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ABSTRACT In this expository paper, we investigate the structure of
complexity classes and the structure of complete sets therein. We give an
overview of recent results on both set structure and class structure induced
by various notions of reductions.

1 Introduction

After the demonstration of the completeness of several problems for NP
by Cook [Coo71] and Levin [Lev73] and for many other problems by Karp
[Kar72], the interest in completeness notions in complexity classes has
tremendously increased. Virtually every form of reduction known in com-
putability theory has found its way to complexity theory. This is usually
done by imposing time and/or space bounds on the computational power
of the device representing the reduction.

Early on, Ladner et al. [LLS75] categorized the then known types of
reductions and made a comparison between these by constructing sets that
are reducible to each other via one type of reduction and not reducible
via the other. They however were interested just in the relative strength
of the reductions and not in comparing the different degrees of complete
sets that are induced by these reducibilities. This question was picked up
much later by Watanabe [Wat87] for deterministic exponential time and
others following him for other classes. A recent survey of this can be found
in [Buh93]

Complete sets under some type of reduction form an interesting, rich,
and hence much studied subject in complexity theory. A complete set can
be viewed as representing an entire complexity class. Through the trans-
lation of the reduction one can with the help of the complete set, decide
all questions of membership for any set in the class. The resource bound
on the reduction is (to be of interest) always much less than the resource
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bound that defines the complexity class. A complete set is, as such, a "most
difficult object" in the complexity class.

On the other hand by that very same representation property, we observe
that the complete set codes all the information for all the sets present in
the complexity class. A complete set therefore necessarily has to have large
parts that are computationally easily recognizable. Thus, if a complete set
is "most difficult" this usually is not pertinent to all of the set, but rather
to "significant parts." It then becomes an interesting question, which parts
of the complete sets are difficult, and, more pressing, which are not.

Complete sets in complexity classes are also usually the only sets that
arise naturally. Once a set has been identified as being of a certain com-
plexity, it is by experience soon after exposed as being complete in the
corresponding class. This phenomenon was also noted in computability
theory where every naturally arising non-recursive r.e. set turned out to
be complete. This initiated E. Post [Pos44] to formulate his problem and
program.

The different types of reductions impose structure on both complexity
class and complete sets. Different types of reductions induce different no-
tions of completeness which may give rise to a different degree structure.
Stronger forms of reduction give more restrictions on how the information is
stored in the complete sets than do weaker forms. Hence stronger reduction
types impose more structure on the sets that are complete.

The most interesting complexity class to study complete sets on is the
class NP. However this is also by far the most reluctant class to reveal its
secrets. Exponential time (and larger) classes have the tremendous advan-
tage that they allow for diagonalization against polynomial time bounded
reductions and therefore for the construction of sets and degrees that have
the desired properties. The bulk of the results obtained (and therefore the
bulk of the results reviewed in this paper) pertains to exponential time
(and larger) complexity classes.

In the different sections of this paper we pay attention to the structure
of complexity classes as well as the structure of complete sets in these
classes under various types of reductions. We treat several subjects that
have received much attention in recent years. We must perforce limit our
attention to some selected topics. The selection of the topics was almost
always inspired by the fact that these topics were our own subject of (a)
research (paper) at some point in time. We do not wish to implicitly or
explicitly valuate other related and unrelated topics not mentioned in this
paper, nor do we wish to make any claims about giving a complete survey
on the topics that do appear in this paper. Having stated this disclaimer,
we can now come to a list of topics that we will treat.
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Class Structure: Degrees of Complete Sets

Here we investigate the question which reduction types give rise to different
degrees of complete sets (collapse or separation). We survey the work of
Watanabe [Wat87] and Buhrman et al. [BHT91, BST93]

Class Structure: Isomorphism

This is actually a refinement of the degree structure question. Of impor-
tance is which sets in (the complete) many-one degrees are isomorphic.
This question was also inspired by the fact that in recursive set theory the
many-one degree collapses to a single isomorphism degree [Myh55].

Class Structure: Measure Theory

Until recently, measure theory was a subject that was not applicable to
complexity classes (or more general to effective classes) because of their
inherent countability. Lutz [Lut90] however, introduced "resource bounded
measure" with which many interesting properties about "abundance" of
sets in complexity classes could be derived.

Set Structure: Sparse Complete Sets

Here we discuss some new developments on the most apparent internal
structural properties of a complete set—the number of elements it has per
length.

Set Structure: Redundant Information

Some strings in a complete set are essential to its completeness. E.g., for
many-one reductions some strings are the image of a string under this
reduction and some are not. Removing the former may destroy complete-
ness, removing the latter has no consequence. Which (subsets of) strings
are crucial?

Set Structure: Instance Complexity

As we already noted much of a complete set is of trivial complexity. Which
is the part that makes it difficult and how dense is this part? To measure the
complexity of single instances we use the measure introduced by Orponen
et al. [OKSW94].

Set Structure: Post's Program Revisited

Autoreducibility is a special form of reducibility introduced by Trakht-
enbrot [Tra70]. This notion has received considerable attention recently
[BFT95] because of its potential to discover answers to the fundamen-
tal questions. Autoreducibility is a structural notion that complete sets in
some complexity classes do and complete sets in other complexity classes
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do not have and is therefore a potential separator of complexity classes. As
such this can be viewed as a new instantiation of Post's Program.

Several expository papers were written on the structure of complete sets
in complexity classes. The first were published in 1990 [Hom90, KMR90].
On complete sets with special structure (sparse sets) a survey was pub-
lished in 1992 ([HOW92]). The present authors presented a survey in 1994
([BT94]) in a paper that has roughly the same structure as this paper.
The field is however rapidly expanding and needs surveys such as this and
as [Hom97] for constant update.

