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ABSTRACT Kossak and Paris introduced the "star" versions of the Induc-
tion and Collection schemata for Peano arithmetic, in which one admits,
as extra parameters, subsets of a given nonstandard Peano model coded in
a fixed elementary end extension of the model. We prove that the "star"
schemata are not finitelly axiomatizable over recursively saturated models.
A partial solution of a conjecture of Kossak and Paris is obtained.

Introduction

Kossak and Paris [2] have suggested the study of properties of second-order
PA structures of the form (M; JV/M), where M and N are nonstandard
models of the Peano arithmetic, PA, N being an end extension of M
(so that M is an initial segment of TV ), and N/ M is the collection of all
sets X C M of the form X = X1 Π M, where X' C N is an TV-finite set
(i. e. X' is coded in TV as a finite set by some α £ N ).

Let Σn[N/M] denote the extension of the class of Σn formulas of
the PA language by elements of M occuring in the usual way and sets
X € N / M used as extra second-order parameters (with no quantification
over them allowed).

This enrichment of the language leads us to the question: are the Indu-
ction and Collection schemata, restricted to the class of Σn+ι[N/M]
formulas, really stronger than those restricted to Σn[N/M] formulas ?
Kossak and Paris obtained (see [2]) positive answers for the case when
n = 1 or 2, and formulated it as a conjecture that the result should be
true for all n .

This note is written to present a partial answer. We prove that, at least
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in the case when M is countable and recursively saturated, there exists
a countable elementary end extension N of M such that M models
the schemata for Σn-ι[N/M] formulas but does not model those for
Σn+ι[N/M] formulas.

The level n is still missing. The other open problem is to eliminate the
requirement that M is recursively saturated.

The proof involves a coding technique for subsets of PA models. In
particular, we prove that, given a model M \= PA and a set X C M,
for any n there exists a set ACM such that M still models both
Induction and Collection for Σn(A) formulas (where A can occur as
an extra second-order parameter), but X is Δn+ι(A) in M.

I Preliminaries

We give Kaye [1] as a general reference in matters of notation, but take
some space to introduce more special notation which reflects the scope of
the paper.

Let M be a countable PA model, fixed for the remainder.
An M-finite set will mean: a set X C M coded in M as a finite set. The

notion of an M-finite sequence (of elements of M ) is understood similarly.
A set X C M is M-piecewise definable, M-p. df. in brief, iff X Π u is

M-finite for every M-finite set u .
Σn and Πn will denote the ordinary classes of formulas in the PA

language.
By Σn (slanted !) we shall denote the collection of all Σn-formulas of

the PA language, with elements of M allowed as parameters.
Let X C ί?(M). By Σ"n[X] we shall denote the collection of all formulas

obtained from Σn by the permission to use terms composed from char-
acteristic functions of sets X G X to substitute PA variables. We write
Σn(X) or Σn(X>Y} instead of resp. Σn[{X}} or Σn[{X,Y}}.

By Σn we shall also denote the collections of all subsets of M, M x M
etc. definable in M by Σn formulas (where, by definition, elements of M
may occur as parameters). We define ΣΌo = \J1<neω Σn .

Other similar notation, like 77n(X), has the corresponding meaning.
Finally, Δ... = Σ... Π 77..., in all cases.
It will always be the case that the subsets X of M involved as extra

set parameters are M-piecewise definable.

2 The main results

Let Γ be a definability class. We shall consider the following schemata of
axioms, where Φ is assumed to be a formula in Γ :
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Γ-Collection:
Vα 0 [ V α < α 0 3 6 Φ ( α , 6 ) ==> 360 V α < α0 36 < 60 Φ(α,6)],

Γ-Induct ion: Φ(0)&Vα[Φ(α) => Φ(α + l)] => V α Φ ( α ) .

Let N \= PA be an end extension of M. Following Kossak and Paris [2],
we consider the schemata for the classes Γ = Σn[N/M]. (Notation BΣ"*
and IΣ* was used in [2] to denote Z"n[W/M]-Collection and Σn[N/M]
-Induction.)

