langle A \backslash B, \gamma\rangle, \gamma \in \mathcal{W}_{i}^{*}, \gamma \notin w_{i}(A \backslash B)$, and there are no witnesses of $\gamma \notin$ $w_{i}(A \backslash B)$ in $\left\langle\mathcal{W}_{i}^{*}, w_{i}\right\rangle$, then we take $\left\langle\mathcal{W}_{i+1}^{*}, w_{i+1}\right\rangle$ to be any conservative extension of $\left\langle\mathcal{W}_{i}^{*}, w_{i}\right\rangle$ in \mathcal{K}^{m}, containing a witness of $\gamma \notin w_{i+1}(A \backslash B)$. Such a $\operatorname{Tp}(m)$-quasimodel $\left\langle\mathcal{W}_{i+1}^{*}, w_{i+1}\right\rangle$ exists, since \mathcal{K}^{m} is witnessed. Case 2:
If $\sigma(i)=\langle B / A, \gamma\rangle, \gamma \in \mathcal{W}_{i}^{*}, \gamma \notin w_{i}(B / A)$, and there are no witnesses of $\gamma \notin$ $w_{i}(B / A)$ in $\left\langle\mathcal{W}_{i}^{*}, w_{i}\right\rangle$, then we take $\left\langle\mathcal{W}_{i+1}^{*}, w_{i+1}\right\rangle$ to be any conservative extension of $\left\langle\mathcal{W}_{i}^{*}, w_{i}\right\rangle$ in \mathcal{K}^{m}, containing a witness of $\gamma \notin w_{i+1}(B / A)$.
CASE 3:
Otherwise we put $\left\langle\mathcal{W}_{i+1}^{*}, w_{i+1}\right\rangle \rightleftharpoons\left\langle\mathcal{W}_{i}^{*}, w_{i}\right\rangle$.
Let $\left\langle\mathcal{W}_{\infty}^{*}, w_{\infty}\right\rangle$ be the limit of the conservative sequence $\left\langle\mathcal{W}_{i}^{*}, w_{i}\right\rangle$. We put $\mathcal{V} \rightleftharpoons \mathcal{W}_{\infty}$.

Now we define a valuation $v: \mathrm{Tp} \rightarrow \mathbf{P}\left(\mathcal{W}_{\infty}^{*}\right)$ by induction on the complexity of a type.

$$
\begin{aligned}
v\left(p_{i}\right) & \rightleftharpoons w_{\infty}\left(p_{i}\right) \\
v(A \cdot B) & \rightleftharpoons v(A) \circ v(B) \\
v(A \backslash B) & \rightleftharpoons\left\{\gamma \in \mathcal{V}^{*} \mid v(A) \circ \gamma \subseteq v(B)\right\} \\
v(B / A) & \rightleftharpoons\left\{\gamma \in \mathcal{V}^{*} \mid \gamma \circ v(A) \subseteq v(B)\right\}
\end{aligned}
$$

Evidently $\left\langle\mathcal{V}^{*}, v\right\rangle$ is a free monoid model. Next we verify by induction on the complexity of C that $w_{\infty}(C)=v(C)$ for every $C \in \operatorname{Tp}(m)$.

Induction step.
Case 1: $C=A \cdot B$
Obvious from Lemma 3.1 (i).

Case 2: $C=A \backslash B$
First we prove that if $\gamma \in w_{\infty}(A \backslash B)$ then $\gamma \in v(A \backslash B)$. Let $\gamma \in w_{\infty}(A \backslash B)$. Take any $\alpha \in v(A)$. By the induction hypothesis $\alpha \in w_{\infty}(A)$. Evidently $\alpha \circ \gamma \in \overrightarrow{w_{\infty}}(A(A \backslash B))$. Hence $\alpha \circ \gamma \in w_{\infty}(B)$ in view of $L^{*} \vdash A(A \backslash B) \rightarrow B$. By the induction hypothesis $\alpha \circ \gamma \in v(B)$. Thus $\gamma \in v(A \backslash B)$.

Now we prove that if $\gamma \in \mathcal{U}^{*}$ and $\gamma \notin w_{\infty}(A \backslash B)$ then $\gamma \notin v(A \backslash B)$. If $\gamma \notin \mathcal{W}_{\infty}^{*}$, then this is obvious. Let now $\gamma \in \mathcal{W}_{\infty}^{*}$. Recall that $\mathcal{W}_{\infty}=\bigcup_{j \in \mathbf{N}} \mathcal{W}_{j}$. Thus $\gamma \in \mathcal{W}_{j}^{*}$ for some j. Evidently, there exists an integer $i \geq j$ such that $\sigma(i)=\langle A \backslash B, \gamma\rangle$. According to the construction of $\left\langle\mathcal{W}_{i+1}^{*}, w_{i+1}\right\rangle$ there is a witness $\alpha \in \mathcal{W}_{i+1}^{*}$ of $\gamma \notin w_{\infty}(A \backslash B)$. That is, $\alpha \in w_{i+1}(A)$ and $\alpha \circ \gamma \notin$ $w_{i+1}(B)$. Since w_{∞} is conservative over w_{i+1}, we have $\alpha \in w_{\infty}(A)$ and $\alpha \circ \gamma \notin w_{\infty}(B)$. By the induction hypothesis, $\alpha \in v(A)$ and $\alpha \circ \gamma \notin v(B)$. Thus $\gamma \notin v(A \backslash B)$.
Case 3: $C=B / A$
Similar to the previous case.
Finally, we prove that the free monoid model $\left\langle\mathcal{V}^{*}, v\right\rangle$ has the desired properties (i)-(iii).
(i) Let $E \in \mathrm{Tp}(m)$ and $L^{*} \nvdash \Lambda \rightarrow E$. We must prove that $\varepsilon \notin v(E)$. According to the definition of a $\operatorname{Tp}(m)$-quasimodel $\varepsilon \notin w_{0}(E)$. In view of Lemma $3.4 \varepsilon \notin w_{\infty}(E)=v(E)$.
(ii) If $E \in \operatorname{Tp}(m)$, then $a_{0}^{m} \in w_{0}(E) \subseteq w_{\infty}(E)=v(E)$.
(iii) Obvious.

6 Noncommutative linear logic

In this paper we consider only the multiplicative fragment of linear logic.
Noncommutative multiplicative linear formulas are defined as follows. We assume that an enumerable set of variables $\operatorname{Var}=\left\{p_{1}, p_{2}, \ldots\right\}$ is given. We introduce the set of formal symbols called atoms

$$
\text { At } \rightleftharpoons\left\{p^{\perp n} \mid p \in \operatorname{Var}, n \in \mathbf{Z}\right\}
$$

Intuitively, if $n \geq 0$, then $p^{\perp n}$ means ' p with n right negations' and $p^{\perp(-n)}$ means ' p with n left negations'.

Definition. The set of normal formulas (or just formulas for shortness) is defined to be the smallest set NFm satisfying the following conditions:

1. At $\subset \mathrm{NFm}$;
2. $\perp \in \mathrm{NFm}$;
3. $1 \in \mathrm{NFm}$;
4. if $A \in \mathrm{NFm}$ and $B \in \mathrm{NFm}$, then $(A \otimes B) \in \mathrm{NFm}$ and $(A \wp B) \in \mathrm{NFm}$.

Here \otimes is the multiplicative conjunction, called 'tensor', and \wp is the multiplicative disjunction, called 'par'. The constants \perp and $\mathbf{1}$ are multiplicative falsity and multiplicative truth respectively.

By NFm^{*} we denote the set of all finite sequences of normal formulas. The empty sequence is denoted by Λ.

Definition. We define by induction the right negation ($)^{\perp}: \mathrm{NFm} \rightarrow \mathrm{NFm}$ and the left negation ${ }^{\perp}$ (): NFm $\rightarrow \mathrm{NFm}$.

$$
\begin{aligned}
\left(p^{\perp n}\right)^{\perp} & \rightleftharpoons p^{\perp(n+1)} \\
\perp^{\perp} & \rightleftharpoons \mathbf{1} \\
\mathbf{1}^{\perp} & \rightleftharpoons \perp \\
(A \otimes B)^{\perp} & \rightleftharpoons\left(B^{\perp}\right) \wp\left(A^{\perp}\right) \\
(A \wp B)^{\perp} & \rightleftharpoons\left(B^{\perp}\right) \otimes\left(A^{\perp}\right) \\
& \\
{ }^{\perp}\left(p^{\perp n}\right) & \rightleftharpoons p^{\perp(n-1)} \\
\perp^{\perp} & \rightleftharpoons \mathbf{1} \\
\perp^{\perp} & \rightleftharpoons \perp \\
\perp^{\perp}(A \otimes B) & \rightleftharpoons\left({ }^{\perp} B\right) \wp\left({ }^{\perp} A\right) \\
\perp^{\perp}(A \wp B) & \rightleftharpoons\left({ }^{\perp} B\right) \otimes\left({ }^{\perp} A\right)
\end{aligned}
$$

The two negations are extended to sequences of normal formulas as follows.

$$
\begin{aligned}
{ }^{\perp}\left(A_{1} \ldots A_{n}\right) & \rightleftharpoons{ }^{\perp} A_{n} \ldots{ }^{\perp} A_{1} \\
\left(A_{1} \ldots A_{n}\right)^{\perp} & \rightleftharpoons A_{n}^{\perp} \ldots A_{1}^{\perp}
\end{aligned}
$$

Remark. Several other connectives can be defined in this logic.
The most popular ones are two linear implications, defined as

$$
A \multimap B \rightleftharpoons A^{\perp} \wp B \text { and } B \circ-A \rightleftharpoons B \wp{ }^{\perp} A
$$

Lemma 6.1 For any $A \in \operatorname{NFm}$ the equalities ${ }^{\perp}\left(A^{\perp}\right)=A$ and $\left({ }^{\perp} A\right)^{\perp}=$ A hold true.

Proof. Easy induction on the structure of A.

In [1] V. M. Abrusci introduced a sequent calculus PNCL for the pure noncommutative classical linear propositional logic. In the same paper two one-sided sequent calculi SPNCL and SPNCL' were introduced and it was proved that they are equivalent to PNCL.

We shall use a slightly modified (but equivalent) version of the multiplicative fragment of SPNCL'. The sequents of this calculus are of the form $\rightarrow \Gamma$, where $\Gamma \in \mathrm{NFm}^{*}$.

The calculus SPNCL' has the following axioms and rules.

$$
\left.\begin{array}{ll}
\begin{array}{ll}
\rightarrow\left(p^{\perp(n+1)}\right)\left(p^{\perp n}\right)
\end{array}(i d) & \overline{\rightarrow \mathbf{1}}(\mathbf{1}) \\
& \frac{\rightarrow \Gamma \Delta}{\rightarrow \Gamma \perp \Delta}(\perp)
\end{array}\right)
$$

Here capital letters A, B, \ldots stand for formulas, capital Greek letters denote finite (possibly empty) sequences of formulas, p ranges over Var, and n ranges over \mathbf{Z}.

Remark. The rule (id) can be written as $\overline{\rightarrow\left(C^{\perp}\right) C}$ (or equivalently as $\overline{\rightarrow C\left({ }^{\perp} C\right)}$), where $C \in$ At. Actually, the restriction $C \in$ At is not essential. It is imposed in this paper only in order to reduce the number of technical details in some proofs.

We define an embedding of L^{*} into SPNCL'.
Definition. The function $\widehat{()}: \mathrm{Tp} \rightarrow \mathrm{NFm}$ is defined as follows.

$$
\begin{aligned}
\widehat{p_{i}} & \rightleftharpoons p_{i} \\
\widehat{A \cdot B} & \rightleftharpoons \widehat{A} \otimes \widehat{B} \\
\widehat{A \backslash B} & \rightleftharpoons \widehat{A}^{\perp} \wp \widehat{B} \\
\widehat{A / B} & \rightleftharpoons \widehat{A} \wp{ }^{\perp} \widehat{B}
\end{aligned}
$$

If $\Gamma=A_{1} \ldots A_{n}$, then by $\widehat{\Gamma}$ we denote the sequence $\widehat{A_{1}} \ldots \widehat{A_{n}}$.
Lemma 6.2 For every normal formula $A \in \mathrm{NFm}$ there is at most one type $B \in \mathrm{Tp}$ such that $\widehat{B}=A$.

Proof. We define a function $\mathrm{h}: \mathrm{NFm} \rightarrow \mathbf{Z}$ by induction as follows.

$$
\begin{aligned}
\mathfrak{h}\left(p^{\perp n}\right) & \rightleftharpoons \begin{cases}0, & \text { if } n \text { is even } \\
1, & \text { if } n \text { is odd }\end{cases} \\
\mathfrak{\natural 1} & \rightleftharpoons 0 \\
\natural \perp & \rightleftharpoons 1 \\
\mathfrak{}(A \otimes B) & \rightleftharpoons দ A+\natural B \\
\natural(A \wp B) & \rightleftharpoons দ A+দ B-1
\end{aligned}
$$

It is easy to see that $\mathfrak{h}\left(A^{\perp}\right)=\mathfrak{h}\left({ }^{\perp} A\right)=1-\natural A$. Now we can verify that if $A \in \mathrm{Tp}$, then $\mathfrak{\natural} \widehat{A}=0$. Thus there are no types $A_{1}, A_{2} \in \mathrm{Tp}$ such that ${\widehat{A_{1}}}^{\perp}=\widehat{A_{2}}$ (because ${\widehat{A_{1}}}^{\perp}=1$ and $\widehat{A_{2}}=0$).

Given a formula $D=\widehat{C}$ (where $C \in \mathrm{Tp}$), we can automatically decide what is the main connective in C. If $D \in \operatorname{Var}$, then C is primitive. If the main connective of D is \otimes, then the main connective of C is •. Finally, if $D=D_{1} \wp D_{2}$, then the main connective of C is \backslash or $/$, depending on whether $\mathfrak{b} D_{1}=1$ or $\mathfrak{q} D_{1}=0$.

Lemma 6.3 Let $\Gamma \in \mathrm{Tp}^{*}$ and $A \in \mathrm{Tp}$. The sequent $\Gamma \rightarrow A$ is derivable in L^{*} if and only if the sequent $\rightarrow \widehat{\Gamma}^{\perp} \widehat{A}$ is derivable in SPNCL'.

Proof. Both directions are proved using induction on derivation length.

7 Proof nets

We define proof nets for the multiplicative fragment of the noncommutative classical linear propositional logic. The concept of proof net introduced here (an extension of that from [1]) appears to be mathematical folklore.

We prove that a sequent is derivable if and only if there exists a proof net for this sequent.

Definition. For the purposes of this paper it is convenient to measure the length of a normal formula using the function $\|\cdot\|: N F m \rightarrow \mathbf{N}$ defined in the following way.

$$
\begin{aligned}
\left\|p^{\perp n}\right\| & \rightleftharpoons 2 \\
\|\perp\| & \rightleftharpoons 2 \\
\|1\| & \rightleftharpoons 2 \\
\|A \otimes B\| & \rightleftharpoons\|A\|+\|B\| \\
\|A \wp B\| & \rightleftharpoons\|A\|+\|B\|
\end{aligned}
$$

Remark. We are going to define formally a total order on the set of all 1, \perp, \otimes, \wp and atom occurrences in a formula (in fact this order coincides with the natural order from left to right). To make the forthcoming definition easier, we have used 2 instead of 1 in the base case in the definition of $\|\|\cdot\|$.

The definition of $\|\cdot\| \|$ is extended to finite sequences of formulas in the natural way.

$$
\left\|A_{1} \ldots A_{n}\right\| \rightleftharpoons\left\|A_{1}\right\|+\ldots+\left\|A_{n}\right\|
$$

We put $\|\Lambda\| \rightleftharpoons 0$.
The number of formulas in a finite sequence Γ is denoted by $|\Gamma|$. Thus $\left|A_{1} \ldots A_{n}\right|=n$.

To formalize the notion of occurrences of subformulas we introduce the set

$$
\mathrm{Occ} \rightleftharpoons \mathrm{NFm} \times \mathbf{Z}
$$

A pair $\langle B, k\rangle \in$ Occ will be intuitively interpreted as a subformula occurrence B. Here k in a way characterizes the position of B in the whole formula.

Definition. We define the function $c: \mathrm{NFm} \rightarrow \mathbf{N}$ (evaluating the "distance" of the "main connective" of a formula from its left end) formally as follows.

$$
\begin{aligned}
c\left(p^{\perp n}\right) & \rightleftharpoons 1 \\
c(\perp) & \rightleftharpoons 1 \\
c(\mathbf{1}) & \rightleftharpoons 1 \\
c(A \otimes B) & \rightleftharpoons\|A\| \\
c(A \wp B) & \rightleftharpoons\|A\|
\end{aligned}
$$

Definition. We define the binary relation ' α is a subformula of β ' on the set Occ formally as the least transitive binary relation \prec satisfying $\langle A, k-\|A\|+c(A)\rangle \prec\langle(A \lambda B), k\rangle$ and $\langle B, k+c(B)\rangle \prec\langle(A \lambda B), k\rangle$ for every $\lambda \in\{\otimes, \wp\}, A \in \mathrm{NFm}, B \in \mathrm{NFm}$, and $k \in \mathbf{Z}$.

Definition. The binary relation \preceq on the set Occ is defined in the natural way: $\alpha \preceq \beta$ if and only if $\alpha \prec \beta$ or $\alpha=\beta$.

Given a standalone formula $A \in \mathrm{NFm}$, we usually associate it with the pair $\langle A, c(A)\rangle \in$ Occ. Then each subformula occurrence B is associated with a pair $\langle B, k\rangle \in$ Occ such that $\langle B, k\rangle \preceq\langle A, c(A)\rangle$ and k is (intuitively) the " $\|\cdot\|$-distance" of the "main connective" of B from the left end of A.