2 Preliminaries

All sets (and languages) in this paper are subsets of Γ*, where Γ = {0, 1},
and are denoted by capital letters A, B, C etc. Strings are elements of Γ*
and are denoted by small letters x, y etc. The characteristic function of a
language A is denoted by XA : Γ* >-> Γ. The characteristic sequence of a
language A is the infinite string

and is also denoted by χ^ The complement of a set A, Γ* — A, is denoted
by A. The complement of a class of languages A', 2Γ* — X, is denoted by
X. The class complement of a class A', [A \ Γ* — A £ X}, is denoted by
Co — X. The length of a string x is denoted by \x\ and the cardinality of a
set A is denoted by \A\. We assume (standard) enumerations of resource
bounded Turing Machines MI, A/2, . . . where the resource bounds on the
machines vary to satisfy our needs. The set accepted by a Turing machine
M is called its language and is denoted by L(M). The main complexity
classes considered in this paper are LOG, NLOG P, NP, PSPACE, E,
NE, EXP and NEXP, which are the classes of languages recognized by:
deterministic logarithmic space,
nondeterministic logarithmic space,
deterministic polynomial time,
nondeterministic polynomial time,
deterministic polynomial space,
deterministic linear exponential time,
nondeterministic linear exponential time,
deterministic exponential time, and
nondeterministic exponential time bounded Turing machines respectively.

2. 1 Reductions

Complete sets are always complete under some form of reduction. Many
different models for this concept are found in the literature. As the con-
cept of complete sets and therefore the concept of reductions is central to



Complete Sets and Structure in Subrecursive Classes 49

this paper, we take some space here to present a uniform machine based
approach in which all reductions are modeled by Oracle Turing Machines.

2.1.1 Oracle Turing Machines

An oracle Turing machine is a standard multi-tape Turing machine with
two extra tapes :

1. a write only tape called the QUERY-tape.

2. a read only tape called the ANSWER-tape.

These tapes will be called the oracle tapes. Furthermore we add an extra
state: the QUERY-state. We use the following convention for access to the or-
acle tapes: M is allowed to write on the QUERY-tape a string g, called query,
then at some point it decides to go into the QUERY-state. Subsequently the
QUERY-tape is cleared3, and depending on the oracle, something is written
on the ANSWER-tape. Now M is allowed to read the ANSWER-tape, until a
next QUERY-state is reached. A Turing machine equipped with the above
described extra tapes and state is called an oracle Turing machine. In the
above discussion it was not clear what the role of the oracle is. An oracle
is just a set, say A. When an oracle Turing machine M writes a string q on
the QUERY-tape and enters the QUERY-state, the oracle writes down - in
one step - on the ANSWER-tape the value of the characteristic function of
A on g, that is XA(Q)- Informally, M asks oracle A whether y is a member
of A and finds the answer on its ANSWER-tape. We note here that the role
of the oracle can be more complex in the sense that it could write down
not only one character but a whole string of characters. Examples of this
can be found in [ABJ91, FHOS93]. Let A be a set and M be an oracle
Turing machine We say that M accepts x relative to A if M has an ac-
cepting computation on input x, with A as oracle. We say that L(M, A) is
the set of strings accepted by M relative to A. As usual, we can talk about
polynomial time oracle machines and computations.

2.2 Adaptive and Non-Adaptive

Essentially there are two ways an oracle machine can compute its queries:

1. adaptive: M is allowed to read the ANSWER-tape at any time during
the computation and may compute the next query depending on the
contents of the ANSWER-tape. In this case the queries are dependent
on the oracle.

3 With clearing a tape we mean that after clearing, the only symbols on the tape are
blanks.
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2. non-adaptive: M is not allowed to read the ANSWER-tape before it
enters the last QUERY state. In this case the computation of all the
queries depends solely on the input and the program, and is indepen-
dent of the oracle.

Sometimes we want to to talk about the set of (possible) queries that M
could ask on input x.

Definition 2.1 Let M be an oracle Turing machine.

• Q(M, x, A) is the set of all queries M wrote on its QUERY-ίαpe with
x as input and A as oracle.

j x ) = UΛCΣ* Q(M,x,A). This denotes the set of all possible
queries M could ask.

2.2.1 Reductions

Oracle machines are used to model (almost) all different types of reductions.
To achieve this we add restrictions to the oracle machine M. More formally
a restriction is a 4 tuple:

Γ = <N, COMP,ACCEPT-RESTR, QUERY-TYPE>. Where,

1. N is a function from W x Σ* — » JN. This function depends on the
index of M and the input. The function is the number of queries M
is allowed to make during the computation. With "number of queries"
we mean the number of times that M entered the QUERY-state.

2. COMP can be adaptive or non-adaptive.

3. ACCEPT-RESTR is a function from Σ* x Σ* to P({0, 1}), where
P({0, 1}) denotes the power set of {0, 1}. This function depends on
the iNPUT-tape and the ANSWER-tape. When this function takes on
the value {0} or {!}, the machine is forced to reject or accept respec-
tively.

4. QUERY-TYPE is a set of additional constraints on the type of queries
M is allowed to make. E.g., all the queries should start with a 0 or
should be smaller in length than the input.

We say that an oracle Turing machine Mi (we assume an effective enumer-
ation of oracle Turing machines) obeys restriction r, if for all input strings

• N = 0 or Mi(x) does not make more than N(Z, x) queries, and

• COMP = 0 or Mi(x) generates it's queries in a COMP (i.e., either
adaptive or non-adaptive) fashion, and
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• ACCEPT- RESTR = 0 or if Mi(x) halts then
Mi(x) e ACCEPT- RESTR(α;,2/), for y the string on the ANSWER-tape
when Mi(x) halts, and

• QUERY-TYPE = 0 or Mi(x) only wrote down queries q that satisfy the
constraints in QUERY-TYPE.