Working with a hierarchy, one naturally wants to figure out whether a
given property on a level n + 1 is strictly stronger than it is on level
n. Regarding the Induction and Collection schemata, Kossak and
Paris obtained the following results (see [2]). First, every countable model
M (= PA has an elementary end extension N such that M models
ΣΊ[7V/M]-Induction but does not model Σ%[N / M]-ColIect±on. Sec-
ond, every countable model M }== PA has an elementary end exten-
sion N such that M models Σ% [ N /M]- Induct ion but does not model
ΣafTV/Mj-Induction. They conjectured that the results generalize to higher
levels.

We do not know how to prove this conjecture even in the case of recur-
sively saturated models M. The following theorem gives a partial result.

Theorem 2.1 (Main theorem)
Let n > 2. Assume that M is a countable recursively saturated model of
PA. There exists a countable elementary end extension N of M such
that M models Σ"n_ι[N/M]-Induction but does not model Σn+\[N/M]
-Collection.

Induction usually implies Collection; for instance Σ"n-Induction im-
plies I?n-Collection for any particular n, see e.g. Proposition 4.1 in
Sieg [3], so the theorem formally yields the result for either of the schemata
separately. However, to make the exposition self-contained, we shall prove
independently that M also models ΣVi-itN/Mj-Collection and does not
model Σn+\[N / M]- Induct ion.

The level n is still missing. On the other hand, the theorem implies that
for any n we have "essential" gap at least for one of the successive pairs,
n — 1, n and n, n + 1.

The proof is based on two ideas concerning how to code subsets of Peano
models. The first idea appears in the following theorem, perhaps of separate
interest.

Theorem 2.2 Let n>l. Suppose that M is a countable model of PA
and T C M is an inductive set for M. Let finally X C M be an M-p. df.
set. Then there exists an M-p. df. set ACM such that M models both
Induction and Collection for Σn(T,A), but X is Δn+ι(T,A) in M .

(A set T C M is inductive iff M models Σm(T)- Induct ion for all m.
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The set T enters the result and the proof as a uniform parameter.) Thus
any M-p. df. set X C M (e.g. X may effectively code a cofinal map from
some M<α to M, violating the Collection schema) can be coded in
(M; T, A) at level n -f 1 in such a way that the schemata still hold in M
at level n and below.

To prove Theorem 2.2, we introduce the notion of a Σ"n(Γ)-generic matrix
in Section 3. A matrix here is essentially a sequence μ = (μα : α G M) of
functions μα € 2M. We show that Σ'n(T)-generic matrices do not violate
Z"n(T)-Induction and I7n(T)-Collection in M.

Then we use, in Section 4, a "double" Δn+ι(T) matrix μ, which is
essentially a double sequence (μαi : α € M, z € {0,1}) of functions μαj €
2M, satisfying the property that, for any M-p. df. set X C M, putting
μα = μαι iff α € X and μα = μαo otherwise, one obtains a Z"n(T)-generic
matrix μ = (μα : α G M) independently on the choice of X. On the other
hand, μ codes X in such a way that X is Zln+ι(T, μ) in M.

To prove Theorem 2.2, we apply this construction for a given M-p. df.
set X C M. This results in a Σn(T)-generic matrix μ (so M models the
schemata for the class Σ"n(T, μ)) such that X is Δn+ι(T,μ) in M. It
remains to convert μ to a set ACM.

Let us describe how this theorem works in the proof of Theorem 2.1. We
consider a countable recursively saturated model M of PA. There exists
an inductive satisfaction class T C M. Note that M models Σm(T)-
Induction for all ra G ω, and T satisfies the Tarski rules for a class of
true formulas provided elements of M are adequately treated as Godel
numbers of PA formulas.

We then fix a cofinal M-p. df. map β : M<αo —> M, αo being an ar-
bitrary nonstandard element of M. Applying Theorem 2.2, we obtain an
M-p. df. set A C M such that β is Δn+ι(T,A) in M and M satisfies
the Induction and Collection schemata for Σn(T,A).

As the second part of the proof of Theorem 2.1, we define in Section 5 a
countable elementary end extension N of M (an ultrapower of M ) such
that

(1) Both T and A belong to N/M, therefore β is Δn+ι[N/M] in
M.

(2) Every element of N/M belongs to Δ2(T,A) in M.

Now (1) implies that !7n+i[Ar/M]-Collection and JSn+ι[W/M]-Induction
fail in M. On the other hand, it follows from (2) that Collection and
Induction for the class Σn-ι[N/M] hold in M by the choice of A .