Lemma 7.1 Let $A \in$ NFm. Then
(i) the set $\{\alpha \in \mathrm{Occ} \mid \alpha \preceq\langle A, c(A)\rangle\}$ contains $\|A\|-1$ elements;
(ii) for every $k \in \mathbf{Z}$ such that $0<k<\|A\|$, there is a unique formula $B \in \mathrm{NFm}$ satisfying $\langle B, k\rangle \preceq\langle A, c(A)\rangle\}$.

Definition. For any sequence of normal formulas $\Gamma=A_{1} \ldots A_{n}$ we construct a finite set

$$
\Omega_{\Gamma} \subset(\mathrm{NFm} \cup\{\diamond\}) \times \mathbf{N},
$$

where \diamond is a new formal symbol which does not belong to NFm.
The set Ω_{Γ} will act as the domain of all proof structures for the sequent $\rightarrow \Gamma$.

$$
\begin{gathered}
\Omega_{\Gamma} \rightleftharpoons\left\{\left\langle B, k+\left\|A_{1} \ldots A_{i-1}\right\|\right\rangle \mid 1 \leq i \leq n \text { and }\langle B, k\rangle \preceq\left\langle A_{i}, c\left(A_{i}\right)\right\rangle\right\} \\
\cup\left\{\left\langle\diamond,\left\|A_{1} \ldots A_{i-1}\right\|,\right\rangle \mid 1 \leq i \leq n\right\}
\end{gathered}
$$

Example 7.2 Let $\Gamma=\left(\left(q^{\perp 3} \otimes p^{\perp 8}\right) \wp p^{\perp 7}\right) q^{\perp 2}$. Then $\Omega_{\Gamma}=\left\{\alpha_{0}, \ldots, \alpha_{7}\right\}$, where

$$
\begin{aligned}
& \alpha_{0} \rightleftharpoons\langle\diamond, 0\rangle, \\
& \alpha_{1} \rightleftharpoons\left\langle q^{\perp 3}, 1\right\rangle \\
& \alpha_{2} \rightleftharpoons\left\langle\left(q^{\perp 3} \otimes p^{\perp 8}\right), 2\right\rangle, \\
& \alpha_{3} \rightleftharpoons\left\langle p^{\perp 8}, 3\right\rangle \\
& \alpha_{4} \rightleftharpoons\left\langle\left(\left(q^{\perp 3} \otimes p^{\perp 8}\right) \wp p^{\perp 7}\right), 4\right\rangle \\
& \alpha_{5} \rightleftharpoons\left\langle p^{\perp 7}, 5\right\rangle \\
& \alpha_{6} \rightleftharpoons\langle, 6\rangle \\
& \alpha_{7} \rightleftharpoons\left\langle q^{\perp 2}, 7\right\rangle
\end{aligned}
$$

The set Ω_{Γ} can be considered as consisting of six disjoint parts

$$
\Omega_{\Gamma}=\Omega_{\Gamma}^{\diamond} \cup \Omega_{\Gamma}^{A t} \cup \Omega_{\Gamma}^{\perp} \cup \Omega_{\Gamma}^{1} \cup \Omega_{\Gamma}^{\otimes} \cup \Omega_{\Gamma}^{\wp}
$$

where

$$
\begin{aligned}
\Omega_{\Gamma}^{\diamond} & \rightleftharpoons\left\{\langle\diamond, k, \Pi\rangle \in \Omega_{\Gamma}\right\} ; \\
\Omega_{\Gamma}^{\mathrm{At}} & \rightleftharpoons\left\{\left\langle p^{\perp n}, k, \Pi\right\rangle \in \Omega_{\Gamma}\right\} ; \\
\Omega_{\Gamma}^{\perp} & \rightleftharpoons\left\{\langle\perp, k, \Pi\rangle \in \Omega_{\Gamma}\right\} ; \\
\Omega_{\Gamma}^{1} & \rightleftharpoons\left\{\langle\mathbf{1}, k, \Pi\rangle \in \Omega_{\Gamma}\right\} ; \\
\Omega_{\Gamma}^{\otimes} & \rightleftharpoons\left\{\langle A \otimes B, k, \Pi\rangle \in \Omega_{\Gamma}\right\} ; \\
\Omega_{\Gamma}^{\wp} & \rightleftharpoons\left\{\langle A \wp B, k, \Pi\rangle \in \Omega_{\Gamma}\right\} .
\end{aligned}
$$

We shall often write $\Omega_{\Gamma}^{\wp \diamond}$ for $\Omega_{\Gamma}^{\diamond} \cup \Omega_{\Gamma}^{\wp}$.
Lemma $7.3\left|\Omega_{\Gamma}\right|=\|\Gamma\|$.
Definition. The invariant b, associating an integer with Ω_{Γ}, is defined as

$$
b\left(\Omega_{\Gamma}\right) \rightleftharpoons\left|\Omega_{\Gamma}^{\wp>}\right|-\left|\Omega_{\Gamma}^{\otimes}\right|-\left|\Omega_{\Gamma}^{1}\right|+\left|\Omega_{\Gamma}^{1}\right| .
$$

Definition. For every subset Θ of Ω_{Γ} we put

$$
b(\Theta) \rightleftharpoons\left|\Omega_{\Gamma}^{\infty} \cap \Theta\right|-\left|\Omega_{\Gamma}^{\otimes} \cap \Theta\right|-\left|\Omega_{\Gamma}^{\perp} \cap \Theta\right|+\left|\Omega_{\Gamma}^{1} \cap \Theta\right| .
$$

Remark. $b\left(\Omega_{C^{\perp}}\right)=b\left(\Omega_{\perp_{C}}\right)=2-b\left(\Omega_{C}\right)$.
Lemma 7.4 For all Γ
(i) $\left|\Omega_{\Gamma}^{\mathrm{At}}\right|+\left|\Omega_{\Gamma}^{\perp}\right|+\left|\Omega_{\Gamma}^{1}\right|=\left|\Omega_{\Gamma}^{\otimes}\right|+\left|\Omega_{\Gamma}^{\wp}\right|+\left|\Omega_{\Gamma}^{\diamond}\right|$;
(ii) if $\rightarrow \Gamma$ is derivable in SPNCL^{\prime}, then $b\left(\Omega_{\Gamma}\right)=2$.

Proof. (i) Easy induction on $\|\Gamma \Gamma\|$.
(ii) Straightforward induction on the length of the derivation in SPNCL'.

For each sequent $\rightarrow \Gamma$ we define two binary relations on Ω_{Γ}.
Definition. Let $\alpha \in \Omega_{\Gamma}$ and $\beta \in \Omega_{\Gamma}$. Then $\alpha \prec_{\Gamma} \beta$ if and only if $\alpha \notin \Omega_{\Gamma}^{\circ}$, $\beta \notin \Omega_{\Gamma}^{\circ}$, and $\alpha \prec \beta$.

Remark. The relation \prec_{Γ} is a strict partial order on Ω_{Γ}.
Definition. Let $\langle A, k, \Delta\rangle \in \Omega_{\Gamma}$ and $\langle B, l, \Pi\rangle \in \Omega_{\Gamma}$.
Then $\langle A, k, \Delta\rangle<_{\Gamma}\langle B, l, \Pi\rangle$ if and only if $k<l$.
Remark. The relation $<_{\Gamma}$ is an irreflexive linear order on Ω_{Γ}.
Definition. For any sequent $\rightarrow \Gamma$ we denote by Ω_{Γ} the triple $\left\langle\Omega_{\Gamma}, \prec_{\Gamma},<_{\Gamma}\right\rangle$.
Lemma 7.5 Let $\alpha, \beta, \gamma \in \Omega_{\Gamma}$ and $\alpha<_{\Gamma} \beta<_{\Gamma} \gamma$.
(i) If $\alpha \prec_{\Gamma} \gamma$, then $\beta \prec_{\Gamma} \gamma$.
(ii) If $\gamma \prec_{\Gamma} \alpha$, then $\beta \prec_{\Gamma} \alpha$.

Definition. Let $\langle\Omega, \mathcal{C}\rangle$ be an undirected graph, where Ω is the set of vertices and \mathcal{C} is the set of edges. Let $<$ be a strict linear order on the set Ω. We say that the graph $\langle\Omega, \mathcal{C}\rangle$ is <-planar iff for every edge $\{\alpha, \beta\} \in \mathcal{C}$ and every edge $\{\gamma, \delta\} \in \mathcal{C}$, if $\alpha<\gamma<\beta$, then $\alpha<\delta<\beta$ or $\delta=\alpha$ or $\delta=\beta$.

Remark. Intuitively, a graph is <-planar if and only if its edges can be drawn without intersections on a semiplane while the vertices of the graph are ordered according to $<$ on the border of the semiplane.

Lemma 7.6 If $\left\langle\Omega, \mathcal{C}_{1}\right\rangle$ is <-planar and $\mathcal{C}_{2} \subseteq \mathcal{C}_{1}$, then $\left\langle\Omega, \mathcal{C}_{2}\right\rangle$ is <-planar.
Lemma 7.7 Let $\langle\Omega, \mathcal{C}\rangle$ be an undirected graph, where $\Omega=\Omega_{1} \cup \Omega_{2}$ and $\Omega_{1} \cap \Omega_{2}=\emptyset$. Let $<$ and $<^{\prime}$ be two linear orders on Ω such that

$$
\begin{aligned}
& \left(\forall \alpha \in \Omega_{1}\right)\left(\forall \beta \in \Omega_{2}\right) \alpha<\beta ; \\
& \left(\forall \alpha \in \Omega_{1}\right)\left(\forall \beta \in \Omega_{2}\right) \beta<^{\prime} \alpha ; \\
& \left(\forall \alpha \in \Omega_{1}\right)\left(\forall \beta \in \Omega_{1}\right) \alpha<\beta \text { iff } \alpha<^{\prime} \beta ; \\
& \left(\forall \alpha \in \Omega_{2}\right)\left(\forall \beta \in \Omega_{2}\right) \alpha<\beta \text { iff } \alpha<^{\prime} \beta .
\end{aligned}
$$

Then $\langle\Omega, \mathcal{C}\rangle$ is <-planar if and only if $\langle\Omega, \mathcal{C}\rangle$ is $\left\langle^{\prime}\right.$-planar.
Definition. If \mathcal{C} is a set of directed edges, then by $\mathcal{C}^{\#}$ we denote the associated set of undirected edges.

$$
\mathcal{C}^{\#} \rightleftharpoons\{\{\alpha, \beta\} \mid\langle\alpha, \beta\rangle \in \mathcal{C}\}
$$

Definition. A proof structure is a quadruple $\left\langle\boldsymbol{\Omega}_{\Gamma}, \mathcal{A}, \mathcal{B}, \mathcal{E}\right\rangle$, where
(A1) $\mathcal{A} \subseteq \Omega_{\Gamma}^{\otimes} \times \Omega_{\Gamma}^{\mathfrak{\rho}}$;
(A2) $\mathcal{B} \subseteq \Omega_{\Gamma}^{\perp} \times\left(\Omega_{\Gamma}^{\mathrm{At}} \cup \Omega_{\Gamma}^{1}\right)$;
(A3) $\mathcal{E} \subseteq \Omega_{\Gamma}^{\mathrm{At}} \times \Omega_{\Gamma}^{\mathrm{At}}$;
(A4) the relations \mathcal{A}, \mathcal{B}, and \mathcal{E} are total functions on domains $\Omega_{\Gamma}^{\otimes}, \Omega_{\Gamma}^{\perp}$, and $\Omega_{\Gamma}^{\mathrm{At}}$ respectively.
(A5) if $\langle\alpha, \beta\rangle \in \mathcal{E}$, then $\langle\beta, \alpha\rangle \in \mathcal{E}$;
(A6) if $\langle\alpha, \beta\rangle \in \mathcal{E}$ and $\alpha<_{\Gamma} \beta$, then there are $p \in \operatorname{Var}$ and $n \in \mathbf{Z}$ such that $\alpha=p^{\perp(n+1)}$ and $\beta=p^{\perp n}$;
(A7) the graph $\left\langle\Omega_{\Gamma},(\mathcal{A} \cup \mathcal{B} \cup \mathcal{E})^{\#}\right\rangle$ is $<_{\Gamma}$-planar.
If $\alpha \in \Omega_{\Gamma}^{\otimes}$, then we denote by $\mathcal{A} \alpha$ the only element $\beta \in \Omega_{\Gamma}$ such that $\langle\alpha, \beta\rangle \in \mathcal{A}$. Similarly for \mathcal{B} and \mathcal{E}.

Definition. A proof net is a proof structure $\left\langle\boldsymbol{\Omega}_{\Gamma}, \mathcal{A}, \mathcal{B}, \mathcal{E}\right\rangle$ such that
(A8) $b\left(\Omega_{\Gamma}\right)=2$;
(A9) the graph $\left\langle\Omega_{\Gamma}, \prec_{\Gamma} \cup \mathcal{A}\right\rangle$ is acyclic (i. e., the transitive closure of $\prec_{\Gamma} \cup \mathcal{A}$ is irreflexive).

Example 7.8 We continue Example 7.2, where

$$
\Gamma=\left(\left(q^{\perp 3} \otimes p^{\perp 8}\right) \wp p^{\perp 7}\right) q^{\perp 2}
$$

Let $\mathcal{A}=\left\{\left\langle\alpha_{2}, \alpha_{6}\right\rangle\right\}, \mathcal{B}=\emptyset$, and $\mathcal{E}=\left\{\left\langle\alpha_{1}, \alpha_{7}\right\rangle,\left\langle\alpha_{3}, \alpha_{5}\right\rangle,\left\langle\alpha_{5}, \alpha_{3}\right\rangle,\left\langle\alpha_{7}, \alpha_{1}\right\rangle\right\}$. Then $\left\langle\boldsymbol{\Omega}_{\Gamma}, \mathcal{A}, \mathcal{B}, \mathcal{E}\right\rangle$ is a proof net.

Remark. In the definition of a proof structure one may in addition require that, if $\langle\alpha, \beta\rangle \in \mathcal{B}$ and $\langle\beta, \gamma\rangle \in \mathcal{E}$, then $\beta<_{\Gamma} \gamma$.

Before establishing that a sequent is derivable if and only if it has a proof net we prove some auxiliary lemmas.
Definition. Let $\Gamma \in \mathrm{NFm}^{*}, \alpha, \beta \in \Omega_{\Gamma}$, and $\alpha<_{\Gamma} \beta$. Then by $\Theta_{\Gamma}^{\alpha, \beta}$ we denote the set $\left\{\gamma \in \Omega_{\Gamma} \mid \alpha<_{\Gamma} \gamma<_{\Gamma} \beta\right\}$ and by $\Xi_{\Gamma}^{\alpha, \beta}$ we denote the set $\left\{\gamma<_{\Gamma} \alpha\right.$ or $\left.\beta<_{\Gamma} \gamma\right\}$.

Lemma 7.9 Let $\left\langle\boldsymbol{\Omega}_{\boldsymbol{\Gamma}}, \mathcal{A}, \mathcal{B}, \mathcal{E}\right\rangle$ be a proof structure, $\{\alpha, \beta\} \in \mathcal{A}^{\#}$, and $\alpha<_{\Gamma}$ β. Then $b\left(\Theta_{\Gamma}^{\alpha, \beta}\right) \geq 1$ and $b\left(\Xi_{\Gamma}^{\alpha, \beta}\right) \geq 1$.

Proof. For shortness we denote $\Theta \rightleftharpoons \Theta_{\Gamma}^{\alpha, \beta}$ and $\Xi \rightleftharpoons \Xi_{\Gamma}^{\alpha, \beta}$. We shall verify only $b(\Theta) \geq 1$. The proof of $b(\Xi) \geq 1$ is analogous.

According to Lemma 7.6 the graph $\left\langle\Omega_{\Gamma}, \mathcal{A}^{\#}\right\rangle$ is $<_{\Gamma}$-planar. Thus the set \mathcal{A} is divided into three disjoint subsets

$$
\mathcal{A}=\mathcal{A}_{0} \cup \mathcal{A}^{\Theta} \cup \mathcal{A}^{\Xi},
$$

where $\mathcal{A}_{0}^{\#}=\{\{\alpha, \beta\}\}, \mathcal{A}^{\Theta} \subseteq \Theta \times(\Theta \cup\{\alpha, \beta\})$ and $\mathcal{A}^{\Xi} \subseteq \Xi \times(\Xi \cup\{\alpha, \beta\})$.
Similarly, the graph $\left\langle\Omega_{\Gamma},\{\{\alpha, \beta\}\} \cup \mathcal{B}^{\#}\right\rangle$ is $<_{\Gamma}$-planar and thus \mathcal{B} is divided into two disjoint subsets

$$
\mathcal{B}=\mathcal{B}^{\Theta} \cup \mathcal{B}^{\Xi}
$$

where $\mathcal{B}^{\Theta} \subseteq \Theta \times \Theta$ and $\mathcal{B}^{\Xi} \subseteq \Xi \times \Xi$.
Once again, the graph $\left\langle\Omega_{\Gamma},\{\{\alpha, \beta\}\} \cup \mathcal{E}^{\#}\right\rangle$ is $\left\langle_{\Gamma}\right.$-planar and thus \mathcal{E} is divided into two disjoint subsets

$$
\mathcal{E}=\mathcal{E}^{\Theta} \cup \mathcal{E}^{\Xi}
$$

where $\mathcal{E}^{\Theta} \subseteq \Theta \times \Theta$ and $\mathcal{E}^{\Xi} \subseteq \Xi \times \Xi$.
Note that $\left\langle\Theta \cup\{\alpha, \beta\},\left(\mathcal{A}_{0} \cup \mathcal{A}^{\Theta} \cup \mathcal{B}^{\Theta} \cup \mathcal{E}^{\Theta}\right)^{\#}\right\rangle$ is an undirected graph. Furthermore, this graph is $<_{\Theta}$-planar, where $<_{\Theta}$ is the restriction of $<_{\Gamma}$ on the set $\Theta \cup\{\alpha, \beta\}$.