We say that M is an r-restricted oracle machine, if r is a restriction and
M is an oracle Turing machine, that obeys restriction r.

Definition 2.2 A r reduces to B (A <r

r

ec B) iff there exists a recursive
r-restricted oracle Taring machine M, such that A = L(M,B).

In this paper, we will mainly talk about polynomial time oracle ma-
chines. Note that this does not necessarily means that the ACCEPT-RESTR
function is computable in polynomial time. This notion will be called poly-
nomial time reduction. Several forms of polynomial time reduction were
first defined and compared by Ladner, Lynch and Selman [LLS75]. In the
following we will not redefine the existing notions of reducibility. We will
capture them in a machine based framework. We think that the most nat-
ural way to think about a reduction is as an oracle Turing machine with
several restrictions on the access it has to the oracle. The most general
one is the Turing reduction which has no restrictions at all. The definitions
found in the literature are by no means uniform in this sense. Sometimes
they define reductions as functions. Other times the machine based point
of view is used.

The approach we take has also the advantage that it gives a taxonomy
of the reductions in four natural groups. Several new reductions emerge
from this taxonomy by varying the 4 different aspects of the reductions.
Sometimes already existing reductions come out. For example adaptive con-
junctive reductions are the same as non-adaptive conjunctive reductions,
but it is probably not true that adaptive parity (or majority) reductions
are the same as their non-adaptive counterparts.

Definition 2.3 A reduces r to B in polynomial time (A <? B) iff there
exists an r-restricted polynomial time oracle machine M such that A =

L(M,B).

We will now show that some of the standard reductions found in the liter-
ature are easily captured by our formalism. To start with the most general
restriction:

1. T = <0,0,0,0>. (<
This restriction does not restrict the class of oracle machines. This
reduction is called Turing reduction.

2. tt= <0, non-adaptive, 0,0>. (<ft)
The oracle machines are restricted in the way they generate their
queries. This reduction is called truth-table reduction.
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3. btt = <nb, non-adaptive, 0,0>. (<£tt)
nb(i,x) = i.
This reduction is called bounded truth-table reduction.

4. k-tt = <nfc, non-adaptive, 0, 0>. (<£_w)
τifc(i, x) = fc, fc a constant.
This reduction is called k-truth-table reduction. Actually this defines
a whole class of reductions. One for every constant fc.

5. k-T =
rik(i) x) = fc, k a constant.
This reduction is called k-Turing. The bounded Turing reduction
(<6_τO is defined by replacing n^ by π&(i, x) = i.

6. ctt = <0, non-adaptive, /c,0>. (<g)
1} tfV*»yί = l (y = ι/ι . . .y n )
Q} otherwisa

This reduction is called conjunctive truth-table reduction.

7. dtt = <0, non-adaptive, /d,0>. (<JJ)

{0} otherwise.

This reduction is called disjunctive truth-table reduction.

8. m=<nm,0,/m,0>. (<
nm(i,x) = 1.

otherwise.

This reduction is called a many-one reduction. Sometimes it will be
more elegant to use the following equivalent definition: A <^ B iff
there exists a total polynomial time computable function / such that
x € A iff f ( x ) € B. Obviously / can be constructed from an oracle
machine that obeys the restriction m and vice versa.

9. m = <nΛ,0,/th,0>. (<£ p)
Πrh(i,x) = 1-

{T/} if y = 0 or y = 1.
{0,1} otherwise.

This reduction will be called extended many-one.

10. m,li = <nm,0,/m,LI> (<p

m^ p)
rim and fm as above.
U = VyεQ(Mi,x):\y\>\x\.
This constraint says that the queries have to be bigger (in length)
than the input.
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This reduction is called many-one length increasing. As in the case of
the many-one reduction we sometimes use the equivalent functional
definition in terms of total polynomial time computable functions
that are length increasing.

11. m,l-l = <nm,0,/m,ONE-ONE> (^^ p)
rim and fm as above.
ONE-ONE = Vy € Q(Mi, x) : W < x : y $ Q(Mi, x'}. This constraint
says that each query is asked once. Clearly this implies injectivity.
This reduction is called many-one and one to one reduction. We will
use sometimes the existence of a total polynomial time computable
function that is one-one.

12. m,l-l,li=<nm,0,/m,ONE-ONE-Li> (<^fl_1|K)
nm and fm as above.
ONE-ONE-LI = ONE-ONE and Li. This means that both the constraints
(ONE-ONE and LI) have to be satisfied in order to satisfy ONE-ONE-
LI. This reduction is called many-one, length increasing and one to
one. Again the functional equivalent way is sometimes chosen: there
exists a total polynomial time computable function that is one-one
and length increasing.

13. m,l-l,eh=<nm,0,/m,ONE-ONE-EH> (<£ l f l_ l f β Λ)
nm and fm as above.
ΈΆ = \/yeQ(Mi,x):2M > \x\.
This constraint says that the queries do not decrease more than expo-
nentially in length. ONE-ONE-EH = ONE-ONE and EH. This reduction
is called many-one, one to one and exponentially honest. The same
comment applies here: the functional variant must be exponentially
honest, i.e. not decrease more than an exponential in the length of
the argument.