We do not know how to reduce Δz(T, μ) to Δ\(T, μ) in (2), that would
improve Σ"n_ι to Σn in Theorem 2.1. The other open problem is to elim-
inate the assumption that the given model M is recursively saturated.
(This property is used in the ultrapower construction of N .)
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3 Generic matrices

This section starts the proof of Theorem 2.2. Thus let us suppose that M
is a nonstandard countable model of PA, and T is an inductive set for
M (so that M models Σn(T)- Induct ion for all n ), but not necessarily a
satisfaction class. For instance, this includes the case when T is the empty
set; then the classes Σn(T) etc. below become equal to Σn etc.

Generic matrices

We wish to consider generic sequences of maps from M into 2 = {0,1}.
Technically, this can be realized in the form of generic matrices.

A matrix is an arbitrary function μ : M x M —> {0,1}. Alternatively,
a matrix μ can be seen as the indexed family (μa : a G M), where every
μa G 2M is defined by μa(l) = μ(α, ί) for all I .

Let COND denote the set of all M-finite functions p such that

i) the domain άomp is an M-finite subset of M x M

ii) all values of p are among 0 and 1.

Elements of COND, called conditions below, are identified with their codes
in M, so that COND is understood as a definable class in M .

The set COND is ordered by inclusion: p < p' iff p' extends p as a
function. In this case, we say that p' is stronger than p. A set D C COND
is dense iff every p G COND is extended by some p1 G D .

Let C C COND. A condition p decides C iff either p G C or there is
no stronger condition p' G C. We observe that the set {p : p decides C}
is dense; and if a set C is dense then deciding C is equivalent to belonging
to C.

A matrix μ extends a condition p G COND iff p C μ, i. e. p(a, /) =
μ(α, /) for all (α, /) G domp. A matrix μ decides a set C C COND iff
μ extends a condition which decides C. As above if C is dense then μ
decides C iff μ extends a condition in C.

Now we introduce the notion of a Σn(T)-generic matrix. The definition
intends to meet the following two requirements of opposite character:

1. Any Σ"n(T)-generic matrix μ has to decide Δn+\(T) sets, and:

2. One would be able to define a Σ"n(T)-generic matrix μ of class
Δn+ι(T).

The latter requirement implies that some, and even some dense, Δn+ι(T)
sets cannot be decided by μ. However we can decide a reasonably large
subfamily of dense Δn+\(T} sets. For example this subfamily will contain
all sets of the form {p : p decides C} where C is an arbitrary Σn(T)

subset of COND .
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Suppose that E C M x COND. We put Eb = {m : (6,m) G £} for all
elements b G M, and

ΈCE = {p G COND : p decides every JEJ6, 6 < c} .

Evidently DC£ is dense in COND provided E is Σn(T) in M for some
n.

Definition 3.1 Let Γ be a definability type. A matrix μ is Γ-generic iff
for every Γ-set E and every c G M, μ extends a condition p G DCJE; . D

Proposition 3.2 Lei n > 1. There exists a Σn(T)-generic matrix μ of
class Aι+ι(T) in M.

Proof Using a Σn(T) set universal for all Σn(T) sets in M get an
appropriate Δn+\(T) enumeration of all relevant sets ΦC£, and define μ
as the limit of a certain increasing Δn+\(T} sequence of conditions. D

Forcing

Let us consider the extension of the language of PA by the set T C M
as an extra second order parameter, as above, and a one more constant, μ,
for a generic matrix. In other words, now "terms" of the form μ(α, k) are
admitted to substitute PA variables. In particular, Σ"n(μ,T) will denote
the collection of all Σn(T) formulas where in addition μ may occur in
the mentioned way. The notation Πn(μ, T) is treated similarly.

For a condition p, let p+ be the matrix which extends p by zeros, that
is,

whenewer (α, I) G domp

otherwise{
Definition 3.3 The forcing relation p fore φ is introduced; here p G
COND while φ is a closed formula of one of the classes Σ*n(μ, T), 7Tn(μ, T);
n > 1

1. Let φ(μ,T) be a closed ΣΊ(μ,T) formula. We set pforcφ(μ^T)
iff the computation of the truth value of φ(p+,T) in M gives the
result true after an M-finite number of steps, in such a way that
every value p+(a^ I) which factually occurs in the computation satisfy
(α, /} € domp .