Let us draw this $<_{\Theta}$-planar graph on a semiplane as described after the definition of a <-planar graph. We denote the segment of the semiplane border between α and β by $[\alpha, \beta]$. The border segment $[\alpha, \beta]$ and the edge $\{\alpha, \beta\}$ surround a closed area, which contains all edges from the set $\left(\mathcal{A}^{\Theta} \cup \mathcal{B}^{\Theta} \cup \mathcal{E}^{\Theta}\right)^{\#}$. The edges from $\left(\mathcal{B}^{\Theta} \cup \mathcal{E}^{\Theta}\right)^{\#}$ divide this area into $\left|\left(\mathcal{B}^{\ominus} \cup \mathcal{E}^{\ominus}\right)^{\#}\right|+1$ regions. We are interested in all these regions except the one adjacent to the edge $\{\alpha, \beta\}$.

Consider any of these regions. We claim that it has at least one nontrivial segment of $[\alpha, \beta]$ at its border. (Otherwise every vertex from $\Omega_{\Gamma}^{A t} \cup \Omega_{\Gamma}^{1} \cup \Omega_{\Gamma}^{\perp}$ adjacent to the region considered would belong to two edges from ($\mathcal{B}^{\ominus} \cup$ $\left.\mathcal{E}^{\Theta}\right)^{\#}$, but this is impossible.)

Any such segment of $[\alpha, \beta]$ contains at least one element of $\Omega_{\Gamma}^{\otimes} \cup \Omega_{\Gamma}^{\infty}$. Thus some elements of $\Omega_{\Gamma}^{\otimes} \cup \Omega_{\Gamma}^{\wp \diamond}$ are adjacent to the region considered. It is impossible that all of these would belong to $\Omega_{\Gamma}^{\otimes}$ (because \mathcal{A} is a total function).

Thus the number of regions considered does not exceed the cardinality of the set $\Omega_{\Gamma}^{\wp \diamond} \cap \Theta$.

$$
\left|\Omega_{\Gamma}^{\wp \infty} \cap \Theta\right| \geq\left|\left(\mathcal{B}^{\Theta} \cup \mathcal{E}^{\Theta}\right)^{\#}\right|
$$

Taking into account that

$$
\left|\left(\mathcal{B}^{\Theta}\right)^{\#}\right|=\left|\mathcal{B}^{\Theta}\right|=\left|\Omega_{\Gamma}^{\perp} \cap \Theta\right|
$$

and

$$
\left|\left(\mathcal{E}^{\Theta}\right)^{\#}\right|=\frac{1}{2}\left|\mathcal{E}^{\Theta}\right|=\frac{1}{2}\left|\Omega_{\Gamma}^{A t} \cap \Theta\right|
$$

we obtain that

$$
\left|\Omega_{\Gamma}^{\wp \diamond} \cap \Theta\right| \geq\left|\Omega_{\Gamma}^{\perp} \cap \Theta\right|+\frac{1}{2}\left|\Omega_{\Gamma}^{\mathrm{At}} \cap \Theta\right|
$$

Analogously to Lemma 7.4 (i) we notice that

$$
\left|\left(\Omega_{\Gamma}^{\wp \diamond} \cup \Omega_{\Gamma}^{\otimes}\right) \cap \Theta\right|=\left|\left(\Omega_{\Gamma}^{\perp} \cup \Omega_{\Gamma}^{1} \cup \Omega_{\Gamma}^{\mathrm{At}}\right) \cap \Theta\right|-1
$$

Subtracting

$$
\left|\Omega_{\Gamma}^{乡 \infty} \cap \Theta\right|+\left|\Omega_{\Gamma}^{\otimes} \cap \Theta\right|=\left|\Omega_{\Gamma}^{\frac{1}{\Gamma}} \cap \Theta\right|+\left|\Omega_{\Gamma}^{1} \cap \Theta\right|+\left|\Omega_{\Gamma}^{\mathrm{At}} \cap \Theta\right|-1
$$

from

$$
2\left|\Omega_{\Gamma}^{p \phi} \cap \Theta\right| \geq 2\left|\Omega_{\Gamma}^{\frac{1}{\Gamma}} \cap \Theta\right|+\left|\Omega_{\Gamma}^{\mathrm{At}} \cap \Theta\right|
$$

we obtain the desired inequality

$$
\left|\Omega_{\Gamma}^{\wp \diamond} \cap \Theta\right|-\left|\Omega_{\Gamma}^{\otimes} \cap \Theta\right| \geq\left|\Omega_{\Gamma}^{\perp} \cap \Theta\right|-\left|\Omega_{\Gamma}^{1} \cap \Theta\right|+1
$$

Lemma 7.10 Let $\left\langle\Omega_{\Gamma}, \mathcal{A}, \mathcal{B}, \mathcal{E}\right\rangle$ be a proof net, $\{\alpha, \beta\} \in \mathcal{A}^{\#}$, and $\alpha<_{\Gamma} \beta$. Then $b\left(\Theta_{\Gamma}^{\alpha, \beta}\right)=1$ and $b\left(\Xi_{\Gamma}^{\alpha, \beta}\right)=1$.

Proof. Note that $2=b\left(\Omega_{\Gamma}\right)=b\left(\Theta_{\Gamma}^{\alpha, \beta}\right)+b\left(\Xi_{\Gamma}^{\alpha, \beta}\right)+b(\alpha, \beta)=b\left(\Theta_{\Gamma}^{\alpha, \beta}\right)+$ $b\left(\Xi_{\Gamma}^{\alpha, \beta}\right)$, since $b(\alpha, \beta)=0$. It remains to use the previous lemma.

Proposition 7.11 Let $\left\langle\Omega_{\Gamma \Delta(A \otimes B) \Pi}, \mathcal{A}, \mathcal{B}, \mathcal{E}\right\rangle$ be a proof net and $\mathcal{A}\langle A \otimes B$, $\|\Gamma\|+\|\Delta\|+\|A\|\rangle=\langle\diamond,\|\Gamma\|\rangle$. Then the sequents $\rightarrow \Delta A$ and $\rightarrow \Gamma B \Pi$ are derivable in SPNCL'.

Proof. Proof structures for $\rightarrow \Delta A$ and $\rightarrow \Gamma B \Pi$ are easily constructed from the given proof net. To verify that they are proof nets we use Lemma 7.10.

Theorem 7.12 A sequent $\rightarrow \Gamma$ is derivable in SPNCL' if and only if there exists a proof net $\left\langle\Omega_{\Gamma}, \mathcal{A}, \mathcal{B}, \mathcal{E}\right\rangle$ for the sequent $\rightarrow \Gamma$.

Proof. Sketch. Proving the 'only if' part is easy. To prove the 'if' part we proceed by induction on the cardinality of the set $\Omega_{\Gamma}^{\otimes} \cup \Omega_{\Gamma}^{\wp}$.

Induction base. Let $\Omega_{\Gamma}^{\otimes} \cup \Omega_{\Gamma}^{\wp}=\emptyset$. From $b\left(\Omega_{\Gamma}\right)=2$ we conclude that either $\Gamma=\perp \ldots \perp 1 \perp \ldots \perp$ or $\Gamma=\perp \ldots \perp q^{\perp k} \perp \ldots \perp p^{\perp n} \perp \ldots \perp$. In the latter case $q=p$ and $k=n+1$ in view of (A6). Evidently all sequents $\rightarrow \perp \ldots \perp 1 \perp \ldots \perp$ and $\rightarrow \perp \ldots \perp p^{\perp n+1} \perp \ldots \perp p^{\perp n} \perp \ldots \perp$ are derivable in SPNCL'.

Induction step. Assume now that $\Omega_{\Gamma}^{\otimes} \cup \Omega_{\Gamma}^{\wp}$ is not empty. We introduce on $\Omega_{\Gamma}^{\otimes} \cup \Omega_{\Gamma}^{\wp}$ a binary relation \ll stipulating that $\alpha \ll \beta$ if and only if $\alpha \prec_{\Gamma} \beta$ or $\langle\alpha, \beta\rangle \in \mathcal{A}$. In other words, \ll is the restriction of $\prec_{\Gamma} \cup \mathcal{A}$ on the set $\Omega_{\Gamma}^{\otimes} \cup \Omega_{\Gamma}^{\wp}$.

According to (A9) there is an element $\delta_{0} \in \Omega_{\Gamma}^{\otimes} \cup \Omega_{\Gamma}^{\wp}$ maximal with respect to \ll. We consider two cases.
Case 1: $\delta_{0} \in \Omega_{\Gamma}^{\wp}$
We can use the induction hypothesis and apply the rule (\wp).
Case 2: $\delta_{0} \in \Omega_{\Gamma}^{\otimes}$
In view of \mathcal{A} being a function there exists $\beta \in \Omega_{\Gamma}^{\beta \infty}$ such that $\left\langle\delta_{0}, \beta\right\rangle \in \mathcal{A}$.
Since δ_{0} is maximal with respect to \ll, we have $\beta \in \Omega_{\Gamma}^{\circ}$.

We consider two subcases.
Case 2a: $\beta=\langle\diamond, 0\rangle$ (i.e., β is the least element of Ω_{Γ} w. r. t. $<_{\Gamma}$)
In view of Proposition 7.11 we can use the induction hypothesis and apply the rule (\otimes).
Case 2b: $\beta \neq\langle\diamond, 0\rangle$
We use Lemma 7.7 and the rules $(\perp \perp(\cdot)),\left((\cdot)^{\perp} \perp\right)$ to reduce this case to the previous one.

Remark. Analogous result can be easily established also for the multiplicative fragment of cyclic linear logic defined in [12].

8 Properties of proof nets

Lemma 8.1 Let $\left\langle\boldsymbol{\Omega}_{\Gamma}, \mathcal{A}, \mathcal{B}, \mathcal{E}\right\rangle$ be a proof structure. If the graph $\left\langle\Omega_{\Gamma}, \prec_{\Gamma}\right.$ $\cup \mathcal{A})$ contains a cycle, then there exists a cycle

$$
\left(\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \ldots, \alpha_{n}, \beta_{n}\right)
$$

such that
(i) $\alpha_{i} \in \Omega_{\Gamma}^{\wp}$ and $\beta_{i} \in \Omega_{\Gamma}^{\otimes}$ for each $i \leq n$;
(ii) $\alpha_{i} \prec_{\Gamma} \beta_{i}$ for each $i \leq n$;
(iii) $\left\langle\beta_{i}, \alpha_{i+1}\right\rangle \in \mathcal{A}$ for each $i<n$;
(iv) $\left\langle\beta_{n}, \alpha_{1}\right\rangle \in \mathcal{A}$;
(v) either $\alpha_{1}<_{\Gamma} \beta_{1}<_{\Gamma} \alpha_{2}<_{\Gamma} \ldots<_{\Gamma} \beta_{n}$ or $\beta_{n}<_{\Gamma} \alpha_{n}<_{\Gamma} \beta_{n-1}<_{\Gamma}$ $\ldots<_{\Gamma} \alpha_{1}$.

Definition. Let $g: \Omega_{1} \rightarrow \Omega_{2}$ be a bijection and \mathcal{R} be a binary relation on Ω_{1}. Then by \mathcal{R}^{g} we denote the binary relation $\{\langle g(\alpha), g(\beta)\rangle \mid\langle\alpha, \beta\rangle \in \mathcal{R}\}$ on Ω_{2}.

Proposition 8.2 Let $\left\langle\boldsymbol{\Omega}_{\boldsymbol{\Gamma}}, \mathcal{A}, \mathcal{B}, \mathcal{E}\right\rangle$ be a proof net. Let Γ^{\prime} be obtained from Γ by replacing an occurrence of a subformula $(A \otimes(B \otimes C))$ by $((A \otimes B) \otimes C)$ or vice versa. Let g denote the unique isomorphism of $\left\langle\Omega_{\Gamma},\left\langle_{\Gamma}\right\rangle\right.$ and $\left\langle\Omega_{\Gamma^{\prime}},<_{\Gamma^{\prime}}\right\rangle$. Then $\left\langle\boldsymbol{\Omega}_{\boldsymbol{\Gamma}^{\prime}}, \mathcal{A}^{g}, \mathcal{B}^{g}, \mathcal{E}^{g}\right\rangle$ is a proof net.

Proof. Sketch. Let Γ^{\prime} be obtained from Γ by replacing an occurrence of a subformula $(A \otimes(B \otimes C))$ by $((A \otimes B) \otimes C)$. Assume that the graph $\left\langle\Omega_{\Gamma}, \prec_{\Gamma} \cup \mathcal{A}\right\rangle$ is acyclic, whereas the graph $\left\langle\Omega_{\Gamma^{\prime}},<\Gamma^{\prime} \cup \mathcal{A}^{g}\right\rangle$ is not. Applying Lemma 8.1 we find in $\left\langle\Omega_{\Gamma^{\prime}},<\Gamma^{\prime} \cup \mathcal{A}^{g}\right\rangle$ a cycle of special form $\left(\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \ldots, \alpha_{n}, \beta_{n}\right)$.

Evidently there is $m \leq n$ such that $\beta_{m}=\langle(A \otimes B) \otimes C, k+\|A\|+\|B\|\rangle$ and $\alpha_{m} \preceq_{\Gamma^{\prime}}\langle A, k+c(A)\rangle$ for some k.

We denote $\gamma \rightleftharpoons\langle A \otimes B, k+\|A\|\rangle$. In view of (A7) and the special form of the cycle there must be $l \leq n$ such that $\alpha_{l}<\Gamma^{\prime} \mathcal{A}^{g} \gamma<\Gamma^{\prime} \beta_{l}$ or $\alpha_{l}=\mathcal{A}^{g} \gamma$. But then there is another cycle in $\left\langle\Omega_{\Gamma^{\prime}},<_{\Gamma^{\prime}} \cup \mathcal{A}^{g}\right\rangle$ containing the edge $\left\langle\gamma, \mathcal{A}^{g} \gamma\right.$ and not involving the vertex β_{m} (see Lemma 7.5). This cycle is mapped by g^{-1} to a cycle in $\left\langle\Omega_{\Gamma}, \prec_{\Gamma} \cup \mathcal{A}\right\rangle$. Contradiction.

Proposition 8.3 Let $\left\langle\boldsymbol{\Omega}_{\boldsymbol{\Gamma}(\boldsymbol{A} \otimes(B \otimes C)) \boldsymbol{\Pi}, \mathcal{A}, \mathcal{B}, \mathcal{E}\rangle}\right.$ be a proof net and

$$
\mathcal{A}\langle A \otimes(B \otimes C),\|\Gamma\|+\|A\|\rangle=\mathcal{A}\langle B \otimes C,\|\Gamma\|+\|A\|+\|B\|\rangle .
$$

Then the sequent $\rightarrow B$ is derivable in SPNCL^{\prime}.
Proof. Sketch. The proof structure for $\rightarrow B$ is copied from the relevant part of the given proof net. To prove (A8) we apply Lemma 7.10 twice.

Proposition 8.4 Let $\left\langle\boldsymbol{\Omega}_{\Gamma \Delta_{1}\left(A_{1} \otimes B_{1}\right) \Pi_{1}}, \mathcal{A}_{1}, \mathcal{B}_{1}, \mathcal{E}_{1}\right\rangle$ be a proof net and
 $\left.\left\|\Delta_{1}\right\|+\left\|A_{1}\right\|\right\rangle=\mathcal{A}_{2}\left\langle A_{2} \otimes B_{2},\|\Gamma\|+\left\|\Delta_{2}\right\|+\left\|A_{2}\right\|\right\rangle \in \Omega_{\Gamma} \cup\{\langle\diamond,\|\Gamma\|\rangle\}$, then the sequents $\rightarrow \Gamma \Delta_{1}\left(A_{1} \otimes B_{2}\right) \Pi_{2}$ and $\rightarrow \Gamma \Delta_{2}\left(A_{2} \otimes B_{1}\right) \Pi_{1}$ are derivable in SPNCL $^{\prime}$.

Proof. Sketch. Let $\beta_{1} \rightleftharpoons\left\langle A_{1} \otimes B_{1},\|\Gamma\|+\left\|\Delta_{1}\right\|+\left\|A_{1}\right\|\right\rangle, \beta_{2} \rightleftharpoons\left\langle A_{2} \otimes B_{2},\|\Gamma\|\right.$ $\left.+\left\|\Delta_{2}\right\|+\left\|A_{2}\right\|\right\rangle$, and $\alpha \rightleftharpoons \mathcal{A}_{1} \beta_{1}=\mathcal{A}_{2} \beta_{2}$.

To obtain a proof structure for $\rightarrow \Gamma \Delta_{1}\left(A_{1} \otimes B_{2}\right) \Pi_{2}$ we combine the parts of the given proof nets corresponding to $\Theta_{\Gamma \Delta_{1}\left(A_{1} \otimes B_{1}\right) \Pi_{1}}^{\alpha \beta_{1}}$ and $\Xi_{\Gamma \Delta_{2}\left(A_{2} \otimes B_{2}\right) \Pi_{2}}^{\alpha \beta_{2}}$.

Using Lemma 8.1 one can verify that the proof structure is a proof net.
The claim $\rightarrow \Gamma \Delta_{2}\left(A_{2} \otimes B_{1}\right) \Pi_{1}$ follows from the other one due to the symmetry of the conditions of the theorem.