14.
Let POS be the class of all positive boolean formulas. These are
formulas, that can be represented using only disjunctions and con-
junctions as connectives. For x a boolean variable, x := 1(0) means
x := T(_L). φ = 1(0) if it evaluates to true (false).

fpoa(x, y) = {Φ(xι := ί/1, . . , Xi := Vi)} (y = 2/1 . - , 2/i).
For φ € POS.
This reduction is called positive Turing reduction. The positive truth-
table, positive bounded-truth-table and the positive k-truth-table re-
ductions are defined as truth-table, bounded truth-table or k-truth-
table reduction with fpos as ACCEPT-RESTR.

Another way of looking at this reduction is as follows: Mi is a positive
Turing reduction if for all oracles A and B it holds that if A C B
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Reductions stronger than ^-reductions can be modeled by circuits that
have oracle gates, or circuits that compute functions. In particular so-called
AC0, NC° and NC1 reductions have recently received some attention.
Here AC* and NCΛ are the classes of languages recognized families of
circuits of polynomial size and depth logfc of unbounded and bounded fan
in respectively.

2.3 Resource Bounded Measure

Classical Lebesque measure is an unusable tool in complexity classes. As
these classes are all countable, everything we define in such a class has
measure 0. Yet, we might wish to have a notion of "abundance" and "ran-
domness" in complexity classes. Lutz [Lut87, Lut90] introduced the notion
of resource bounded measure, and gave a tool to talk about these notions
inside complexity classes.

Definition 2.4 A martingale d is a function from Γ* to 72.+ with the prop-
erty that d(wQ) + d(wl) < 2d(w) for every w e Γ*.

Definition 2.5 A p-martingale is a martingale d : Γ* »—> Q+ that is poly-
nomial time computable.

Definition 2.6 A martingale d succeeds on a language A if

limsupd(χA[0... n — 1]) = 4-oo
n*—»oo

We write S°°[d\ = {A \ d succeeds on A}

Definition 2.7 Let X be a class of languages.

• X hasp-measure 0 (μp(X) = 0) iff there exists a p-martingale d such
that X C S°°[d}.

• X has p-measure I (μp(X) = I) iff μP(X) = 0

• X has p-measure 0 in E (μp(X\E) = 0) iff μp(X Π E) = 0

• X has p-measure I in E (μp(X\E) = I) i f f μ p ( X Π E ) = 0

2.4 Completeness and Degrees

Definition 2.8 Let <r be a reduction and C be a complexity class. A set
C is r-hard for CiffVAeC,A <r C. If, moreover, C E C then C is
r-complete for C.

Definition 2.9 Let <r be a reduction and A be a set. The r-degree of A,
denoted a is the class {B \ A <r B Λ B <r A}

Definition 2.10 A set C is weakly -r-hard for C if μp{A \ A G C Λ A <r

C} 7^ 0. //, moreover C € C then C is weakly-r-complete for C.
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2.5 Complexity of Instances

The computational complexity of a single string is always a constant. In-
deed, for each string we can define a Turing machine that recognizes just
that string and nothing else. This machine works in constant time (where
the constant depends on the size of the single string recognized). Yet, we
think that some instances of a set may be computationally harder than oth-
ers. Kolmogorov complexity and generalized Kolmogorov complexity pro-
vide means to talk about (descriptional) complexity of individual strings.
Instance complexity is a notion closely related to Kolmogorov complexity
but of a more computational nature.

Consider the class of Turing machines that on each input always output 1
(accept) or 0 (reject) or ? (don't know). Such a Turing machine is said to be
consistent with a set A iff, for all inputs x such that M(x) ^? it holds that
M(x) = XA(X) The ί-bounded instance complexity of an instance x with
respect to a set A, ic*(x : A) is the size of the smallest-in length-Turing
machine M such that

1. M is consistent with A

2. M runs in time bound t for all inputs

3. M (x) 7^?

For a precise definition see [OKSW94].

3 Degrees of Complete Sets

Complete sets under some kind of reduction in a complexity class have (by
definition) the property that they all reduce to each other under that re-
duction. I.e., they form a degree. The different reductions that are available
thus form different complete degrees. Most of these degrees are ordered by
inclusion by the comparative strength of the reductions. One very natural
question to ask is whether two consecutive complete degrees in this order-
ing differ. It is trivially true that all the degrees of complete sets under
polynomial time reductions on P are the same (namely P itself). On P all
polynomial time degrees are known to collapse to the many-one degree (but
known not to collapse to the even smaller isomorphism degree.) Therefore
showing two degrees of complete sets under polynomial time different on
any complexity class C, implies that this class is not equal to P. Unfortu-
nately, until now the only complexity classes on which separation of degrees
has been a successful undertaking are classes which encompass exponential

time.

Theorem 1 ([Wat87, BHT91, HKR93, BST93])
For C € {E, EXP, NE, NEXP}
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1. The degree of the <?_«-complete sets collapses to the degree of the
^In-complete sets.

2. The degrees of the <&-, <p

tt-, <£-, <p

d-, <p

tt- and <p

τ-complete sets
are all different and, moreover, when not obviously ordered by inclu-
sion, incomparable.

In [BST93] also the degrees of query-bounded reductions are compared
and it turns out that

Theorem 2 ([BST93]) For C € {E,EXP,NE,NEXP}

1. For any k > 2, <£_c-, and <%_d-completeness are incomparable on
C

2. For any k and I, with k < I < 2k — 2, <p

k_τ- and <p_tt-completeness
are incomparable on C.

These two theorems reveal all relations between degrees of complete sets
on exponential time and beyond under all reductions known from [LLS75].
Recently, Lutz [Lut94] introduced a new notion of complete set on expo-
nential time, the weakly complete set. A set A is weakly hard under re-
duction <r, if a non-significant part (i.e., a class with non-zero p-measure)
of E reduces to A. It was not known until [ASMZ96] whether the degrees
of weakly complete sets under various reduction types are different. As it
turns out, these degrees behave the same as the classical complete degrees.
All are different except for the many-one and 1-tt, which coincide. (See
Theorem 10)

In connection with the isomorphism problem (See Theorem 6), degrees
defined by reducibilities even stronger than <^ have been studied. In par-
ticular in [AAR96] the AC0 degree is shown to collapse to the NC° degree
for every complexity class C that is closed under NC1 reductions.