2. p fore 3aφ(a) iff there exists α G M such that p fore φ(ά) .

3. Let Φ be a closed 77m(μ,T) formula, m > 1. Then pforc Φ iff
none among the conditions p' extending p forces Φ~. (Here Φ~ de-
notes the result of straightforward transformation of ->Φ to Σn(μ, T)
form.) D
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Proposition 3.4 Let Φ(αι,...,αm) be a Σn(μ,T] formula, n > 1. Then
theset {(αι,...,αm,p) G Mm x COND pforc Φ(αι, ...,αm)} is Σn(T) in
M .

Proof The statement in the case n = 1 follows from item 1 of Defini-
tion 3.3; then the result extends to the general case by induction. D

In particular the set {p G CθND : pforc Φ} is Σn(T) in M for any
closed Γn(Γ)-formula Φ.

Corollary 3.5 Assume that n > 1. Let μ be an Σn(T)-generic matrix.
Then for any m < n and any closed Σm(T) formula Φ there exists a
condition p, extended by μ, which decides Φ (i. e. forces Φ or forces
Φ~ .) D

The following lemma connects the truth of PA formulas, having T and
a generic matrix μ as extra parameters, with the forcing.

Lemma 3.6 Assume that n > 1. Let μ be an Σn(T)-generic matrix.
Let φ(μ) be a Σm(μ,T) formula, I < m < n-f-l Then φ(μ) is true in
M iff some condition p extended by μ forces φ(μ) .

Proof The proof goes on by induction on m. The case m = 1 is easy.
To carry out the step, suppose that m < n. Consider a Σm+ι(μ,T)

formula φ(μ) of the form 3aψ(a,μ), where ψ is a Πm(μ, T) formula.
Assume that φ(μ) is true. Then ^(α, μ) holds in M for some α G M,

so that the Σm(T) formula ψ~(a,μ) is false and, by the induction hy-
pothesis, none among conditions p extended by μ forces t/;~(α, μ). By
Corollary 3.5, there exists a condition p C μ which forces ψ(a, μ). There-
fore p fore φ(μ) .

Conversely suppose that a condition p C μ forces φ(μ), that is, forces
τ/>(α, μ) for some α. We prove that ψ(a, μ) is true in M. Assume on the
contrary that ψ(a, μ) is false, that is, ^(a.μ) is true in M. Applying the
induction hypothesis, we obtain a condition p' C μ which forces ψ~(a, μ).
One may assume that p C p' since p also is extended by μ. This is a
contradiction because p fore -0(α, μ). D

Lemma 3.7 Let n>l. Suppose that μ is a Σn(T)-generic matrix. Then
M satisfies both Induction and Collection for formulas in Σn(T,μ) .

Proof Induction. Consider a Σn(μ,T) formula Φ(μ,α). It suffices to
prove that if the set A = {α G M : -i Φ(μ, α) in M} is nonempty then it
contains a least element in M. Consider an arbitrary α' G A. By Propo-
sition 3.4 and the genericity, μ extends a condition p which decides every
sentence Φ(μ,α), α < α', in M. We pick the M-least α < a' such that
p forces -> Φ(μ, α), and use Lemma 3.6 having in mind that Πn is con-

vertable to Σn+\ .
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Collection. Consider a Σn(μ,T) formula Φ(μ,α, 6). Let α0 € M. It
suffices to find bQ G M such that the following holds in M :

V α < α 0 [36Φ(μ,α,6) =» 36 < 60 Φ(μ,α,6)].

By the genericity there exists a condition p, extended by μ, which de-
cides the formula 3&Φ(μ, α,6) for all α < αo By Proposition 3.4 the
forcing relation is definable in (M; T) hence for any α < α0 there exists
the M-least element b = 6(α) G M such that either pforc Φ(μ, α, 6)
or b = 0 and p does not force 36Φ(μ, α, 6). Moreover there exists
60 = maxα<αo b(a) € M, as required. D

4 Coding sets by generic matrices

In this section, we complete the proof of Theorem 2.2; a PA model M
and an inductive for M set T C M remain fixed. Let us also fix a number
n > 1.

Let a double matrix be any function μ : M x 2 x M —> 2 = {0,1}. A
double matrix μ can be seen as the indexed family (μαί : α G M &; i G
{0,1}) where every "row" μai G 2M is defined by μαt(Z) = μ(α,z,/) for
all I G M .