Proposition 8.5 Let SPNCL' $\vdash \rightarrow B$ and $\alpha \in \Omega_{\Gamma}^{\wp \diamond}$. Then there are $C, D \in$ NFm and there is a proof net

$$
\left\langle\Omega_{\Gamma C(\perp \otimes(B \otimes \perp)) D}, \mathcal{A}, \mathcal{B}, \mathcal{E}\right\rangle
$$

such that $\mathcal{A}\langle\perp \otimes(B \otimes \perp),\|\Gamma\|+\|C\|+\|\perp\|\rangle=\mathcal{A}\langle B \otimes \perp,\|\Gamma\|+\|C\|+\|\perp\|+$ $\|B\|\rangle=\alpha$.

Proof. Sketch. Given a sequence $\Gamma \in \mathrm{NFm}^{*}$ and a vertex $\alpha \in \Omega_{\Gamma}^{\wp \diamond}$ it is easy to construct two formulas C, D and a proof net $\left\langle\boldsymbol{\Omega}_{\boldsymbol{\Gamma} \boldsymbol{C} \otimes \boldsymbol{D}}, \mathcal{A}_{\mathbf{0}}, \mathcal{B}_{0}, \mathcal{E}_{0}\right\rangle$ such that $\mathcal{A}_{0}\langle C \otimes D,\|\Gamma\|+\|C\|\rangle=\alpha$ and each edge $\left.\langle\langle E, k\rangle,\langle F, m\rangle\rangle\right\rangle \in \mathcal{A}_{0} \cup \mathcal{B}_{0} \cup \mathcal{E}_{0}$ satisfies $k+m=2\|\Gamma\|$.

On the other hand, there is a proof net for the sequent $\rightarrow B$. It remains to combine these two proof nets. Again, Lemma 8.1 is useful for checking (A9).

Proposition 8.6 Let $\left\langle\Omega_{\Gamma(B \otimes(C \otimes D)) \Pi}, \mathcal{A}_{1}, \mathcal{B}_{1}, \mathcal{E}_{1}\right\rangle$ be a proof net. Let the sequent $\rightarrow C^{\perp} E$ be derivable in SPNCL'. Then there exists a proof net

$$
\left\langle\Omega_{\Gamma(B \otimes(E \otimes D)) \Pi}, \mathcal{A}, \mathcal{B}, \mathcal{E}\right\rangle
$$

such that $\mathcal{A}\langle B \otimes(E \otimes D),\|\Gamma\|+\|B\|\rangle=\mathcal{A}_{1}\langle B \otimes(C \otimes D),\|\Gamma\|+\|B\|\rangle$ and $\mathcal{A}\langle E \otimes D,\|\Gamma\|+\|B\|+\|E\|\rangle=\mathcal{A}_{1}\langle C \otimes D,\|\Gamma\|+\|B\|+\|C\|\rangle$.

Proof. Sketch. According to Theorem t-complete there is a proof net

$$
\left\langle\boldsymbol{\Omega}_{C^{\perp} \boldsymbol{E}}, \mathcal{A}_{2}, \mathcal{B}_{2}, \mathcal{E}_{2}\right\rangle
$$

There is a natural one-to-one mapping (an anti-isomorphism of linear orders) between the part of $\Omega_{\Gamma(B \otimes(C \otimes D)) \Pi}$ corresponding to C and the part of $\Omega_{C^{\perp} E}$ corresponding to C^{\perp}. We denote the graph of this mapping by \mathcal{G} and the graph of its inverse by \mathcal{G}^{-1}.

We define \mathcal{H} as the transitive closure of $\mathcal{A}_{1} \cup \mathcal{B}_{1} \cup \mathcal{E}_{1} \cup \mathcal{A}_{2} \cup \mathcal{B}_{2} \cup \mathcal{E}_{2} \cup \mathcal{G} \cup \mathcal{G}^{-1}$ on the disjoint union of $\Omega_{\Gamma(B \otimes(C \otimes D)) \Pi}$ and $\Omega_{C^{\perp} E}$.

Finally, \mathcal{A}, \mathcal{B}, and \mathcal{E} are chosen so that $\mathcal{A} \cup \mathcal{B} \cup \mathcal{E}$ coincides with the restriction of \mathcal{H} to the domain excluding C and C^{\perp}.

$9 \mathrm{Tp}(m)$-maps

The aim of this section is to introduce $\operatorname{Tp}(m)$-maps $\left\langle\mathbf{V}_{n}, v_{n}\right\rangle$ and $\left\langle\mathbf{V}_{n}^{\prime}, v_{n}^{\prime}\right\rangle$, which will later be used in the proof of Lemma 10.20 , where we construct a $\mathrm{Tp}(m)$-quasimodel containing a witness for a given word $\delta \notin v(E \backslash F)$ (resp. $\delta \notin v(F / E))$.

We need some notation. If \mathcal{R} and \mathcal{T} are two binary relations on a set \mathbf{D}, then we define

$$
\mathcal{R} \odot \mathcal{T} \rightleftharpoons\{\langle r, t\rangle \in \mathbf{D} \times \mathbf{D} \mid(\exists s \in \mathbf{D})\langle r, s\rangle \in \mathcal{R} \text { and }\langle s, t\rangle \in \mathcal{T}\}
$$

Evidently, \odot is associative.
Given a set \mathbf{D} and a function $w: \mathbf{T p} \rightarrow \mathbf{P}(\mathbf{D} \times \mathbf{D})$ we denote by \vec{w} the function from Tp^{*} to $\mathbf{P}(\mathbf{D} \times \mathbf{D})$ defined as follows:

$$
\begin{aligned}
\vec{w}(\Lambda) & \rightleftharpoons\{\langle s, s\rangle \mid s \in \mathbf{D}\} \\
\vec{w}(\Gamma A) & \rightleftharpoons \vec{w}(\Gamma) \odot w(A)
\end{aligned}
$$

Remark. $\vec{w}(\Gamma \Pi)=\vec{w}(\Gamma) \odot \vec{w}(\Pi)$.
Definition. $\mathrm{A} \operatorname{Tp}(m)-m a p\langle\mathbf{D}, \mathbf{W}, w\rangle$ consists of a finite set \mathbf{D}, a reflexive linear order $\mathbf{W} \subseteq \mathbf{D} \times \mathbf{D}$, and a valuation $w: \mathbf{T p} \rightarrow \mathbf{P}(\mathbf{W})$ such that
(1) for any $A \in \mathrm{Tp}, B \in \mathrm{Tp}$, if $A \cdot B \in \mathrm{Tp}(m)$, then $w(A \cdot B) \subseteq w(A) \odot w(B)$;
(2) for any $\Gamma \in \operatorname{Tp}(m)^{*}, B \in \operatorname{Tp}(m)$, if $L^{*} \vdash \Gamma \rightarrow B$, then $\vec{w}(\Gamma) \subseteq w(B)$;
(3) for any $B \in \mathrm{Tp}$, if $\langle s, s\rangle \in w(B)$ for some $s \in \mathbf{D}$, then $L^{*} \vdash \Lambda \rightarrow B$.

Lemma 9.1 For any given number $m \in \mathbf{N}$ there is a family of $\operatorname{Tp}(m)$-maps $\left\langle\mathbf{D}_{\Gamma}, \mathbf{V}_{\Gamma}, v_{\Gamma}\right\rangle$ indexed by sequences of types $\Gamma \in \mathrm{Tp}^{*}$ and there are elements $\chi_{\Gamma} \in \mathbf{D}_{\Gamma}$ such that
(i) $\left(\forall \Gamma \in \mathrm{Tp}^{*}\right)\left(\forall \Pi \in \mathrm{Tp}^{*}\right) \mathbf{D}_{\Gamma} \subseteq \mathbf{D}_{\Pi \Gamma}$;
(ii) $\left(\forall \Gamma \in \mathrm{Tp}^{*}\right)\left(\forall \Pi \in \mathrm{Tp}^{*}\right) \mathbf{V}_{\Gamma} \subseteq \mathbf{V}_{\Pi \Gamma}$;
(iii) $\left(\forall \Gamma \in \mathrm{Tp}^{*}\right)\left(\forall \Pi \in \mathrm{Tp}^{*}\right)\left(\forall\langle s, t\rangle \in \mathbf{V}_{\Pi \Gamma}\right)$ if $s \in \mathbf{D}_{\Gamma}$ then $\langle s, t\rangle \in \mathbf{V}_{\Gamma}$;
(iv) $\left(\forall \Gamma \in \mathrm{Tp}^{*}\right)\left(\forall \Pi \in \mathrm{Tp}^{*}\right)(\forall A \in \mathrm{Tp}) v_{\Gamma}(A) \subseteq v_{\Pi \Gamma}(A)$;
(v) $\left(\forall \Gamma \in \mathrm{Tp}^{*}\right)\left(\forall \Pi \in \mathrm{Tp}^{*}\right)(\forall A \in \mathrm{Tp})\left(\forall\langle s, t\rangle \in v_{\Pi \Gamma}(A)\right)$ if $s \in$ \mathbf{D}_{Γ} then $\langle s, t\rangle \in v_{\Gamma}(A) ;$
(vi) $\left(\forall \Gamma \in \mathrm{Tp}^{*}\right)\left(\forall \Delta \in \mathrm{Tp}^{*}\right)$ if $\chi_{\Gamma} \in \mathbf{D}_{\Delta}$ then $\left(\exists \Pi \in \mathrm{Tp}^{*}\right) \Delta=\Pi \Gamma$;
(vii) $\left(\forall \Gamma \in \mathrm{Tp}^{*}\right)(\forall C \in \mathrm{Tp})\left\langle\chi_{\Gamma}, \chi_{\Lambda}\right\rangle \in v_{\Gamma}(C) \Leftrightarrow L^{*} \vdash \Gamma \rightarrow C$;
(viii) $\left(\forall \Gamma \in \mathrm{Tp}^{*}\right)(\forall B \in \mathrm{Tp})\left\langle\chi_{B \Gamma}, \chi_{\Gamma}\right\rangle \in v_{B \Gamma}(B)$.

Proof. The construction of $\mathrm{Tp}(m)$-maps is based on the proof nets introduced in section 7 . The domain \mathbf{D}_{Γ} of the $\mathrm{Tp}(m)$-map corresponding to Γ will be a finite subset of $\mathrm{NFm} \times \mathrm{Occ} \times \mathrm{NFm}^{*}$.

Let $\widehat{\Gamma}^{\perp}=A_{1} \ldots A_{n}$. We define \mathbf{D}_{Γ}^{-}as the set of 3-tuples $\left\langle B, k, A_{1} \ldots A_{j}\right\rangle$ such that $\langle B, k\rangle \in \Omega_{\hat{\Gamma}^{\perp}}^{\wp \diamond}$ and $j \in \mathbf{N}$ is the smallest natural number satisfying $\left\|A_{1} \ldots A_{j}\right\| \geq k$.

We put $\chi_{\Gamma} \rightleftharpoons\left\langle\diamond,\left\|\widehat{\Gamma}^{\perp}\right\|, \widehat{\Gamma}^{\perp}\right\rangle$ and $\mathbf{D}_{\Gamma} \rightleftharpoons \mathbf{D}_{\Gamma}^{-} \cup\left\{\chi_{\Gamma}\right\}$.
For any 3-tuple $s=\langle B, k, \Phi\rangle$ we denote by \widetilde{s} the 2-tuple $\langle B, k\rangle$. Evidently the mapping $s \mapsto \widetilde{s}$ establishes a one-to-one correspondence between \mathbf{D}_{Γ}^{-} and $\Omega_{\Gamma^{\perp}}^{\infty}$.

The linear order $\mathbf{V}_{\Gamma} \subseteq \mathbf{D}_{\Gamma} \times \mathbf{D}_{\Gamma}$ is defined by stipulating that a pair $\left\langle\left\langle B_{1}, k_{1}, \Phi_{1}\right\rangle,\left\langle B_{2}, k_{2}, \Phi_{2}\right\rangle\right\rangle$ belongs to \mathbf{V}_{Γ} if and only if $k_{1} \geq k_{2}$.

Finally, the function $v_{\Gamma}: \mathrm{Tp} \rightarrow \mathbf{P}\left(\mathbf{V}_{\Gamma}\right)$ is defined by stating that $\langle s, t\rangle \in$ $v_{\Gamma}(C)$ if and only if there are $E \in \mathrm{NFm}, F \in \mathrm{NFm}, \Delta \in \mathrm{NFm}^{*}, \Pi \in$ NFm^{*}, and there is a proof net $\left\langle\Omega_{\widehat{\Gamma}^{\perp} \Delta(E \otimes(\widehat{C} \otimes F)) \Pi}, \mathcal{A}, \mathcal{B}, \mathcal{E}\right\rangle$ such that $\mathcal{A}\left\langle E \otimes(\widehat{C} \otimes F),\left\|\widehat{\Gamma}^{\perp}\right\|+\|\Delta\|+\|E\|\right\rangle=\widetilde{s}$ and $\mathcal{A}\left\langle\widehat{C} \otimes F,\left\|\widehat{\Gamma}^{\perp}\right\|+\|\Delta\|+\|E\|+\right.$ $\|\widehat{C}\|\rangle=\tilde{t}$.

First we verify that for each $\Gamma \in \mathrm{Tp}^{*}$ the triple $\left\langle\mathbf{D}_{\Gamma}, \mathbf{V}_{\Gamma}, v_{\Gamma}\right\rangle$ is a $\mathrm{Tp}(m)-$ map for every $m \in \mathbf{N}$.
(1) Let $\langle s, t\rangle \in v_{\Gamma}(A \cdot B)$.

This means that

- there is a proof net $\langle\Omega, \mathcal{A}, \mathcal{B}, \mathcal{E}\rangle$ for a derivable sequent of the form

$$
\rightarrow \widehat{\Gamma}^{\perp} \Delta(E \otimes((\widehat{A} \otimes \widehat{B}) \otimes F)) \Pi
$$

- $\mathcal{A}\left\langle E \otimes((\widehat{A} \otimes \widehat{B}) \otimes F),\left\|\widehat{\Gamma}^{\perp}\right\|+\|\Delta\|+\|E\|\right\rangle=\widetilde{s} ;$
- $\mathcal{A}\left\langle(\widehat{A} \otimes \widehat{B}) \otimes F,\left\|\widehat{\Gamma}^{\perp}\right\|+\|\Delta\|+\|E\|+\|\widehat{A}\|+\|\widehat{B}\|\right\rangle=\tilde{t}$.

Evidently there is $u \in \mathbf{D}_{\Gamma}$ such that $\mathcal{A}\left\langle\widehat{A} \otimes \widehat{B},\left\|\widehat{\Gamma}^{\perp}\right\|+\|\Delta\|+\|E\|+\|\widehat{A}\|\right\rangle=$ \tilde{u}. Using Proposition 8.2 it is easy to establish that $\langle s, u\rangle \in v_{\Gamma}(A)$ and $\langle u, t\rangle \in v_{\Gamma}(B)$, whence $\langle s, t\rangle \in v_{\Gamma}(A) \odot v_{\Gamma}(B)$. Thus we have established that $v_{\Gamma}(A \cdot B) \subseteq v_{\Gamma}(A) \odot v_{\Gamma}(B)$.
(2) Let $L^{*} \vdash A_{1} \ldots A_{n} \rightarrow B$. We must verify that $v_{\Gamma}\left(A_{1}\right) \odot \ldots \odot v_{\Gamma}\left(A_{n}\right) \subseteq$ $v_{\Gamma}(B)$. If $n=0$, then we use Proposition 8.5.

Assume now that $n>0$. Let $\langle s, u\rangle \in v_{\Gamma}\left(A_{1}\right)$ and $\langle u, t\rangle \in v_{\Gamma}\left(A_{2}\right)$. According to the definition of v_{Γ} there are proof nets

$$
\left\langle\Omega_{\widehat{\Gamma}^{\perp} \Delta_{1}\left(E_{1} \otimes\left(\widehat{A_{1}} \otimes F_{1}\right)\right) \Pi_{1}}, \mathcal{A}_{1}, \mathcal{B}_{1}, \mathcal{E}_{1}\right\rangle
$$

and

$$
\left\langle\Omega_{\widehat{\Gamma} \perp \Delta_{2}\left(E_{2} \otimes\left(\widehat{A_{2}} \otimes F_{2}\right)\right) \Pi_{2}}, \mathcal{A}_{2}, \mathcal{B}_{2}, \mathcal{E}_{2}\right\rangle
$$

such that $\mathcal{A}_{1}\left\langle E_{1} \otimes\left(\widehat{A_{1}} \otimes F_{1}\right),\left\|\widehat{\Gamma}^{\perp}\right\|+\left\|\Delta_{1}\right\|+\left\|E_{1}\right\|\right\rangle=\widetilde{s}, \mathcal{A}_{1}\left\langle\widehat{A_{1}} \otimes F_{1},\left\|\widehat{\Gamma}{ }^{\perp}\right\|+\right.$ $\left.\left\|\Delta_{1}\right\|+\left\|E_{1}\right\|+\left\|\widehat{A_{1}}\right\|\right\rangle=\widetilde{u}, \mathcal{A}_{2}\left\langle E_{2} \otimes\left(\widehat{A_{2}} \otimes F_{2}\right),\left\|\widehat{\Gamma}^{\perp}\right\|+\left\|\Delta_{2}\right\|+\left\|E_{2}\right\|\right\rangle=\widetilde{u}$, $\mathcal{A}_{2}\left\langle\widehat{A_{2}} \otimes F_{2},\left\|\widehat{\Gamma}^{\perp}\right\|+\left\|\Delta_{2}\right\|+\left\|E_{2}\right\|+\left\|\widehat{A_{2}}\right\|\right\rangle=\widetilde{t}$. From Proposition 8.2 and Proposition 8.4 we obtain a proof net

$$
\left\langle\Omega_{\widehat{\Gamma}^{\perp} \Delta_{1}\left(E_{1} \otimes\left(\left(\widehat{A_{1}} \otimes \widehat{A_{2}}\right) \otimes F_{2}\right)\right) \Pi_{2}}, \mathcal{A}, \mathcal{B}, \mathcal{E}\right\rangle
$$

such that

$$
\begin{gathered}
\mathcal{A}\left\langle E_{1} \otimes\left(\left(\widehat{A_{1}} \otimes \widehat{A_{2}}\right) \otimes F_{2}\right),\left\|\widehat{\Gamma}^{\perp}\right\|+\left\|\Delta_{1}\right\|+\left\|E_{1}\right\|\right\rangle= \\
\widetilde{s}, \mathcal{A}\left\langle\left(\widehat{A_{1}} \otimes \widehat{A_{2}}\right) \otimes F_{2},\left\|\widehat{\Gamma}^{\perp}\right\|+\left\|\Delta_{1}\right\|+\left\|E_{1}\right\|+\left\|\widehat{A_{1}}\right\|+\left\|\widehat{A_{2}}\right\|\right\rangle=\widetilde{t}
\end{gathered}
$$

Thus $\langle s, t\rangle \in v_{\Gamma}\left(A_{1} \cdot A_{2}\right)$. We have established that $v_{\Gamma}\left(A_{1}\right) \odot v_{\Gamma}\left(A_{2}\right) \subseteq$ $v_{\Gamma}\left(A_{1} \bullet A_{2}\right)$. By induction on n we obtain $\overrightarrow{v_{\Gamma}}\left(A_{1} \ldots A_{n}\right) \subseteq v_{\Gamma}\left(A_{1} \bullet \ldots \bullet A_{n}\right)$.