On the class NP all relations of polynomial time complete degrees nec-
essarily remain open questions (without a proof that P ^ NP). Even
from the assumption P ^ NP it is still open whether any two reduc-
tions induce different degrees on NP. From the stronger assumption that
E 7^ NE Π Co - NE, Selman [Sel82] showed that the reductions many-
one and Turing differ, but not the completeness notions. A first result in
the direction of separation of completeness notions on NP was achieved by
Longpre and Young [LY90] who showed that for each k there exist many-one
NP-complete sets that A and B such that A <^_d B, where the reduction
needs linear time, but A does not reduce many-one to B using less than
nk time. The most recent development on NP is a theorem by Lutz and
Mayordomo [LM94] who prove that complete degrees differ on NP from
the very strong assumption that NP has nonzero measure in EXP.

Theorem 3 // μ(NP | EXP) φ 0 then
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1. The <£j -complete degree is different from the <2-τ -complete degree
for NP [LM94].

2. The <2-tt -complete degree is different from the <2-τ -complete de-
gree for NP [May94b],

A last result we would like to mention in this section is about the many-
one and Turing degrees on PSPACE. Here also, it is of course not known
whether this class differs from P and therefore an assumption is neces-
sary. Assuming that either randomized completeness notions differ or that
PSPACE has a set with a dense subset of high generalized Kolmogorov
complexity, Watanabe and Tang [WT89] show that the many-one and Tur-
ing complete degrees differ on PSPACE. From recent work of Buhrman
and Fortnow [BF96] it follows that there exists a relativized world in which
the <^ and the <\ _tt complete set on PSPACE differ.

On NP most problems remain open. With respect to <^- and <?_«-
complete degree on NP, Fortnow [For96] informed us of the existence of
an oracle where these degrees are different.

Even under assumptions that imply P ^ NP these problems remain
hard. In particular the following seem most urgent

• Can the complete degrees for NP-under various reduction types be
separated under the assumption P -φ NP?

• Assume μ(NP|EXP) φ 0. Can the <£tt-complete degree for NP be
separated from the <£rcomplete degree, and can the <frcomplete
degree be separated from the ^-complete degree?

• Assume μ(NP|EXP) ^ 0. Does the <j_tt-complete degree on NP-
coincide with the <^-complete degree?

4 Isomorphism

Special among the complete degrees are the degrees of isomorphism. Berman
and Hartmanis [BH77] proved that all natural NP-complete sets are inter-
reducible via length-increasing 1-1 reductions and could therefore, via a
polynomial time analog of the Cantor-Bernstein-Myhill theorem show that
these sets are all isomorphic under polynomial time computable isomor-
phisms.

After a long period of unsuccessful work in trying to prove isomorphism
of all ^-complete sets in NP, and oracle proof that the conjecture might
not hold (most prominent, the conjecture fails relative to a random ora-
cle [KMR89]) opinion shifted against the idea that the isomorphism con-
jecture might be true. It was not until 1992 that Fenner, Fortnow and
Kurtz [FFK92] proved the existence of an oracle relative to which the iso-
morphism conjecture holds. In 1985, Joseph and Young [JY85] constructed
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unnatural sets, the so-called fc-creative sets for which every 1-1 polynomial
time computable honest function is a productive function. Hence these sets
are very unlikely to be isomorphic to SAT. Also, there is a strong belief in the
existence of so-called one-way functions. These are functions that are honest
and polynomial time computable, but not polynomial time invertible. The
image of SAT under such a function may be a complete set that is not iso-
morphic to SAT. This conjecture (in some sense opposing the isomorphism
conjecture) became known as the "Encrypted Complete Set Conjecture"
(ECC). It has also met with relativized counter examples [Rog95]. Modern
versions of the isomorphism conjecture are more in the direction of stronger
reductions. Most of the sets known to be fC^-complete in NP are also com-
plete under much stronger reductions. Allender [A1188] was the first to show
that sets in PSPACE, complete under 1-L reductions (which is a function
computable by a logspace bounded Turing machine that has a one-way in-
put head) are polynomial time isomorphic. Burtschick and Hoene [BH92b]
showed on the other hand that these sets are not necessarily isomorphic
under 1-L computable isomorphisms.

The following theorem by Agrawal and Biswas, is the most general the-
orem known for the 1-L reductions.

Theorem 4 ([AB93]) Let C be a complexity class that is closed under
lin-log reductions, e.g., P, NP, PSPACE. The sets complete forC under
1-L reductions are all p-isomorphic.

The first order projection (defined by Valiant in [Val82]) is another exam-
ple of a very strong form of reduction. Allender, Balcazar and Immerman
showed in [ABI93] that for the first order projections an isomorphism the-
orem holds

Theorem 5 ([ABI93]) Let C be a nice complexity class, e.g. P, NP,
PSPACE. All sets complete for C under first order projections are iso-
morphic under first order isomorphisms.

It is natural to try to weaken the reduction types in order to get stronger
and stronger versions of isomorphism theorems for NP. One way to weaken
the first order projections is to consider reductions that can be defined by
circuits. A circuit can be equipped with oracle gates that can compute
answers to queries. The class NC° is the class of circuits of polynomial
size and constant depth with bounded fan-in. The class AC0 is the class
of circuits of polynomial size and constant depth with unbounded fan-in.
There has recently be some good progress with respect to AC0 reductions
by Agrawal, Allender and Rudich.