In this case for any set X C M we define a matrix μ = μ * X =
(μα : α £ M) by μα = μαι whenever a € X and μα = μαo otherwise.
Matrices of the form μ * X generated by M-p. df. sets X C M will be
called M-flips of μ .

Lemma 4.1 There exists a double matrix μ which is Δn+\(T) in M,
μαo 7^ μαι for any a G M, and a// M-flips of μ are Σn(T)-generic.

Proof Let DCOND denote the set of all M-finite functions p such that

1) The domain domp is an M-ίϊnite subset of M x 2 x M satisfying
the following requirement: (α, 0, /) G domp <ί=> (α, 1, /) G domp .

2) All values of p are among the numbers 0 and 1.

Elements of DCOND, called double conditions, are identified with their
codes in M so that DCOND is understood as a subset of M. We put

|p| = domdomdomp = {α : 3z 36 ({α,i,b) € domp)}

for any double condition p this is an M-ίϊnite subset of M, of course.
The set DCOND is ordered by inclusion.

Now we introduce flips of double conditions. Let p € DCOND, u = p|,
and U C u is an M-finite set. We define p = p * U G COND, an M-flip of
p, as follows: p(a,l) = p(α, 1,Z) whenever α G [/, and p(α, /) = p(α,0, /)
otherwise. Thus, an M-flip of a double condition is a condition in COND .
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Assertion Let p € DCOND, E C M x CθND be a Σ^T) set in M
for some m, and c £ M. There exists a double condition p' extending
p such that every M-flip of p7 decides each of the sets E"6, b < c.

Proof Let us fix an enumeration {qk : 1 < k < kQ} (where fc0 £ M)
of all M-flips of p in M. We need one more definition. Let q C p be a
pair of conditions in CθND, q' a condition satisfying domg' = domg. We
define the substitution p' = p[q/q'} as follows:

ί q'(a, I) iff (α, /) € άomq = domg'
p'(a,ΐ) = <

[ p(a, ϊ) iff (α, /) £ damp \domg

Let now q be one of the conditions qk. One can construct an increasing
M-finite sequence of conditions, q = PQ C pi C p2 C ... C pko = p1 such
that every condition p'k = Pk[q/qk] (1 < k < &o) decides each of the
sets Eb, b < c. In particular every p'[q/qk] decides each Eb. We define
p; € DCOND as follows:

/ / ,x ί P(α'*Ό if < a ' *» Z )p (a,i,Z) = <
^ p'(a,/) if (a, Z) € dom p7 and (α,z,/) ^ domp

Then every M-flip of px is equal to some p'[q/qk] - Π (the assertion)

Now, using the assertion, one ends the proof of Lemma 4.1 in the way
outlined above, for the proof of Proposition 3.2, in addition taking care of
requirement μαo ̂  μαι (The latter would easily follow from a very mod-
erate amount of genericity of μ itself, which indeed we shall not exploit.)

Note that the assertion can capture only the flips generated by M-ίϊnite
sets (the reasoning essentially proceeds in M ). This is why X was required
to be an M-p. df. set in the lemma. D (Lemma 4.1)

Let us complete the proof of Theorem 2.2. Suppose that X is an M-p. df.
set. Let μ be the double matrix given by Lemma 4.1. Then μ = μ * X is a
I7n(T)-genenc matrix, so that M models both Induction and Collection
for Σn(T,μ) by Lemma 3.7. On the other hand, since μαo φ μαι for all
α, we have

a£X ^=ϊ V / [ μ ( α , / ) = μ(α,l,/)] ^ 3/ [μ(α, /) φ μ(α,0, /) ],

so X is ^n+ι(T,μ) in M because μ is chosen to be Δn+ι(T) in M.
It remains to convert the matrix μ G 2MxM to a set A C M. D
(Theorem 2.2)

5 The extension

This section proves Theorem 2.1. Thus we suppose that n > 2 and M
is a countable recursively saturated model of PA. Then there exists an
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inductive satisfaction class Γ C M for M. In particular, M models
Σ'rn(Γ)-Induction for all m .

Since M is countable, there exists a cofinal increasing sequence (bk :
k € ω) in M. We put dfc = 2fc3bfc. Let us fix a number aQ £ M\ω and
a 1 — 1 map β : M<ao onto the set Δ = [dk : k G ω} .