It remains to apply Proposition 8.6.
(3) Let $\left\langle\Omega_{\widehat{\Gamma}^{\perp}} \Delta(E \otimes(\widehat{B} \otimes F)) \Pi, \mathcal{A}, \mathcal{B}, \mathcal{E}\right\rangle$ be a proof net such that $\mathcal{A}\left\langle E \otimes(\widehat{B} \otimes F),\left\|\widehat{\Gamma}^{\perp}\right\|+\|\Delta\|+\|E\|\right\rangle=\mathcal{A}\left\langle\widehat{B} \otimes F,\left\|\widehat{\Gamma}^{\perp}\right\|+\|\Delta\|+\|E\|+\|\widehat{B}\|\right\rangle$.

According to Proposition 8.3 the sequent $\rightarrow \widehat{B}$ is derivable in SPNCL'.
Now we verify that the elements χ_{Γ} and $\operatorname{Tp}(m)$-maps $\left\langle\mathbf{V}_{\Gamma}, v_{\Gamma}\right\rangle$ satisfy (i)-(viii).
(i)

Evident from $\widehat{(\Pi \Gamma)}^{\perp}=\widehat{\Gamma}^{\perp} \widehat{\Pi}^{\perp}$.
(ii)

Similar.

(iii)

Obvious from the fact that if $\left\langle B_{1}, k_{1}, \Phi_{1}\right\rangle \in \mathbf{D}_{\Gamma},\left\langle B_{2}, k_{2}, \Phi_{2}\right\rangle \in \mathbf{D}_{\Gamma}$, and $k_{1} \geq k_{2}$, then there is $\Pi \in \mathrm{NFm}^{*}$ such that $\Phi_{1}=\Pi \Phi_{2}$.
(iv)

We verify that $v_{\Gamma}(A) \subseteq v_{\Pi \Gamma}(A)$. Let $\langle s, t\rangle \in v_{\Gamma}(A)$. This means that there is
a proof net $\left\langle\boldsymbol{\Omega}_{\hat{\Gamma}^{\perp} \Delta(E \otimes(\hat{A} \otimes F)) \boldsymbol{\Pi}}, \mathcal{A}, \mathcal{B}, \mathcal{E}\right\rangle$ such that $\mathcal{A}\left\langle E \otimes(\widehat{A} \otimes F),\left\|\widehat{\Gamma}^{\perp}\right\|+\right.$ $\|\Delta\|+\|E\|\rangle=\widetilde{s}$ and $\mathcal{A}\left\langle\widehat{A} \otimes F,\left\|\widehat{\Gamma}^{\perp}\right\|+\|\Delta\|+\|E\|+\|\widehat{A}\|\right\rangle=\tilde{t}$. Let $\Pi=$ $B_{1} \ldots B_{n}$. Then one can easily construct another proof net $\left\langle\boldsymbol{\Omega}^{\prime}, \mathcal{A}^{\prime}, \mathcal{B}^{\prime}, \mathcal{E}^{\prime}\right\rangle$ for the sequent

$$
\rightarrow \widehat{\Gamma}^{\perp}{\widehat{B_{n}}}^{\perp} \ldots{\widehat{B_{1}}}^{\perp}\left(\widehat{B_{1}} \otimes \ldots \otimes \widehat{B_{n}} \otimes \perp\right) \Delta(E \otimes(\widehat{A} \otimes F))
$$

such that $\mathcal{A}^{\prime}\left\langle E \otimes(\widehat{A} \otimes F),\left\|\widehat{\Gamma}^{\perp}\right\|+\left\|\widehat{\Pi}^{\perp}\right\|+\|\widehat{\Pi}\|+\|\perp\|+\|\Delta\|+\|E\|\right\rangle=\widetilde{s}$ and $\mathcal{A}^{\prime}\left\langle\widehat{A} \otimes F,\left\|\widehat{\Gamma}^{\perp}\right\|+\left\|\widehat{\Gamma}^{\perp}\right\|+\|\widehat{\Pi}\|+\|\perp\|+\|\Delta\|+\|E\|+\|\hat{A}\|\right\rangle=\tilde{t}$. Thus $\langle s, t\rangle \in v_{\Pi \Gamma}(A)$.
(v)

Similar to (iii).
(vi)

Follows from the definition of \mathbf{D}_{Γ}.
(vii)

Let $L^{*} \vdash \Gamma \rightarrow C$. According to Lemma 6.3 and Theorem 7.12 there is a proof net for the sequent $\widehat{\Gamma}^{\perp} \widehat{C}$. By an easy modification we obtain a proof net $\left\langle\Omega_{\widehat{\Gamma}^{\perp}(1 \otimes(\hat{C} \otimes 1))}, \mathcal{A}, \mathcal{B}, \mathcal{E}\right\rangle$ such that $\mathcal{A}\left(\mathbf{1} \otimes(\widehat{C} \otimes \mathbf{1}),\left\|\hat{\Gamma}^{\perp}\right\|+\|1\|\right\rangle=\chi_{\Gamma}$ and $\mathcal{A}\left\langle\widehat{C} \otimes \mathbf{1},\left\|\widehat{\Gamma}^{\perp}\right\|+\|\mathbf{1}\|+\|\widehat{C}\|\right\rangle=\chi_{\Lambda}$.

For the converse assume that $\left\langle\Omega_{\hat{\Gamma}^{\perp} \Delta(E \otimes(\widehat{C} \otimes F)) \Pi}, \mathcal{A}, \mathcal{B}, \mathcal{E}\right\rangle$ is a proof net such that $\mathcal{A}\left\langle E \otimes(\widehat{C} \otimes F),\left\|\widehat{\Gamma}^{\perp}\right\|+\|\Delta\|+\|E\|\right\rangle=\chi_{\Gamma}$ and $\mathcal{A}\left\langle\widehat{C} \otimes F,\left\|\widehat{\Gamma}^{\perp}\right\|+\right.$ $\|\Delta\|+\|E\|+\|\widehat{C}\|\rangle=\chi_{\Lambda}$. Using Proposition 7.11 twice we can obtain a proof net for $\rightarrow \widehat{\Gamma}^{\perp} \widehat{C}$.
(viii)

Let $\Gamma=A_{1} \ldots A_{n}$. It is easy to construct a proof net

$$
\left\langle\Omega_{\widehat{A_{n}}}{ }^{\perp} \ldots \widehat{A_{1}}{ }^{\hat{B}^{\perp}}\left(1 \otimes\left(\hat{B} \otimes\left(\widehat{A_{1}} \otimes \ldots \otimes \widehat{A_{n}}\right)\right)\right), \mathcal{A}, \mathcal{B}, \mathcal{E}\right\rangle
$$

such that $\mathcal{A}\left\langle\mathbf{1} \otimes\left(\widehat{B} \otimes\left(\widehat{A_{1}} \otimes \ldots \otimes \widehat{A_{n}}\right)\right),\left\|\widehat{\Gamma}^{\perp}\right\|+\left\|\widehat{B}^{\perp}\right\|+\|\mathbf{1}\|\right\rangle=\chi_{B A_{1} \ldots A_{n}}$ and $\mathcal{A}\left\langle\widehat{B} \otimes\left(\widehat{A_{1}} \otimes \ldots \otimes \widehat{A_{n}}\right),\left\|\widehat{\Gamma}^{\perp}\right\|+\left\|\widehat{B}^{\perp}\right\|+\|1\|+\|\widehat{B}\|\right\rangle=\chi_{A_{1} \ldots A_{n}}$.
Definition. For any two integers m and n, we write $\operatorname{LST}_{m, n}$ for the following finite subset of $\operatorname{Tp}(m)^{*}$.

$$
\operatorname{LST}_{m, n} \rightleftharpoons\left\{A_{1} \ldots A_{l} \mid 1 \leq l \leq n, A_{1} \in \operatorname{Tp}(m), \ldots, A_{l} \in \operatorname{Tp}(m)\right\}
$$

Lemma 9.2 For any given number $m \in \mathbf{N}$ there is a family of $\mathrm{Tp}(m)$-maps $\left\langle\mathbf{D}_{n}, \mathbf{V}_{n}, v_{n}\right\rangle$ indexed by $n \in \mathbf{N}$, there is an element g, and there is a family of elements h_{Γ} indexed by $\Gamma \in \operatorname{Tp}(m)^{*}$, such that
(i) $(\forall n) g \in \mathbf{D}_{n}$;
(ii) $(\forall n)\left(\forall \Gamma \in \operatorname{LST}_{m, n}\right) h_{\Gamma} \in \mathbf{D}_{n}$;
(iii) $(\forall n)\left(\forall \Gamma \in \operatorname{LST}_{m, n}\right)(\forall C \in \operatorname{Tp}(m))\left\langle h_{\Gamma}, g\right\rangle \in v_{n}(C) \Leftrightarrow L^{*} \vdash \Gamma \rightarrow C$;
(iv) $(\forall n)\left(\forall \Gamma \in \operatorname{LST}_{m, n-1}\right)(\forall B \in \operatorname{Tp}(m))\left\langle h_{B \Gamma}, h_{\Gamma}\right\rangle \in v_{n}(B)$.

Proof. Take arbitrary $m, n \in \mathbf{N}$. We construct the $\operatorname{Tp}(m)$-map $\left\langle\mathbf{D}_{n}, \mathbf{V}_{n}\right.$, $\left.v_{n}\right\rangle$, using the $\operatorname{Tp}(m)$-maps $\left\langle\mathbf{D}_{\Gamma}, \mathbf{V}_{\Gamma}, v_{\Gamma}\right\rangle$ from the previous lemma.

We put $\mathbf{D}_{n} \rightleftharpoons \underset{\Gamma \in \mathrm{LST}_{m, n}}{ } \mathbf{D}_{\Gamma}$. Let \mathbf{V}_{n} be any linear order containing the binary relation $\underset{\Gamma \in \operatorname{LST}_{m, n}}{ } \mathbf{V}_{\Gamma}$. The valuation v_{n} is defined by $v_{n}(C) \rightleftharpoons$ $\bigcup_{\Gamma \in \operatorname{LST}_{m, n}} v_{\Gamma}(C)$.

We put $g \rightleftharpoons \chi_{\Lambda}$ and $h_{\Gamma} \rightleftharpoons \chi_{\Gamma}$.
It remains to check that $\left\langle\mathbf{D}_{n}, \mathbf{V}_{n}, v_{n}\right\rangle$ is a $\operatorname{Tp}(m)$-map.
(1) Obvious.
(2) Let $L^{*} \vdash A_{1} \ldots A_{k} \rightarrow B, A_{i} \in \operatorname{Tp}(m)$, and $B \in \operatorname{Tp}(m)$. Assume that $\left\langle s_{0}, s_{1}\right\rangle \in v_{n}\left(A_{1}\right), \ldots,\left\langle s_{k-1}, s_{k}\right\rangle \in v_{n}\left(A_{k}\right)$. Then there is $\Delta \in \operatorname{LST}_{m, n}$ such that $\left\langle s_{0}, s_{1}\right\rangle \in v_{\Delta}\left(A_{1}\right)$.

By induction on $i<k$ it can be proved that $\left\langle s_{i}, s_{i+1}\right\rangle \in v_{\Delta}\left(A_{i+1}\right)$ for the same Δ. Thus $\left\langle s_{0}, s_{k}\right\rangle \in v_{\Delta}(B) \subseteq v_{n}(B)$.
(3) Obvious.

We shall also need the dual of Lemma 9.2.
Lemma 9.3 For any given number $m \in \mathbf{N}$ there is a family of $\mathrm{Tp}(m)$-maps $\left\langle\mathbf{D}_{n}^{\prime}, \mathbf{V}_{n}^{\prime}, v_{n}^{\prime}\right\rangle$ indexed by $n \in \mathbf{N}$, there is an element g^{\prime}, and there is a family of elements h_{Γ}^{\prime} indexed by $\Gamma \in \mathrm{Tp}(m)^{*}$, such that
(i) $(\forall n) g^{\prime} \in \mathbf{D}_{n}^{\prime}$;
(ii) $(\forall n)\left(\forall \Gamma \in \operatorname{LST}_{m, n}\right) h_{\Gamma}^{\prime} \in \mathbf{D}_{n}^{\prime}$;
(iii) $(\forall n)\left(\forall \Gamma \in \operatorname{LST}_{m, n}\right)(\forall C \in \operatorname{Tp}(m))\left\langle g^{\prime}, h_{\Gamma}^{\prime}\right\rangle \in v_{n}^{\prime}(C) \Leftrightarrow L^{*} \vdash \Gamma \rightarrow C$;
(iv) $(\forall n)\left(\forall \Gamma \in \operatorname{LST}_{m, n-1}\right)(\forall B \in \operatorname{Tp}(m))\left\langle h_{\Gamma}^{\prime}, h_{\Gamma B}^{\prime}\right\rangle \in v_{n}^{\prime}(B)$.

10 Construction of witnesses

In this section we prove that the class \mathcal{K}^{m} is witnessed.
We assume being given a number $m \in \mathbf{N}$, a $\operatorname{Tp}(m)$-quasimodel $\left\langle\mathcal{V}^{*}, v\right\rangle \in$ \mathcal{K}^{m}, two types E and F such that $E \backslash F \in \operatorname{Tp}(m)$, and a word $\delta \in \mathcal{V}^{*}$ such that $\delta \notin v(E \backslash F)$. We fix m, \mathcal{V}, v, E, F, and δ until the end of this section. Our aim is to find a $\operatorname{Tp}(m)$-quasimodel $\left\langle\mathcal{W}^{*}, w\right\rangle \in \mathcal{K}^{m}$ and a word $\zeta \in \mathcal{W}^{*}$ such that $\zeta \in w(E), \zeta \circ \delta \notin w(F)$, and $\left\langle\mathcal{W}^{*}, w\right\rangle$ is a conservative extension of $\left\langle\mathcal{V}^{*}, v\right\rangle$.

First, we put $n \rightleftharpoons|\delta|+1$. For the given m and n we take the $\operatorname{Tp}(m)$-map $\left\langle\mathbf{D}_{n}^{\prime}, \mathbf{V}_{n}^{\prime}, v_{n}^{\prime}\right\rangle$ from Lemma 9.3. Let $k \rightleftharpoons\left|\mathbf{D}_{n}^{\prime}\right|$. The reflexive linear order \mathbf{V}_{n}^{\prime} is isomorphic to the natural order \leq of the set $[0, k-1] \rightleftharpoons\{i \in \mathbf{Z} \mid 0 \leq i \leq$ $k-1\}$.

Throughout this section we shall identify \mathbf{D}_{n} with $[0, k-1]$ and the linear order \mathbf{V}_{n}^{\prime} with \leq.

Let $x, z, y_{1}, y_{2}, \ldots y_{k}$ be any $k+2$ distinct elements of $\mathcal{U}=\left\{a_{j} \mid j \in \mathbf{N}\right\}$, which do not occur in \mathcal{V}. We denote $\mathcal{Y} \rightleftharpoons\left\{x, z, y_{1}, y_{2}, \ldots, y_{k}\right\}$ and put $\mathcal{W} \rightleftharpoons \mathcal{V} \cup \mathcal{Y}$.