Theorem 6 ([AAR96]) All AC0 complete sets for NP are AC0 isomor-
phic

The proof of the above theorem relies heavily on the nonuniformity of
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the reduction. It is open whether an isomorphism theorem is true for NP
when uniform reductions are used. On the other hand it is true that the
existence of one-way polynomial time functions implies the existence of
one-way AC0 functions [AAR96]. Hence the above theorem heavily rocks
the belief in the ECC.

5 Measure Theory

Having established a difference between the degrees of complete sets un-
der various reductions, one might continue to investigate the part(s) of the
complexity class that consist(s) of complete sets. It is easily seen that a
single complete set, by padding, gives a countable class of complete sets.
But "countable class in countable class" gives no structural information
about the class. A more informative concept is the resource bounded mea-
sure of a degree. For instance if a complete degree would have measure 1 in
a complexity class, then every non-negligible part of that complexity class
would have a complete set. That is, complete sets are all over the place.
Even if one can just show that a complete degree has non-zero measure,
(note that this can either mean that it has measure one or that it is not
measurable) then the complete degree has a non-empty intersection with
any measure one class in the complexity class. A complete set can then be
found in any rich enough substructure. Until now results obtained seem to
point in another direction. It seems that indeed chaos (as classes of random
sets do not have measure 0) is more abundant than structure, even in the
small universe of complexity classes.

Theorem 7

1. The <^ -complete degree for E has measure 0 in E [JL93, May94a]>

2. For all k, the <p

k_tt -complete degree forΈ has measure OinΈ, [BM95].

3. The <p

btt -complete degree for E has measure 0 in E [ASNT94J.

The question remains open for <^-complete sets for E. Some progress
has been made however. Allender and Straus showed the following.

Theorem 8 ([AS94]) For almost every set A in EXP, BPPΛ = PΛ.

This theorem shows that if BPP would be equal to EXP then the Turing
complete sets for EXP would not have measure 0. Hence a proof that the
Turing complete sets for EXP have measure 0 would separate BPP from
EXP. It is well known that there exist relativized worlds where EXP =
BPP, and since Theorem 8 relativizes it follows that there exist relativized
worlds where the Turing complete sets for EXP do not have measure 0,
but in fact have measure 1. On the other hand Ambos-Spies [AS96] has
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informed us of the construction of an oracle where the Turing complete
degree for EXP has measure 0.

The class of weakly complete sets, a generalization of the classical notion
of completeness, would not even have been studied without the introduction
of resource bounded measure. A comparison between weakly complete sets
and other complete sets is of course the first goal. It turns out that weakly
complete sets differ from classical complete sets, both in the sense that
their degrees are different and in the sense that they behave differently.

Theorem 9 ([JL94])

1. Every language that is weakly ^^-complete for E is weakly <^-
complete for EXP.

2. There is a language in E that is weakly ^^-complete for EXP, but
not for E.

Which is rather surprising if one takes into account that, by padding, a
set is ^-complete for E if and only if it is < {^-complete for EXP.

As was shown recently by Ambos-Spies, Mayordomo and Zheng [ASMZ96],
the weakly complete degrees and other complete degrees, both in E and in
EXP form an interleaved structure. In particular.

Theorem 10 [ASMZ96]

1. For any set A, A is weakly-^^-complete for E if and only if A is
weakly-<p_tt-complete for E.

2. Let k > 1 there is a set A such that A is <p

k+l_d-complete for E
(and hence weakly-complete for both E and EXP), but neither weakly-
<p

k_τ-complete for E nor <p

k_τ-complete for EXP

3. There is a set A such that A is <p

d-complete for E (and hence weakly
dttp-complete for E and ΈiXP),but A is neither weakly <p

tt-complete
for E nor weakly-<p

tt-complete for EXP.

4. There is a set A such that A is ^-complete for E (hence weakly-
<p

τ-complete for E and EXP,), but A is neither weakly-^-complete
for E nor weakly <p

t-complete for EXP.

6 Sparse Complete Sets

One of the first structural questions to ask of a set is how many of the
2n strings of each length are in or out of the set. I.e., one of the first
apparent questions about the structure of a set is the question of its den-
sity. Also other notions of structure seem very closely related to this basic
question. For instance it is known that the class of sets (Turing) reducible
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to sparse sets coincides with the class of sets reducible to P-selective sets
and coincides with the class of sets that are recognizable by families of
small (polynomial size) circuits and coincides with the class of sets that
are recognizable in polynomial time given a polynomial amount of advice.
In other words, the amount of information that can be stored in a set seems
closely related to the number of strings that a set has per length. It there-
fore comes as no big surprise that a sparse set cannot be <^-complete for
EXP. This follows from an old theorem by Berman [Ber77]. For NP this
question is a lot harder (if P = NP then any set in P is <^-hard for NP
so also the sparse ones). It was answered by Mahaney [Mah82], building on
earlier work of Fortune [For79], who showed that sparse sets could not be
^-complete unless NP = P. For P the question needs reformulation. Un-
der <^-reductions any set is complete in P, but under <^5pαce-reductions
this is only true if P = LOG. An analogous question about the density of
<^spαce-complete sets in P can thus be posed. Indeed, it was conjectured
by Hartmanis in [Har78] that no sparse set can be complete for P under
logspace reductions unless P = LOG. It was not until recently that this
conjecture was proven true.

Theorem 11 ([Ogi95, CS95]) // a sparse set S is hard for P under
many-one reductions computable in logspace, then LOG = P.

This Theorem was extended by Van Melkebeek to bounded truth-table
reductions.