Note that β is M-p. df. as Δ is a cofinal subset of M of order type
ω. Hence by Theorem 2.2 there exists an M-p. df. set ACM such that
M models both Induction and Collection for 27n(Γ,A), and β is
Δn+!(T,A) in M.

The continuation of the proof involves the following lemma.

Lemma 5.1 There is a countable elementary end extension N of M
such that

(a) Both A and T belong to N/M .

(b) Every element of N/M is ^2(Γ,-A) in M .

Let us demonstrate that the lemma implies Theorem 2.1. Requirement (b)
guarantees that every Σn-.\[N / M\ subset of M belongs to Σn(T,A) in
M. So M models £n_ι[JV/M]-Collection and Σn-1 [N /M]- Induct ion
by Lemma 3.7.

Requirement (a) implies β E Δn+ι[N/M] in M by the choice of A.
It immediately follows that £n+i[JV/M]-Collection fails in M by the
choice of β. To see that Z"n+i[7V/M]-Induction fails as well, consider a
Σn+ι[NIM\ formula Φ(fc) which says that there exist numbers α < αo
and b satisfying β(a) = 2k3b. It is clear that Φ(k) is true in M iff
k € ω . D (Theorem 2.1)

Proof of the lemma. The required extension N will be defined as an
ultrapower of M of the form N = Ult u 7, where

5 = {/ e MM : / is definable in M by a PA formula

with parameters in M}

and U is an ultrafilter in the algebra A of all subsets of M definable in
M by a PA formula with parameters in M.

Since T and A may not be PA definable in M, we have to use an
ultrafilter as the principal coding tool in order to fulfill requirement (a).
The ultrafilter U will be defined in two steps.

Coding T and A

We put Pa = {x G M : α-th prime divides x in M} and Ra = M \ Pa.
Let Z = {26 : b € Γ} U {26 + 1 : b € A}] we now define

Γ Pa iff α € Z
Qa = { n

I Ra otherwise
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We set finally U0 = {Qa : α € M} .
Notice that all M-finite intersections of sets Qa are unbounded in M.

Furthermore, if U C A is an ultrafilter such that U0 C U, and N =
Ult u J, then both T and A belong to AΓ/M, which yields requirement
(a) of the lemma.

Trying to expand UQ to an ultrafilter

For any set B G A, it must be determined which among the sets B, M\B,
belongs to It. We have two restrictions on this expansion, of somewhat
opposite direction. First we must satisfy requirement (b) of the lemma;
second we have to guarantee that N = Ult u 7 is an end extension.

Let {φp(x)}p be a formal recursive enumeration in PA of all formu-
las of the language of PA having x as the only free variable. We are
willing to set Ap = {x e M : M |= φp(x)} for all p G M. This is in-
consistent, generally speaking, since many 'formulas" φp may not have a
definite external meaning. The satisfaction class T converts the definition
to legitimate form. We put

Ap = {x G M : Γφp(xΓ € Γ} and Cp = M \ Ap

where Γ π denotes the Gόdel number of . 4 We define an auxiliary ultra-
filter U' = UQ U {Bp : p € M} where each Bp is either Ap or Cp. The
definition of Bp goes on in (M; T, A) by the (internal) induction on p as
follows:

{ Ap iff Ap is compatible with UQ U {Bq : q < p}

Cp otherwise

We say that a set B C M is compatible with a family X of subsets of M
iff B Π p| X' is unbounded in M for any M-finite X7 C X. We say that
X is compatible iff M is compatible with X. (In the way how the proof
goes on, the notion of an M-finite family of subsets of M is well defined.)

Justification

The inductive definition of Bp is carried out in (M; T, A) (meaning M
with T and A as extra second-order parameters). Therefore to see that
the definition is legitimate we have to justify it in the frameworks of our
assumptions.

We recall that M satisfies both Induction and Collection for
Σn(T, A), where n > 2 is a fixed number (from Theorem 2.1).