We shall work with subwords of

$$
\left(x^{m} \circ y_{1} \circ z^{m}\right) \circ\left(x^{m} \circ y_{2} \circ z^{m}\right) \circ \ldots \circ\left(x^{m} \circ y_{k} \circ z^{m}\right) .
$$

Here $x^{m} \rightleftharpoons \underbrace{x \circ \ldots \circ x}_{m \text { times }}$.
To define the mapping w we need several auxiliary words and sets. For any integers s and t such that $0 \leq s \leq t \leq k$ we define the word $\pi\langle s, t\rangle \in \mathcal{Y}^{*}$ as follows:

$$
\pi\langle s, t\rangle \rightleftharpoons\left(x^{m} \circ y_{s+1} \circ z^{m}\right) \circ\left(x^{m} \circ y_{s+2} \circ z^{m}\right) \circ \ldots \circ\left(x^{m} \circ y_{t} \circ z^{m}\right)
$$

By definition, $\pi\langle s, s\rangle=\varepsilon$ for every s.
Note that if $0 \leq r \leq s \leq t \leq k$, then $\pi\langle r, s\rangle \circ \pi\langle s, t\rangle=\pi\langle r, t\rangle$.
We shall denote by $\operatorname{Subword}(\beta)$ the set of all subwords of β. Formally,

$$
\operatorname{Subword}(\beta) \rightleftharpoons\left\{\alpha \in \mathcal{W}^{*} \mid \beta=\gamma_{1} \circ \alpha \circ \gamma_{2} \text { for some } \gamma_{1}, \gamma_{2} \in \mathcal{W}^{*}\right\}
$$

We define the finite set \mathcal{R} as follows.

$$
\mathcal{R} \rightleftharpoons\left\{\rho \in \mathcal{V}^{*} \mid \rho \circ \alpha=\delta \text { for some } \alpha \in \mathcal{V}^{*}\right\}
$$

We define several functions associating subsets of \mathcal{W}^{*} with sequences of types from $\operatorname{Tp}(m)$. For any $\Theta \in \operatorname{Tp}(m)^{*}$ we put

$$
\begin{aligned}
u_{0}(\Theta) & \rightleftharpoons\left\{\pi\langle s, t\rangle \mid 0 \leq s<t<k \text { and }\langle s, t\rangle \in \overrightarrow{v_{n}^{\prime}}(\Theta)\right\} \\
u_{2}(\Theta) & \rightleftharpoons\left\{\pi\langle s, k\rangle \circ \rho \mid 0 \leq s<k, \rho \in \mathcal{R}, \text { and } \exists \Delta \in \operatorname{Tp}(m)^{*}\right. \\
& \left.\quad|\Delta| \leq|\rho|, \rho \in \vec{v}(\Delta),\left\langle s, h_{E \Delta}^{\prime}\right\rangle \in v_{n}^{\prime}(\Theta)\right\} \\
u(\Theta) & \rightleftharpoons \\
u & u_{0}(\Theta) \cup u_{2}(\Theta) \cup \vec{v}(\Theta) .
\end{aligned}
$$

We define some subsets of \mathcal{W}^{*}.

$$
\begin{aligned}
\mathcal{M}_{1} & \rightleftharpoons\left\{\alpha \in \mathcal{W}^{*} \mid \alpha \notin \mathcal{V}^{*} \text { and } \alpha \notin \operatorname{Subword}(\pi\langle 0, k\rangle \circ \delta)\right\} \\
\mathcal{M}_{2} & \rightleftharpoons z \circ \mathcal{W}^{*} \\
\mathcal{M}_{3} & \rightleftharpoons \mathcal{W}^{*} \circ x \\
\mathcal{M} & \rightleftharpoons \mathcal{M}_{1} \cup \mathcal{M}_{2} \cup \mathcal{M}_{3}
\end{aligned}
$$

We define a function Subst $_{\mathcal{M}}: \mathcal{W}^{*} \rightarrow \mathbf{P}\left(\mathcal{W}^{*}\right)$ and two valuations $\tilde{v}: \operatorname{Tp}(m) \rightarrow \mathbf{P}\left(\mathcal{W}^{*}\right)$ and $w: \operatorname{Tp}(m) \rightarrow \mathbf{P}\left(\mathcal{W}^{*}\right)$.

```
    Subst \(_{\mathcal{M}}(\varepsilon) \rightleftharpoons\{\varepsilon\}\)
\(\operatorname{Subst}_{\mathcal{M}}(\alpha \circ q) \rightleftharpoons \operatorname{Subst}_{\mathcal{M}}(\alpha) \circ(\{q\} \cup \mathcal{M})\) if \(\alpha \in \mathcal{W}^{*}\) and \(q \in \mathcal{W}\)
```

Informally, for every word $\beta \in \mathcal{W}^{*}$, the set $\operatorname{Subst}_{\mathcal{M}}(\beta)$ consists of all words that are obtained replacing some (may be none) of symbol occurrences in β by words from the set \mathcal{M}.

$$
\begin{aligned}
\tilde{v}(A) & \rightleftharpoons \bigcup_{\alpha \in v(A)} \operatorname{Subst}_{\mathcal{M}}(\alpha) \\
w(A) & \rightleftharpoons u(A) \cup \tilde{v}(A)
\end{aligned}
$$

Finally, we put $\zeta \rightleftharpoons \pi\left\langle g^{\prime}, k\right\rangle$.
Lemma $10.1 \zeta \in u(E)$.
Proof. From $L^{*} \vdash E \rightarrow E$ and Lemma 9.3 (iii) we obtain $\left\langle g^{\prime}, h_{E}^{\prime}\right\rangle \in v_{n}^{\prime}(E)$. Thus $\pi\left\langle g^{\prime}, k\right\rangle \in u_{2}(E)$.

Lemma $10.2 \zeta \circ \delta \notin u(F)$.
Proof. Assume, for the contrary, that $\pi\left\langle g^{\prime}, k\right\rangle \circ \delta \in u(F)$. Evidently $\pi\left\langle g^{\prime}, k\right\rangle \in \mathcal{Y}^{+}$and $\delta \in \mathcal{V}^{+}$. Thus $\pi\left\langle g^{\prime}, k\right\rangle \circ \delta \in u_{2}(F)$. According to the definition of u_{2} there is $\Delta \in \operatorname{Tp}(m)^{*}$ such that $|\Delta| \leq|\delta|, \delta \in \vec{v}(\Delta)$ and $\left\langle g^{\prime}, h_{E \Delta}^{\prime}\right\rangle \in v_{n}^{\prime}(F)$. From $n=|\delta|+1$ we get $|\Delta| \leq n-1$, whence $E \Delta \in \operatorname{LST}_{m, n}$. From Lemma 9.3 (iii) we obtain $L^{*} \vdash E \Delta \rightarrow F$. Applying the rule $(\rightarrow \backslash)$ we derive $L^{*} \vdash \Delta \rightarrow E \backslash F$, whence $\vec{v}(\Delta) \subseteq v(E \backslash F)$. Thus $\delta \in v(E \backslash F)$. Contradiction.

Lemma 10.3 If $0 \leq r \leq s<k, A \in \operatorname{Tp}(m)$, and $\langle r, s\rangle \in v_{n}^{\prime}(A)$, then $\pi\langle r, s\rangle \in u(A)$.

Proof. Let $\langle r, s\rangle \in v_{n}^{\prime}(A)$. If $r<s$, then $\pi\langle r, s\rangle \in u_{0}(A)$. If $r=s$, then $L^{*} \vdash \Lambda \rightarrow A$ and thus $\varepsilon \in v(A)$.

Lemma 10.4 If $A \cdot B \in \operatorname{Tp}(m)$, then $u(A \cdot B) \subseteq u(A) \circ u(B)$.
Proof. Let $A \cdot B \in \operatorname{Tp}(m)$ and $\gamma \in u(A \cdot B)$.
Case 1: $\gamma \in u_{0}(A \cdot B)$
By definition $\gamma=\pi\langle r, t\rangle, 0 \leq r<t<k,\langle r, t\rangle \in \overrightarrow{v_{n}^{\prime}}(A \cdot B)=v_{n}^{\prime}(A \cdot B)$ for some r and t.

Since $\left\langle\mathbf{V}_{n}^{\prime}, v_{n}^{\prime}\right\rangle$ is a $\operatorname{Tp}(m)$-map, there is $s \in[0, k-1]$ such that $\langle r, s\rangle \in$ $v_{n}^{\prime}(A)$ and $\langle s, t\rangle \in v_{n}^{\prime}(B)$.

Now $\quad \gamma=\pi\langle r, t\rangle=\pi\langle r, s\rangle \circ \pi\langle s, t\rangle \in u_{0}(A) \circ u_{0}(B)$ according to Lemma 10.3.

Case 2: $\gamma \in u_{2}(A \cdot B)$
By definition $\gamma=\pi\langle r, k\rangle \circ \rho, \rho \in \mathcal{R}, \Delta \in \operatorname{Tp}(m)^{*},|\Delta| \leq|\rho|, \rho \in \vec{v}(\Delta)$, $\left\langle r, h_{E \Delta}^{\prime}\right\rangle \in v_{n}^{\prime}(A \cdot B), 0 \leq r<k$.

Again, there is s such that $\langle r, s\rangle \in v_{n}^{\prime}(A)$ and $\left\langle s, h_{E \Delta}^{\prime}\right\rangle \in v_{n}^{\prime}(B)$. According to Lemma 10.3, $\pi\langle r, s\rangle \in u_{0}(A)$. On the other hand $\pi\langle s, k\rangle \circ \rho \in u_{2}(B)$, whence $\gamma \in u_{0}(A) \circ u_{2}(B)$.
Case 3: $\gamma \in v(A \cdot B)$
Obvious from $v(A \cdot B) \subseteq v(A) \circ v(B)$.
We define

$$
\mathcal{T} \rightleftharpoons \underbrace{\mathcal{M} \circ \ldots \circ \mathcal{M}}_{m \text { times }}
$$

and establish several properties of \mathcal{M} and \mathcal{T}.

Lemma 10.5

(i) If $\beta \in \mathcal{W}^{*}, \alpha \in \operatorname{Subword}(\beta)$, and $\alpha \in \mathcal{M}_{1}$, then $\beta \in \mathcal{M}_{1}$.
(ii) $\mathcal{M}_{2} \circ \mathcal{W}^{*} \subseteq \mathcal{M}_{2}$
(iii) $\mathcal{W}^{*} \circ \mathcal{M}_{3} \subseteq \mathcal{M}_{3}$

Proof. (i) According to the definition of \mathcal{M}_{1}, if $\beta \in \mathcal{W}^{*}$ and $\beta \notin \mathcal{M}_{1}$, then $\beta \in \mathcal{V}^{*}$ or $\beta \in \operatorname{Subword}(\pi\langle 0, k\rangle \circ \delta)$. But then one has also $\alpha \in \mathcal{V}^{*}$ or $\alpha \in \operatorname{Subword}(\pi\langle 0, k\rangle \circ \delta)$, whence $\alpha \notin \mathcal{M}_{1}$.

Lemma 10.6

(i) $\mathcal{M} \circ \mathcal{M} \subseteq \mathcal{M}$
(ii) $\mathcal{T} \subseteq \mathcal{M}$

Proof.
(i)

Let $\alpha \in \mathcal{M}$ and $\beta \in \mathcal{M}$. We verify that $\alpha \circ \beta \in \mathcal{M}$. If $\alpha \in \mathcal{M}_{1}$ then $\alpha \circ \beta \in \mathcal{M}_{1}$. If $\alpha \in \mathcal{M}_{2}$ then $\alpha \circ \beta \in \mathcal{M}_{2}$. If $\beta \in \mathcal{M}_{1}$ then $\alpha \circ \beta \in \mathcal{M}_{1}$. If $\beta \in \mathcal{M}_{3}$ then $\alpha \circ \beta \in \mathcal{M}_{3}$.

The only complicated case is $\alpha \in \mathcal{M}_{3}$ and $\beta \in \mathcal{M}_{2}$, i.e., $\alpha=\alpha^{\prime} \circ x$ and $\beta=z \circ \beta^{\prime}$. Note that then $x \circ z \in \operatorname{Subword}(\alpha \circ \beta)$ and $x \circ z \in \mathcal{M}_{1}$. Thus $\alpha \circ \beta \in \mathcal{M}_{1}$.
(ii)

Follows from (i).
We introduce some subsets of \mathcal{W}^{*}.

$$
\begin{aligned}
\mathcal{P}_{0} & \rightleftharpoons\{\pi\langle s, t\rangle \mid 0 \leq s<t<k\} \\
\mathcal{P}_{1} & \rightleftharpoons\{\pi\langle s, k\rangle \mid 0 \leq s<k\} \\
\mathcal{P}_{2} & \rightleftharpoons \mathcal{P}_{1} \circ \mathcal{R} \\
\mathcal{P} & \rightleftharpoons \mathcal{P}_{0} \cup \mathcal{P}_{2}
\end{aligned}
$$

Note that $\varepsilon \in \mathcal{R}$ and thus $\mathcal{P}_{1} \subseteq \mathcal{P}_{2}$. Note that $u_{0}(\Theta) \subseteq \mathcal{P}_{0}, u_{2}(\Theta) \subseteq \mathcal{P}_{2}$, and $u(\Theta) \subseteq \mathcal{P} \cup \mathcal{V}^{*}$.

Lemma 10.7 If $A \in \operatorname{Tp}(m)$, then $\mathcal{T} \subseteq w(A)$.
Proof. Since $\left\langle\mathcal{V}^{*}, v\right\rangle \in \mathcal{K}^{m}$, we can choose a word $\alpha \in v(A)$ such that $|\alpha| \leq m$. Evidently $\underbrace{\mathcal{M} \circ \ldots \circ \mathcal{M}}_{|\alpha| \text { times }} \subseteq \operatorname{Subst}_{\mathcal{M}}(\alpha) \subseteq \tilde{v}(A) \subseteq w(A)$. In view of $\mathcal{M} \circ \mathcal{M} \subseteq \mathcal{M}$ and taking into account that $|\alpha| \leq m$, we have $\underbrace{\mathcal{M} \circ \ldots \circ \mathcal{M}} \subseteq$
$\underbrace{\mathcal{M} \circ \ldots \circ \mathcal{M}}_{|\alpha| \text { times }}$. Thus $\mathcal{T}=\underbrace{\mathcal{M} \circ \ldots \circ \mathcal{M}}_{m \text { times }} \subseteq w(A)$.

Lemma 10.8

(i) $\mathcal{P} \cap \mathcal{V}^{*}=\emptyset$
(ii) $\mathcal{P} \cap \mathcal{M}=\emptyset$
(iii) $\mathcal{V}^{*} \cap \mathcal{M}=\emptyset$

Proof.
(i)

Evident.
(ii)

Let $\alpha \in \mathcal{P}$. Then the leftmost symbol of α is x and the rightmost symbol of α belongs to $\mathcal{V} \cup\{z\}$. Thus $\alpha \notin \mathcal{M}_{2}$ and $\alpha \notin \mathcal{M}_{3}$. Note that $\mathcal{P} \subseteq \operatorname{Subword}(\pi\langle 0, k\rangle \circ \delta)$. Thus $\alpha \notin \mathcal{M}_{1}$.
(iii)

Obvious.

Lemma 10.9

(i) $v(A) \subseteq u(A)$
(ii) $u(A) \subseteq v(A) \cup \mathcal{P}$

Lemma 10.10

(a) $\mathcal{V}^{*} \circ \mathcal{M} \subseteq \mathcal{M}$
(b) $\mathcal{M} \circ \mathcal{V}^{*} \subseteq \mathcal{M}$
(c) $\mathcal{P} \circ \mathcal{M} \subseteq \mathcal{T}$
(d) $\mathcal{M} \circ \mathcal{P} \subseteq \mathcal{T}$
(e) $\mathcal{V}^{+} \circ \mathcal{P} \subseteq \mathcal{T}$
(f) $\mathcal{P}_{0} \circ \mathcal{V}^{+} \subseteq \mathcal{T}$
(g) $\mathcal{P}_{1} \circ\left\{\beta \in \mathcal{W}^{+} \mid \beta \notin \mathcal{R}\right\} \subseteq \mathcal{T}$
(h) If $0 \leq r<s<k, 0 \leq s^{\prime}<t<k$, and $s \neq s^{\prime}$, then $\pi\langle r, s\rangle \circ \pi\left\langle s^{\prime}, t\right\rangle \in \mathcal{T}$.

Proof.

(a)

Let $\alpha \in \mathcal{V}^{+}$and $\beta \in \mathcal{M}$. We verify that $\alpha \circ \beta \in \mathcal{M}$. If $\beta \in \mathcal{M}_{1}$ then $\alpha \circ \beta \in \mathcal{M}_{1}$. If $\beta \in \mathcal{M}_{3}$ then $\alpha \circ \beta \in \mathcal{M}_{3}$. The only complicated case is $\beta=z \circ \beta^{\prime}$. Note that in that case $\alpha \circ z \in \operatorname{Subword}(\alpha \circ \beta)$ and $\alpha \circ z \in \mathcal{M}_{1}$.
(b)

Let $\alpha \in \mathcal{M}$ and $\beta \in \mathcal{V}^{+}$. We verify that $\alpha \circ \beta \in \mathcal{M}$. If $\alpha \in \mathcal{M}_{1}$ then $\alpha \circ \beta \in \mathcal{M}_{1}$. If $\alpha \in \mathcal{M}_{2}$ then $\alpha \circ \beta \in \mathcal{M}_{2}$. The only complicated case is $\alpha=\alpha^{\prime} \circ x$. In this case $x \circ \beta \in \operatorname{Subword}(\alpha \circ \beta)$ and $x \circ \beta \in \mathcal{M}_{1}$.
(c)

Let $\gamma=\alpha \circ \beta$, where $\alpha \in \mathcal{P}$ and $\beta \in \mathcal{M}$.
Case 1: $\alpha \in \mathcal{P}_{0} \cup \mathcal{P}_{1}$
By definition $\gamma=\pi\langle s, t\rangle \circ \beta$, where $0 \leq s<t<k$.
Evidently $\gamma=\underbrace{x \circ \ldots \circ x}_{m-1 \text { times }} \circ \phi$, where $\phi=x \circ y_{s+1} \circ z^{m} \circ \pi\langle s+1, t\rangle \circ \beta$. We
must verify that $\phi \in \mathcal{M}$.
If $\beta \in \mathcal{M}_{1}$ then $\phi \in \mathcal{M}_{1}$. If $\beta \in \mathcal{M}_{3}$ then $\phi \in \mathcal{M}_{3}$. Let now $\beta \in \mathcal{M}_{2}$, i.e. $\beta=z \circ \beta^{\prime}$. Evidently $z^{m+1} \in \operatorname{Subword}\left(y_{s+1} \circ z^{m} \circ \pi\langle s+1, t\rangle \circ z \circ \beta^{\prime}\right.$ and $z^{m+1} \in \mathcal{M}_{1}$.
Case 2: $\alpha \in \mathcal{P}_{2}$ and $\alpha \notin \mathcal{P}_{1}$
By definition $\gamma=\pi\langle s, k\rangle \circ \rho \circ \beta, \rho \in \mathcal{R}, \rho \neq \varepsilon$.
Evidently $\gamma=\underbrace{x \circ \ldots \circ x}_{m-1 \text { times }} \circ \phi$, where $\phi=x \circ y_{s+1} \circ z^{m} \circ \pi\langle s+1, k\rangle \circ \rho \circ \beta$.
The only complicated case is $\beta \in \mathcal{M}_{2}$, i.e., $\beta=z \circ \beta^{\prime}$. Note that $\rho \circ z \in$ $\operatorname{Subword}(\phi)$ and $\rho \circ z \in \mathcal{M}_{1}$.
(d) and (e)

Let $\alpha \in \mathcal{M} \cup \mathcal{V}^{+}$and $\beta \in \mathcal{P}$. We must prove that $\alpha \circ \beta \in \underbrace{\mathcal{M} \circ \ldots \circ \mathcal{M}}_{m \text { times }}$.
Case 1: $\beta=\pi\langle s, t\rangle \in \mathcal{P}_{0}$
Evidently $\alpha \circ \beta=\phi \circ \underbrace{z \circ \ldots \circ z}_{m-1 \text { times }}$, where $\phi=\left(\alpha \circ \pi\langle s, t-1\rangle \circ x^{m} \circ y_{t} \circ z\right)$.
Obviously $z \in \mathcal{M}_{2}$. It remains to verify that $\phi \in \mathcal{M}$.
Case 1a: $\alpha \in \mathcal{M}_{1}$
Obvious from Lemma 10.5 (i).
Case 1b: $\alpha \in \mathcal{M}_{2}$
Obvious from Lemma 10.5 (ii).
CASE 1c: $\alpha \in \mathcal{M}_{3}$
Note that the rightmost symbol of α is x and the first m symbols of the word $\pi\langle s, t-1\rangle \circ x^{m} \circ y_{t} \circ z$ are x^{m}. Thus $x^{m+1} \in \operatorname{Subword}(\phi)$. In view of $x^{m+1} \in \mathcal{M}_{1}$ we have $\phi \in \mathcal{M}_{1}$.