Theorem 12 ([vM96]) // a sparse set S is hard for P under bounded
truth-table reductions computable in logspace, then LOG = P.

An extensive survey of the (im)possibilities of sparse complete sets, which
for chronological reasons lacks the above results, but not many others was
given by Hemachandra, Ogiwara and Watanabe [HOW92]. For exponential
time classes it seems that the most pressing open question is the existence
of Turing hard sparse sets. As mentioned above the question of a sparse
Turing hard set coincides with the existence of polynomial sized circuits
for the class and this question seems particularly interesting for EXP.
(Until now the smallest class known not to be computable by polynomial
size circuits is MA(exp).) This result is due to Buhrman and Thierauf.
(See [KW95].)

There are some steps set along this path however.

Theorem 13 ([Pu93])

1. For a < I, all <£«_τ -hard sets for EXP are exponentially dense.

2. For a. < ~, all <p

n<*__T -hard sets for E are exponentially dense.

An incomparable theorem dealing with the part of E that may have small
circuits (is in P/poly) is the following.
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Theorem 14 ([LM93]) For a < 1, all <p

n«_tt -weakly-hard sets for E
and EXP are exponentially dense.

Finally, Homer and Mocas studied the possibility of exponential time
computable sets being decidable with a fixed polynomial amount of advice.
(Recall that if EXP has sparse complete sets then EXP C P/poly.) They
prove the following.

Theorem 15 ([HM93]) for every k there exists a set A in EXP such

that A is not in DTIME(2nfc)/ADVICE(nfc).

Improving upon these results seems very interesting, but also seems very
hard since it would require non relativizing techniques. Wilson [Wil85]
shows the existence of an oracle relative to which EXP has polynomial
size circuits.

Specifically we note the following questions.

• For any k: are the <p

nk_τ complete sets for EXP exponentially dense?

• For any k: are the <p

nk_τ weakly complete sets for EXP exponen-
tially dense?

• Related to [BH92a], are the <^-complete sets for NEXP not sparse
unless NEXP = Σf ?

7 Redundant Information

As noted in the previous section, some complexity classes do not allow for
sparse complete sets under some reductions. For such complexity classes
in particular the question can be asked: "How dense must these sets be?"
By the result of Berman [Ber77] the many-one complete sets for EXP for
instance cannot be sparse. Schδning [Sch86], building upon the work of
Yesha [Yes83], showed that for complete sets A in EXP and every set D
in P, the set AΔD is of exponential density. If sets must be really dense
to be complete, we can also ask the question: "Can a small set perhaps be
taken out of the set so that the remaining set is still complete?"

This question was first taken up by Tang, Fu and Liu [TFL93], who
showed, inspired by Schδnings theorem, that the set D in this theorem can
be taken subexponential time computable. They go on to show that for
arbitrary sparseness condition, there exists a single subexponential time
computable sets 5, such that for any exponential time complete sets A,
the set A — S is no longer exponential time complete.

The natural question to ask next after the result is obtained for many-
one reductions is: "How do complete sets under weaker types of reductions
behave?" The answer to this question was given in [BHT93]. They show
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that the observation on this structural aspect of complete sets is not limited
to many one completeness or to deterministic exponential time.

Theorem 16
Given a recursive non-decreasing function g(n) with limn^oo ̂ (^) = °°.
There exists g(n)-sparse subexponential time computable sets Si, 82, 83
and 84 such that: [TFL93] For any ^-hard set A, the set A - Si is not
^-hard, and [BHT93]

1. For any <p

tt-complete set A /or EXP the set A —82 is not <ζtt-hard.

2. For any <%-hard set A for EXP the set A- 83 is not <?-hard.

3. For any <p

d-hard set A for EXP the set A U 84 is not <p

d-hard.

Not only the sparseness of the sets Si is controllable, but also their
"subexponentiality." The construction can be slowed down to bring the
set arbitrarily close to being polynomial time computable, but not quite.
Tang, Fu and Liu [TFL93] already noted that for many-one reductions it
holds that a ^-complete set remains <^-complete if an arbitrary sparse,
polynomial time computable set is taken out. This however seems to have
less to do with its polynomial time computability than with its structural
simplicity. In [BHT93] this question was re-addressed for P-selective sets
i.s.o. P-sets (which is of course stronger). The following was shown.

Theorem 17 ([BHT93]) For any set A that is <£>-, <£-, <*-, or <%_tt-
hard for EXP and any p(n) sparse P-selective set 8, the set A —8 remains
hard w.r.t. the same reduction.

It may seem strange that this theorem can only be proven for <2-tt~
reductions. It follows however directly from a recent result of Buhrman,
Fortnow and Torenvliet [BFT95] that this result is optimal. They show the
existence of a <3_tt-complete set in EXP that is not <£tt-autoreducible.
(We will meet this result again in Section 9). Inspection of the proof learns
that the set is constructed by diagonalizing against autoreductions on in-
puts in the set {06(n) : n G ω} where b(ri) is some suitably chosen gap
function. They prove that a 3-tt complete set A can be constructed such
that every btt-reduction (from A to A) that does not query its input must,
for some n, incorrectly compute membership of 06(n) in A. Without essen-
tially changing the proof, b(n) can be chosen such that {Qb(nϊ : n G ω}
is a polynomial time computable sparse set. The following corollary then
follows immediately.

Corollary 18 ([BFT95]) There exists a 3-tt complete set A in EXP and
a sparse set S in P such that A — 8 is not btt-hard for EXP.