4 Notice that every subset of M definable in M by a PA formula with parameters
in M is equal to some Λp, p € M, but not vice versa, because the family of all sets
Ap contains sets of nonstandard M-finite levels of the arithmetical hierarchy in M,
available via T .
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Let a good sequence mean an M-finite binary sequense s = (i0, ..., v) G
M corresponding to the construction of Ap and Cp in the sense that, for
all p < r ,

iff (*) Ap is compatible with UQ U [Bq : q < p}

otherwise

In other words ip = 1 iff £p = Ap

We now explore the "complexity" of the requirement (*) (saying that

the set Bps = Ap Π Γ\q<P,s(q)=ιAq n Πg<p,s(g)=oC'9 has unbounded, in
M, intersection with any among sets Q<& = Πα<6 Q°> )•

Since A, T are M-p. df. sets, we can associate with any 6 € M a
particular PA formula %(x) with parameters in M such that <2<& =
{x : 7b(x)} in M and the map b \ — > Γ7&π is A\(T, A), i. e. recursive w.
r. t. T and A, in M. Let Φpbs denote the following perhaps infinite but
M-finite sequence of symbols in M, which looks like a PA formula from
the M-th point of view:

V χ 3 y > χ [ φ p ( y ) & %(y) &Vq<p(s(q) = I Φ=> Φq(y))].

(By the way we cannot add the quantifier V 6 because this would involve
T and A as parameters.) Since T is a satisfaction class for M, we have,
for all p, 6 G M and an M-finite sequence s ,

ΓΦp6sπ G ϊ1 <=ϊ the intersection £ps Π Q<& is unbounded.

Then (*) <=ϊ V δ (ΓΦp6S

π G T) , so that the property of "being a good
sequence" can be expressed by a formula of the type

(bounded quantifier) ( ΣΊ (T, A)-formula & Πι (T, A) -formula ) ,

(because the function p, 6, 5 ι — > ΓΦp6S

π is A\(T, A) in M), which is
within both Σ2(T, A) and Π2(T,A). It follows that the formula "there
exists a good sequence of length k " is Σ%(T, A) as well.

Therefore we can apply ^(T, ̂ -Induction (a good sequence obviously
cannot be maximal) getting a good sequence s^ in M of length k for any
k G M. (The uniqueness of a good sequence for any fixed length is easily
verified.) This conclusion justifies the construction of sets Bp , p € M .

One more important consequence from our consideration is that the set
S = [p€ M : Bp = Ap} is Δ2(T, A) in M this will be used below.

The ultra/power

Thus the sets Bp are well defined, and so is lί' = UQ U {Bp : p G M}, the
auxiliary ultrafilter, therefore U = U' Π A is an ultrafilter in Λ, and U
is compatible in the sense above. We shall prove that N = Ult u 7 is the
required extension of M . There are just two points which we have to check:
first, N is an end extension of M, second, requirement (b) of Lemma 5.1.
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End extension
By the choice of 7, to guarantee that N is an end extension of M, it
suffices to prove that if W C M x M is definable in M by a PA formula
(parameters in M, but not T or A, allowed), CQ G M, Wk = {a : ( k , a ) €
W} for all fc, and X = Uc<c0 ^c € U then there exists c < CQ such that
wcεu.

To prove this fact assume on the contrary that Wc g U for all c < CQ .
Let us verify that W<k = Uc<fc Wc £ U for all k < CQ by induction on k
this immediately leads to contradiction. Since we have Σz(T, A)-Induction
in M, it suffices to check that the property W<k = \Jc<k Wc gU can be
expressed in M by a Σ^(T, A) formula. Such a formula can be defined as
follows:

3p[(p<έSbW<k = Ap) V ( p€5&W< f c = σp)],

where, we recall, S = {p € M : Bp = Ap} is a Δ%(T, A) set in M .
It remains to replace the equality W<k = Ap by something like the

formula Γ M x ( x G W<k -<=>• φp(x))'[ € T and accordingly replace W<k —
cp.
Requirement (b) of Lemma 5.1
The following is sufficient: if W C M x M and W& = {α : (Λ, α) € W} for
all fc € M are as above then Y = {k : Wk £ U} e Δ2(T, A). We observe
that

Both the equality Wk = Ap and the inequality Wk ̂  Cp can be reduced
to Δι(T,A) as above, therefore Y e Δ^(T, A), as required. D
(Lemma 5.1)
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Added in proof. It was in September 1997, after the final version of this
paper had been submitted, that Richard Kaye let me know a nice improve-
ment of the reasonning in Section 5, which seems to close the gap between
n — 1 and n + 1 in Theorem 2.1.
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