Case 1d: $\alpha \in \mathcal{V}^{+}$
Evidently $\alpha \circ x \in \operatorname{Subword}(\phi)$. On the other hand, $\alpha \circ x \in \mathcal{V}^{+} \circ \mathcal{Y}^{+}$and $\mathcal{V}^{+} \circ \mathcal{Y}^{+} \subseteq \mathcal{M}_{1}$. According to Lemma 10.5 (i'), $\phi \in \mathcal{M}_{1}$.
Case 2: $\beta \in \mathcal{P}_{2}$
By definition $\beta=\pi\langle s, k\rangle \circ \rho, \rho \in \mathcal{R}$.
Now $\alpha \circ \beta=\phi \circ \underbrace{z \circ \ldots \circ z}_{m-2 \text { times }} \circ(z \circ \rho)$, where ϕ is the same as in the previous
case. We have already verified that $z \in \mathcal{M}$ and $\phi \in \mathcal{M}$. Evidently $z \circ \rho \in$ \mathcal{M}_{2}.
(f)

Let $\alpha \in \mathcal{P}_{0}$ and $\beta \in \mathcal{V}^{+}$. By definition $\alpha=\pi\langle s, t\rangle, 0 \leq s<t<k$.
Evidently $\alpha \circ \beta=\underbrace{x \circ \ldots \circ x}_{m-1 \text { times }} \circ \phi$, where $\phi=x \circ y_{s+1} \circ z^{m} \circ \pi\langle s+1, t\rangle \circ \beta$.
Note that $y_{t} \circ z^{m} \circ \beta \in \operatorname{Subword}(\phi)$. On the other hand, $y_{t} \circ z^{m} \circ \beta \in \mathcal{M}_{1}$, since $t \neq k$. Thus $\phi \in \mathcal{M}_{1}$.
(g)

Let $\alpha \in \mathcal{P}_{1}, \beta \in \mathcal{W}^{*}$, and $\beta \notin \mathcal{R}$. By definition $\alpha=\pi\langle s, k\rangle$, where $0 \leq s<$ k.

Evidently $\alpha \circ \beta=\underbrace{x \circ \ldots \circ x}_{m-1 \text { times }} \circ \phi$, where $\phi=x \circ y_{s+1} \circ z^{m} \circ \pi\langle s+1, k\rangle \circ \beta$.
Note that $z \circ \beta \in \operatorname{Subword}(\phi)$. On the other hand, $z \circ \beta \in \mathcal{M}_{1}$, since β is not a left subword of δ (see the definition of \mathcal{R}). Thus $\phi \in \mathcal{M}_{1}$.
(h)

Evidently $\pi\langle r, s\rangle \circ \pi\left\langle s^{\prime}, t\right\rangle=\phi \circ \underbrace{z \circ \ldots \circ z}_{m-1 \text { times }}$, where

$$
\phi=\left(\pi\langle r, s\rangle \circ \pi\left\langle s^{\prime}, t-1\right\rangle \circ x^{m} \circ y_{t} \circ z\right) .
$$

We only need to prove that $\phi \in \mathcal{M}$. Note that $y_{s} \circ z^{m} \circ x^{m} \circ y_{s^{\prime}+1} \in$ Subword (ϕ). On the other hand $y_{s} \circ z^{m} \circ x^{m} \circ y_{s^{\prime}+1} \in \mathcal{M}_{1}$, since $s \neq s^{\prime}$. According to Lemma 10.5 (i^{\prime}), $\phi \in \mathcal{M}_{1}$.

To make the formulation of the following lemmas more readable we introduce two subsets of \mathcal{W}^{*}.

$$
\begin{aligned}
\mathcal{Q} & \rightleftharpoons \mathcal{P} \cup \mathcal{V}^{*} \cup \mathcal{M} \\
\mathcal{Q}_{\infty} & \rightleftharpoons\{\varepsilon\} \cup \mathcal{Q} \cup(\mathcal{Q} \circ \mathcal{Q}) \cup(\mathcal{Q} \circ \mathcal{Q} \circ \mathcal{Q}) \cup \ldots
\end{aligned}
$$

Lemma 10.11

(i) $\mathcal{T} \circ \mathcal{Q} \subseteq \mathcal{T}$
(ii) $\mathcal{Q} \circ \mathcal{T} \subseteq \mathcal{T}$
(iii) $\mathcal{P} \circ \mathcal{V}^{*} \subseteq \mathcal{P} \cup \mathcal{T}$
(iv) $\mathcal{P} \circ \mathcal{P} \subseteq \mathcal{P} \cup \mathcal{T}$
(v) $(\mathcal{P} \cup \mathcal{T}) \circ \mathcal{Q} \subseteq(\mathcal{P} \cup \mathcal{T})$
$(\mathrm{vi}) \mathcal{Q} \circ(\mathcal{P} \cup \mathcal{T}) \subseteq(\mathcal{P} \cup \mathcal{T})$

Proof.

(i)

Evident from Lemma 10.10 (d), (b), and Lemma 10.6.
(ii)

Evident from Lemma 10.10 (c), (a), and Lemma 10.6. (iii)

Let $\alpha \in \mathcal{P}$ and $\beta \in \mathcal{V}^{*}$. We must prove that $\alpha \circ \beta \in \mathcal{P} \cup \mathcal{T}$. If $\beta=\varepsilon$, then $\alpha \circ \beta=\alpha \in \mathcal{P}$. Let $\beta \in \mathcal{V}^{+}$.
Case 1: $\alpha \in \mathcal{P}_{0}$
According to Lemma 10.10 (f), $\alpha \circ \beta \in \mathcal{T}$.
Case 2: $\alpha=\pi\langle s, k\rangle \circ \rho \in \mathcal{P}_{2}$
If $\rho \circ \beta \in \mathcal{R}$, then $\alpha \circ \beta \in \mathcal{P}_{2}$, else $\alpha \circ \beta \in \mathcal{T}$ in view of Lemma 10.10 (g). (iv)

Let $\alpha \in \mathcal{P}$ and $\beta \in \mathcal{P}$. We must prove that $\alpha \circ \beta \in \mathcal{P} \cup \mathcal{T}$.
Case 1: $\alpha \in \mathcal{P}_{0} \cup \mathcal{P}_{1}$
By definition $\alpha=\pi\langle r, s\rangle$, where $0 \leq r<s \leq k$.
Case 1a: $\beta \in \mathcal{P}_{0} \cup \mathcal{P}_{1}$
By definition $\beta=\pi\left\langle s^{\prime}, t\right\rangle$, where $0 \leq s^{\prime}<t \leq k$.
If $s=s^{\prime}$, then $\alpha \circ \beta=\pi\langle r, s\rangle \circ \pi\langle s, t\rangle=\pi\langle r, t\rangle \in \mathcal{P}$ according to the definition of the function π. If $s \neq s^{\prime}$, then $\alpha \circ \beta \in \mathcal{T}$ according to
Lemma 10.10 (h).
Case 1b: $\beta \in \mathcal{P}_{2}$
Evidently $\alpha \circ \beta \in \alpha \circ \mathcal{P}_{1} \circ \mathcal{R}$. According to case 1a, $\alpha \circ \beta \in(\mathcal{P} \cup \mathcal{T}) \circ \mathcal{R} \subseteq$ $(\mathcal{P} \cup \mathcal{T}) \circ \mathcal{V}^{*}$. From (iii) and (i) we obtain $(\mathcal{P} \cup \mathcal{T}) \circ \mathcal{V}^{*} \subseteq \mathcal{P} \cup \mathcal{T}$.
CASE 2: $\alpha \in \mathcal{P}_{2}, \alpha \notin \mathcal{P}_{1}$
By definition $\alpha=\pi\langle s, k\rangle \circ \rho, \rho \in \mathcal{R}, \rho \neq \varepsilon$.
Evidently, $\mathcal{P}_{2} \circ \mathcal{P}=\mathcal{P}_{1} \circ \mathcal{R} \circ \mathcal{P} \subseteq \mathcal{P}_{1} \circ\left(\mathcal{V}^{*} \circ \mathcal{P}\right)$.
From (ii) and Lemma 10.10 (e) we get $\mathcal{P}_{1} \circ\left(\mathcal{V}^{+} \circ \mathcal{P}\right) \subseteq \mathcal{P}_{1} \circ \mathcal{T} \subseteq \mathcal{T}$.
(v)

Immediate from (i), (iv), (iii), and Lemma 10.10 (c).
(vi)

Immediate from (ii), (iv), and Lemma 10.10 (e), (d).

Lemma 10.12

(i) $\mathcal{Q}_{\infty} \circ \mathcal{P} \circ \mathcal{Q}_{\infty} \subseteq \mathcal{P} \cup \mathcal{T}$
(ii) $\mathcal{Q}_{\infty} \circ \mathcal{P} \circ \mathcal{Q}_{\infty} \circ \mathcal{M} \circ \mathcal{Q}_{\infty} \subseteq \mathcal{T}$
(iii) $\mathcal{Q}_{\infty} \circ \mathcal{M} \circ \mathcal{Q}_{\infty} \circ \mathcal{P} \circ \mathcal{Q}_{\infty} \subseteq \mathcal{T}$

Proof.
(i)

From Lemma 10.11 (vi) we obtain

$$
\mathcal{Q}_{\infty} \circ(\mathcal{P} \cup \mathcal{T}) \subseteq \mathcal{P} \cup \mathcal{T}
$$

From Lemma 10.11 (v) we obtain

$$
(\mathcal{P} \cup \mathcal{T}) \circ \mathcal{Q}_{\infty} \subseteq \mathcal{P} \cup \mathcal{T}
$$

Thus $\left(\mathcal{Q}_{\infty} \circ \mathcal{P}\right) \circ \mathcal{Q}_{\infty} \subseteq(\mathcal{P} \cup \mathcal{T}) \circ \mathcal{Q}_{\infty} \subseteq \mathcal{P} \cup \mathcal{T}$.
(ii)

According to (i), Lemma 10.10 (c), and Lemma $10.6\left(\mathcal{Q}_{\infty} \circ \mathcal{P} \circ \mathcal{Q}_{\infty}\right) \circ \mathcal{M} \subseteq \mathcal{T}$.
It remains to apply Lemma 10.11 (i).
(iii)

According to (i), Lemma 10.10 (d), and Lemma $10.6 \mathcal{M} \circ\left(\mathcal{Q}_{\infty} \circ \mathcal{P} \circ \mathcal{Q}_{\infty}\right) \subseteq \mathcal{T}$. It remains to apply Lemma 10.11 (ii).

Lemma 10.13 Let $\Delta \in \operatorname{Tp}(m)^{*}, \Pi \in \operatorname{Tp}(m)^{*}$, and $\varepsilon \in u(\Delta)$. Then $v_{n}(\vec{\Delta} \Pi)=v_{n} \overrightarrow{(\Pi)}$ and $v_{n}(\vec{\Pi} \Delta)=v_{n} \overrightarrow{(\Pi)}$.

Proof. Evidently $\varepsilon \in \vec{v}(\Delta)$.
Let $\Delta=A_{1} \ldots A_{l}$. Take arbitrary $i \leq l$. Evidently, $\varepsilon \in A_{i}$ and thus $L^{*} \vdash \Lambda \rightarrow A_{i}$. We obtain $\langle s, s\rangle \in v_{n}\left(A_{i}\right)$ for every $s \in[0, k-1]$. Hence $\langle s, s\rangle \in \overrightarrow{v_{n}}(\Delta)$ for every $s \in[0, k-1]$.

Lemma 10.14 Let $\Theta \in \operatorname{Tp}(m)^{*}$ and $B \in \operatorname{Tp}(m)$. Then $u(\Theta) \circ u(B) \subseteq$ $u(\Theta B) \cup \mathcal{T}$.
Proof. Let $\gamma \in u(\Theta) \circ u(B)$. Then $\gamma=\alpha \circ \beta$ for some $\alpha \in u(\Theta)=$ $u_{0}(\Theta) \cup u_{2}(\Theta) \cup \vec{v}(\Theta)$ and $\beta \in u(B)=u_{0}(B) \cup u_{2}(B) \cup v(B)$. We consider the corresponding nine cases and prove that $\alpha \circ \beta \in u_{0}(\Theta B) \cup u_{2}(\Theta B) \cup$ $\vec{v}(\Theta B) \cup \mathcal{T}$.
Case 1: $\alpha \in u_{0}(\Theta)$
By definition $\alpha=\pi\langle r, s\rangle, 0 \leq r<s<k,\langle r, s\rangle \in v_{n}^{\prime}(\Theta)$.
Case 1a: $\beta \in u_{0}(B)$
By definition $\beta=\pi\left\langle s^{\prime}, t\right\rangle, 0 \leq s^{\prime}<t<k,\left\langle s^{\prime}, t\right\rangle \in v_{n}^{\prime}(B)$.
If $s \neq s^{\prime}$, then $\alpha \circ \beta \in \mathcal{T}$ in view of Lemma 10.10 (h).
If $s=s^{\prime}$, then $\alpha \circ \beta=\pi\langle r, s\rangle \circ \pi\langle s, t\rangle=\pi\langle r, t\rangle \in u_{0}(\Theta B)$, since $\langle r, t\rangle \in$ $\overrightarrow{v_{n}^{\prime}}(\Theta) \odot v_{n}^{\prime}(B)=\vec{v}_{n}^{\prime}(\Theta B)$.
Case 1b: $\beta \in u_{2}(B)$
By definition $\beta=\pi\left\langle s^{\prime}, k\right\rangle \circ \rho, \rho \in \mathcal{R}, \Delta \in \operatorname{Tp}(m)^{*},|\Delta| \leq|\rho|, \rho \in \vec{v}(\Delta)$, $\left\langle s^{\prime}, h_{E \Delta}^{\prime}\right\rangle \in v_{n}^{\prime}(B), 0 \leq s^{\prime}<k$.

If $s \neq s^{\prime}$, then $\alpha \circ \beta=\pi\langle r, s\rangle \circ \pi\left\langle s^{\prime}, k\right\rangle \circ \rho \in \mathcal{T} \circ \rho \subseteq \mathcal{T} \circ \mathcal{V}^{*} \subseteq \mathcal{T}$ in view of Lemma 10.10 (h) and (i).

If $s=s^{\prime}$, then $\alpha \circ \beta=\pi\langle r, k\rangle \circ \rho \in u_{2}(\Theta B)$, since $\left(r, h_{E \Delta}^{\prime}\right\rangle \in \overrightarrow{v_{n}^{\prime}}(\Theta) \odot v_{n}^{\prime}(B)$ $=\overrightarrow{v_{n}^{\prime}}(\Theta B)$.

Case 1c: $\beta \in v(B)$
If $\beta \neq \varepsilon$, then $\alpha \circ \beta \in \mathcal{P}_{0} \circ \mathcal{V}^{+} \subseteq \mathcal{T}$ in view of Lemma 10.10 (f).
If $\beta=\varepsilon$, then $\alpha \circ \beta=\alpha \in u_{0}(\Theta) \subseteq u_{0}(\Theta B)$ in view of Lemma 10.13.
Case 2: $\alpha \in u_{2}(\Theta)$
$\alpha=\pi\langle r, k\rangle \circ \rho, \rho \in \mathcal{R}, \Delta \in \operatorname{Tp}(m)^{*},|\Delta| \leq|\rho|, \rho \in \vec{v}(\Delta),\left\langle r, h_{E \Delta}^{\prime}\right\rangle \in \vec{v}_{n}^{\prime}(\Theta)$, $0 \leq r<k$
Note that $\alpha \in \mathcal{P}_{1} \circ \mathcal{V}^{*}$.
CASE 2ab: $\beta \in u_{0}(B) \cup u_{2}(B) \subseteq \mathcal{P}$
In view of Lemma $10.10(\mathrm{~g})$ we have $\alpha \circ \beta \in \mathcal{P}_{1} \circ\left(\mathcal{V}^{*} \circ \mathcal{P}\right) \subseteq \mathcal{T}$.
Case 2c: $\beta \in v(B)$
If $\rho \circ \beta \notin \mathcal{R}$, then $\alpha \circ \beta=\pi\langle r, k\rangle \circ(\rho \circ \beta) \in \mathcal{T}$ in view of Lemma 10.10 (g).
Now we prove that if $\rho \circ \beta \in \mathcal{R}$ then $\alpha \circ \beta \in u_{2}(\Theta B)$. We take $\Delta^{\prime}=\Delta B$ and $\rho^{\prime}=\rho \circ \beta$. Evidently $\rho \circ \beta \in \vec{v}(\Delta) \circ v(B)=\vec{v}(\Delta B)$.

If $\beta \neq \varepsilon$, then $\left|\Delta^{\prime}\right|=|\Delta|+1 \leq|\rho|+1 \leq|\rho|+|\beta|=\left|\rho^{\prime}\right|$. Further, $|E \Delta|=|\Delta|+1 \leq\left|\rho^{\prime}\right| \leq \mid$ delta $\mid=n-1$. By Lemma 9.3 (iv) we have $\left\langle h_{E \Delta}^{\prime}, h_{E \Delta B}^{\prime}\right\rangle \in v_{n}^{\prime}(B)$.

Thus $\left\langle r, h_{E \Delta B}^{\prime}\right\rangle \in \overrightarrow{v_{n}^{\prime}}(\Theta) \odot v_{n}^{\prime}(B)=\overrightarrow{v_{n}^{\prime}}(\Theta B)$.
If $\beta=\varepsilon$, then $\alpha \circ \beta=\alpha \in u_{2}(\Theta) \subseteq u_{2}(\Theta B)$ in view of Lemma 10.13.
Case 3: $\alpha \in \vec{v}(\Theta)$
CASE 3ab: $\beta \in u_{0}(B) \cup u_{2}(B) \subseteq \mathcal{P}$
If $\alpha \neq \varepsilon$, then in view of Lemma 10.10 (e) we have $\alpha \circ \beta \in \mathcal{V}^{*} \circ \mathcal{P} \subseteq \mathcal{T}$.
If $\alpha=\varepsilon$, then $\alpha \circ \beta=\beta \in u(B) \subseteq u(\Theta B)$ in view of Lemma 10.13.
CASE 3c: $\beta \in v(B)$
Evidently $\alpha \circ \beta \in \vec{v}(\Theta) \circ v(B)=\vec{v}(\Theta B)$.
Lemma 10.15 Let $l \geq 0, B_{1} \in \operatorname{Tp}(m), \ldots, B_{l} \in \operatorname{Tp}(m)$. Then

$$
u\left(B_{1}\right) \circ \ldots \circ u\left(B_{l}\right) \subseteq u\left(B_{1} \ldots B_{l}\right) \cup \mathcal{T}
$$

Proof. Induction on l.
Induction base. For $l=0$ we have to prove that $\{\varepsilon\} \subseteq u(\Lambda) \cup \mathcal{T}$. Indeed, $\varepsilon \in \vec{v}(\Lambda) \subseteq u(\Lambda)$.

Induction step. We must prove that if $u\left(B_{1}\right) \circ \ldots \circ u\left(B_{l}\right) \subseteq u\left(B_{1} \ldots B_{l}\right) \cup$ \mathcal{T} then $u\left(B_{1}\right) \circ \ldots \circ u\left(B_{l}\right) \circ u\left(B_{l+1}\right) \subseteq u\left(B_{1} \ldots B_{l} B_{l+1}\right) \cup \mathcal{T}$. In view of the induction hypothesis, it is sufficient to verify that $\left(u\left(B_{1} \ldots B_{l}\right) \cup\right.$ $\mathcal{T}) \circ u\left(B_{l+1}\right) \subseteq u\left(B_{1} \ldots B_{l} B_{l+1}\right) \cup \mathcal{T}$.

From Lemma 10.14 we obtain $u\left(B_{1} \ldots B_{l}\right) \circ u\left(B_{l+1}\right) \subseteq u\left(B_{1} \ldots B_{l} B_{l+1}\right) \cup$ \mathcal{T}. According to Lemma 10.11 (i), $\mathcal{T} \circ u\left(B_{l+1}\right) \subseteq \mathcal{T}$.

Lemma 10.16 If $B_{1}, \ldots, B_{l}, C \in \operatorname{Tp}(m)$ and $L^{*} \vdash B_{1} \ldots B_{l} \rightarrow C$, then

$$
u\left(B_{1}\right) \circ \ldots \circ u\left(B_{l}\right) \subseteq u(C) \cup \mathcal{T}
$$

Proof. Let $B_{1}, \ldots, B_{l}, C \in \operatorname{Tp}(m)$ and $L^{*} \vdash B_{1} \ldots B_{l} \rightarrow C$. According to Lemma $10.15, u\left(B_{1}\right) \circ \ldots \circ u\left(B_{l}\right) \subseteq u\left(B_{1} \ldots B_{l}\right) \cup \mathcal{T}$. It remains to
prove that $u\left(B_{1} \ldots B_{l}\right) \subseteq u(C)$. This follows from $\vec{v}\left(B_{1} \ldots B_{l}\right) \subseteq v(C)$ and $\overrightarrow{v_{n}^{\prime}}\left(B_{1} \ldots B_{l}\right) \subseteq v_{n}^{\prime}(C)$ (cf. the definition of u at page 197).

Lemma 10.17 Let $A \in \operatorname{Tp}(m)$. Then
(i) $v(A) \subseteq \tilde{v}(A)$;
(ii) $\tilde{v}(A) \subseteq v(A) \cup \mathcal{M}$.

Proof. (i) Let $\alpha \in v(A)$. Evidently $\alpha \in \operatorname{Subst}_{\mathcal{M}}(\alpha) \subseteq \tilde{v}(A)$.
(ii) By induction on $|\alpha|$ we prove that $\operatorname{Subst}_{\mathcal{M}}(\alpha) \subseteq\{\alpha\} \cup \mathcal{M}$ for any $\alpha \in \mathcal{V}^{*}$. For the induction step it is sufficient to verify that ($\{\alpha\} \cup$ $\mathcal{M}) \circ(\{q\} \cup \mathcal{M}) \subseteq\{\alpha \circ q\} \cup \mathcal{M}$ whenever $\alpha \in \mathcal{V}^{*}$ and $q \in \mathcal{V}$. This follows from Lemma 10.10 (a), (b) and Lemma 10.6 (i).

Lemma 10.18 If $A \in \operatorname{Tp}(m)$, then $w(A) \cap \mathcal{V}^{*}=v(A)$.
Proof. Let $A \in \mathrm{Tp}(m)$. According to Lemma 10.9 (ii) and Lemma 10.8 (i) $u(A) \cap \mathcal{V}^{*}=v(A)$.
According to Lemma 10.17 (ii) and Lemma 10.8 (iii) $\tilde{v}(A) \cap \mathcal{V}^{*}=v(A)$.

Lemma $10.19\left\langle\mathcal{W}^{*}, w\right\rangle$ is a $\operatorname{Tp}(m)$-quasimodel.
Proof. We verify the conditions (1), (2) and (3) from the definition of a $\mathrm{Tp}(m)$-quasimodel at page 174 .
(1)

Let $A \cdot B \in \operatorname{Tp}(m)$ and $\gamma \in w(A \cdot B)$. We must prove that $\gamma \in w(A) \circ w(B)$. Case 1: $\gamma \in u(A \cdot B)$
Obvious from Lemma 10.4.
Case 2: $\gamma \in \tilde{v}(A \cdot B)$
By definition, $\gamma \in \operatorname{Subst}_{\mathcal{M}}\left(\gamma^{\prime}\right)$ for some $\gamma^{\prime} \in v(A \cdot B) \subseteq v(A) \circ v(B)$. Thus $\gamma^{\prime}=\alpha^{\prime} \circ \beta^{\prime}$, where $\alpha^{\prime} \in v(A)$ and $\beta^{\prime} \in v(B)$. Evidently, $\operatorname{Subst}_{\mathcal{M}}\left(\gamma^{\prime}\right)=$ $\operatorname{Subst}_{\mathcal{M}}\left(\alpha^{\prime}\right) \circ \operatorname{Subst}_{\mathcal{M}}\left(\beta^{\prime}\right) \subseteq \tilde{v}(A) \circ \tilde{v}(B)$.

Let $A_{1}, \ldots, A_{l}, B \in \operatorname{Tp}(m), L^{*} \vdash A_{1} \ldots A_{l} \rightarrow B, \alpha_{1} \in w\left(A_{1}\right), \ldots \alpha_{l} \in w\left(A_{l}\right)$.
We must prove that $\alpha_{1} \circ \ldots \circ \alpha_{l} \in w(B)$.
Case 1: $(\forall i \leq l) \alpha_{i} \in u\left(A_{i}\right)$
According to Lemma 10.16, $\alpha_{1} \circ \ldots \circ \alpha_{l} \in u(B) \cup \mathcal{T}$.
In view of Lemma 10.7, $\alpha_{1} \circ \ldots \circ \alpha_{l} \in w(B)$.
Case 2: $(\forall j \leq l) \alpha_{j} \in \tilde{v}\left(A_{j}\right)$
This means that for every index $j \leq l$ there is a word $\beta_{j} \in v\left(A_{j}\right)$ such that $\alpha_{j} \in \operatorname{Subst}_{\mathcal{M}}\left(\beta_{j}\right)$. Evidently, $\alpha_{1} \circ \ldots \circ \alpha_{l} \in \operatorname{Subst}_{\mathcal{M}}\left(\beta_{1} \circ \ldots \circ \beta_{l}\right)$. Note that $\beta_{1} \circ \ldots \circ \beta_{l} \in v\left(A_{1}\right) \circ \ldots \circ v\left(A_{l}\right) \subseteq v(B)$, since $\left\langle\mathcal{V}^{*}, v\right\rangle$ is a $\operatorname{Tp}(m)$-quasimodel. Thus $\alpha_{1} \circ \ldots \circ \alpha_{l} \in \tilde{v}(B)$.
Case 3: $(\exists i \leq l) \alpha_{i} \notin u\left(A_{i}\right)$ and $(\exists j \leq l) \alpha_{j} \notin \tilde{v}\left(A_{j}\right)$
Evidently $\alpha_{i} \in \tilde{v}\left(A_{i}\right)$. From Lemma 10.17 (ii) we obtain $\alpha_{i} \in v\left(A_{i}\right) \cup \mathcal{M}$. In view of $v\left(A_{i}\right) \subseteq u\left(A_{i}\right)$ we have $\alpha_{i} \notin v\left(A_{i}\right)$. Thus $\alpha_{i} \in \mathcal{M}$.

Evidently $\alpha_{j} \in u\left(A_{j}\right) \subseteq v\left(A_{j}\right) \cup \mathcal{P}$. On the other hand, from Lemma 10.17 (i) we obtain $\alpha_{j} \notin v\left(A_{j}\right)$. Thus $\alpha_{j} \in \mathcal{P}$.

Note that $\alpha_{h} \in \mathcal{Q}$ for every $h \leq l$. According to Lemma 10.12 (i) and (ii), $\alpha_{1} \circ \ldots \circ \alpha_{l} \in \mathcal{T}$. It remains to apply Lemma 10.7.

Immediate from Lemma 10.18.

Lemma 10.20

(i) $\left\langle\mathcal{W}^{*}, w\right\rangle \in \mathcal{K}^{m}$;
(ii) $\left\langle\mathcal{W}^{*}, w\right\rangle$ is a conservative extension of $\left\langle\mathcal{V}^{*}, v\right\rangle$;
(iii) $\zeta \in w(E)$;
(iv) $\zeta \circ \delta \notin w(F)$.

Proof. (i) Obvious.
(ii) Immediate from Lemma 10.18.
(iii) Obvious from Lemma 10.1.
(iv) Follows from Lemma 10.2, Lemma 10.17 (ii), and Lemma 10.8 (i), (ii).

Lemma 10.21 The class \mathcal{K}^{m} is witnessed.
Proof. Immediate from Lemma 10.20 and its dual for F / E.

11 Main result

Theorem 11.1 Let $\Gamma \in \mathrm{Tp}^{*}$ and $A \in \mathrm{Tp}$. Then $L^{*} \vdash \Gamma \rightarrow A$ if and only if the sequent $\Gamma \rightarrow A$ is true in every free monoid model over a countable alphabet.

Proof. The 'only if' part coincides with Theorem 2.1. The 'if' part is immediate from Lemma 10.21, Lemma 5.2, Lemma 2.2, and Lemma 2.3.

Theorem 11.2 Let $\Gamma \in \mathrm{Tp}^{*}$ and $A \in \mathrm{Tp}$. Then $L^{*} \vdash \Gamma \rightarrow A$ if and only if the sequent $\Gamma \rightarrow A$ is true in every free monoid model over a two symbol alphabet.

Proof. Following the proof of Theorem 11.1 we reduce the proof to the case of a sequent $\Lambda \rightarrow F$ and we find a free monoid model $\left\langle\mathcal{V}^{*}, v\right\rangle$, where $\mathcal{V} \subseteq\left\{a_{j} \mid j \in \mathbf{N}\right\}$ such that $\varepsilon \notin v(F)$ and $v(A) \neq \emptyset$ for every $A \in \operatorname{Tp}(m)$. Here $m=\|F\|$.

We take $\mathcal{W} \rightleftharpoons\{b, c\}$ and define a function $g: \mathcal{V}^{*} \rightarrow \mathcal{W}^{*}$ as follows.

$$
g\left(a_{j}\right) \rightleftharpoons b \circ \underbrace{c \circ \ldots \circ c}_{j \text { times }} \circ b \quad g(\alpha \circ \beta) \rightleftharpoons g(\alpha) \circ g(\beta)
$$

Note that g is injective.
Now we put $w\left(p_{i}\right) \rightleftharpoons\left\{g(\gamma) \mid \gamma \in v\left(p_{i}\right)\right\}$ for every primitive type p_{i} and define $w(A)$ for complex types by induction according to the definition of a free monoid model (cf. p. 173).

By induction on the complexity of A it is easy to prove that $w(A)=$ $\{g(\gamma) \mid \gamma \in v(A)\}$ for every $A \in \operatorname{Tp}(m)$. In the proof of $\left\{\gamma \in \mathcal{W}^{*} \mid\right.$ $w(A) \circ \gamma \subseteq w(B)\} \subseteq w(A \backslash B)$ we use Lemma 5.2 (ii) and the fact that if $\alpha^{\prime} \in \mathcal{V}^{*}, \beta^{\prime} \in \mathcal{V}^{*}, \gamma \in \mathcal{W}^{*}$, and $g\left(\alpha^{\prime}\right) \circ \gamma=g\left(\beta^{\prime}\right)$ then there is $\gamma^{\prime} \in \mathcal{V}^{*}$ such that $\gamma=g\left(\gamma^{\prime}\right)$.

Similarly for the dual case $\left\{\gamma \in \mathcal{W}^{*} \mid \gamma \circ w(A) \subseteq w(B)\right\}=w(B / A)$. Other cases of the induction step are trivial.

Acknowledgements

I would like to thank S. Artemov, L. Beklemishev, and M. Kanovich for constructive discussions of topics related to this paper. I am grateful to the anonymous referee for a number of suggestions that improved the exposition.

12 References

[1] M. V. Abrusci. Phase semantics and sequent calculus for pure noncommutative classical linear propositional logic, The Journal of Symbolic Logic, 56(4):1403-1451, 1991.
[2] J. van Benthem. Language in Action: Categories, Lambdas and Dynamic Logic. North-Holland, Amsterdam, (Studies in Logic 130), 1991.
[3] W. Buszkowski. Compatibility of categorial grammar with an associated category system. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 28:229-238, 1982.
[4] W. Buszkowski. Completeness results for Lambek syntactic calculus. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 32:13-28, 1986.
[5] K. Došen. A completeness theorem for the Lambek calculus of syntactic categories. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 31:235-241, 1985.
[6] K. Došen. A brief survey of frames for the Lambek calculus. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 38:179188, 1992.
[7] J. Lambek. The mathematics of sentence structure. American Mathematical Monthly, 65(3):154-170, 1958.
[8] Sz. Mikulás. Taming Logics. ILLC Dissertation series 1995-12, Institute for Logic, Language and Computation, University of Amsterdam, 1995.
[9] M. Pentus. Lambek calculus is L-complete. ILLC Prepublication series LP-93-14, Institute for Logic, Language and Computation, University of Amsterdam, 1993.
[10] M. Pentus. Language completeness of the Lambek calculus. Proc. 9th Annual IEEE Symp. on Logic in Computer Science, Paris, France, 487-496, 1994.
[11] M. Pentus. Models for the Lambek calculus. Annals of Pure and Applied Logic, 75:179-213, 1995.
[12] D. N. Yetter. Quantales and noncommutative linear logic. Journal of Symbolic Logic, 55(1):41-64, 1990.

Author address

Department of Mathematical Logic
Faculty of Mechanics and Mathematics
Moscow State University
Moscow, RUSSIA, 119899
e-mail: pentus@lpcs.math.msu.ru

[^0]: ${ }^{1}$ Received September 1996; revised version February 1997.
 ${ }^{2}$ The research described in this publication was made possible in part by the Russian Foundation for Basic Research (project 96-01-01395).