As a <£t-complete set may not be <£tt-complete this last corollary does
not answer all remaining questions. The following questions still remain
open. (Wilson's [Wil85] oracle forces non-relativizable proofs on answers.)
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• Let A be <p

tt or <^-complete for EXP. Does there exist a sparse
subexponential time computable set 5 such that A — S is not com-
plete?

• Let A be <£tΓcomplete for EXP. Is for every sparse S € P, A - S
still <£tt-complete.

Related to the question whether removal of sparse polynomial time com-
putable subsets destroys completenes is the question whether exponential
time complete sets have polynomial time computable subsets. It follows
easily from the theorem of Berman [Ber77] already cited in Section 6 that
all f^-complete sets in EXP have infinite polynomial time computable
subsets. This question has however remained open for NEXP for a long
time. It was Tran [Tra95] who proved the following.

Theorem 19 ([Tra95]) All ^-complete sets for NEXP are not P-
immune.

For weaker reductions, P-immune complete sets can be shown to exist
by straightforward diagonalization.

8 Instance Complexity

The hardness of individual instances of a complete set may not seem to be
a structural question about complete sets and therefore beyond the scope
of this paper. One can however ask questions about the distribution of hard
and easy instances, which is certainly a question about the structure of the
set. Questions like: "Are there an infinite number of hard instances in the
set?" and: "Is the subset of hard instances dense or sparse?" certainly fall
within the category of structural questions about sets and therefore these
questions will be surveyed here with respect to complete sets. Complexity of
individual strings was first studied by Kolmogorov and Chaitin (See [Har83,
LV93]). Instance complexity is closely related to Kolmogorov complexity.
Recall that the ί-bounded Kolmogorov complexity of a string x is the size
of the smallest Turing machine M that on input λ outputs x and takes
no more than t(\x\) steps. (Here also "size" is defined relative to a fixed
universal machine.)

The following simple relationship holds between Kolmogorov complexity
and instance complexity.

Proposition 20 ([OKSW94]) For any time constructive function ί,
there exists a constant c such that for any set A and string x,

ict'(x:A)<Kt(x) + c,

where t'(n) = ct(n) log(ί(n)) + c.
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The proposition states that the Kolmogorov complexity always is an up-
per bound on the instance complexity. On the other hand, we are interested
in saying that a set A has instances that are hard or difficult. A natural
way of expressing this is as follows:

Definition 8.1 A set A has t-hard instances iff there exists a constant c
such that for infinitely many instances x, ic*(x : A) > Ke(x) — c.

In this definition we did not consider the log(n) factor that comes out
of Proposition 20. Only considering polynomial instance complexity and
admitting this (log(n)) factor we also have the following notion of hard
instances:

Definition 8.2 A set A has P-hard instances if for any polynomial t there
exist a polynomial t' and a constant c such that for infinitely many x,
ict(x:A)>Kt/(x)-c.

In [OKSW94] it was conjectured that any set not recognizable in a certain
time bound t will have ί-hard instances.

Conjecture 21 ([OKSW94]) Let A be a set not in DTIME(t). Then
there exist infinitely many x and a constant c such that ic*(:r : A) > K t(x) —
c.

As evidence for their conjecture it is proved for any set A in E \ P:

Theorem 22 ([OKSW94]) Let A be a set in E \ P. There exists a con-
stant c such that for any polynomial t there exists a constant c and infinitely
many x, such that, ic^x : A) > K2 (x) — c.

More recently, Fortnow and Kummer gave more evidence for this con-
jecture.

Theorem 23 ([FK95]) Let A be a set not in E. Then for any c there

exists a d and d such that for infinitely many x, ic2 (x : A) > K2° n (x)—d.

We will now shift our attention to complete sets.

8.1 Complete sets and instance complexity

The natural question addressed here is: "Do complete sets have hard in-
stances?" Of course for classes like NP it is important to fix the time bound
of the instance complexity to polynomial. In this section we will therefore
only consider p(n)-bounded instance complexity for p(n) some polynomial.

The first partial results along these lines were obtained by Orponen
in [Orp90]. In this paper it was shown that it cannot be the case that the
instance complexity of <£tt-hard sets for NP is low for all the instances
unless P = NP.
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Theorem 24 ([Orp90]) If A is self-reducible and there exist a constant
c and a polynomial t such that for all x1'ιc

t(x : A) < clog(|x|) -f c then A
is in P.

It now follows, using the fact that the instance complexity can not de-
crease much through a <£tt-reduction, that all classes that possess self-
reducible Turing complete sets—such as PSPACE and NP—cannot have
<£tί-hard sets with low instance complexity everywhere unless they are
equal to P. The above theorem yields as an easy corollary an absolute
result about EXP. Later on we will see that this can be improved.

Corollary 25 There does not exists a <%tt-hard set A for EXP such that
for all x, ic*(x : A) < clog(|x|) + c for some constant c and polynomial t.

Proof. Note that sets with low instance complexity everywhere, as in the
corollary, are in P/poly. Assume for a contradiction that the corollary is
not true, it now follows by a well-known theorem of Karp and Lipton [KL80]
that if EXP has a <^ -hard set that is sparse, that then EXP = Σ^.
Furthermore, Σ^ contains self-reducible Turing complete sets and hence by
Theorem 24 above it follows that Σ^ = P, but now we have a contradiction:
EXP = Σ£ = P. D

The above theorem and corollary are still far away from the instance
complexity conjecture. Recently Fortnow and Kummer [FK95] showed the
instance complexity conjecture in a special case

Theorem 26 ([FK95]) Every tally set not in P has P-hard instances.

Shifting to complete sets it is shown in [BO94] that the conjecture is
correct for ^-complete sets for E and polynomial time bounds t.

Theorem 27 ( [BO94]) Let A be a ^-complete set for E. Then there
exists an exponentially dense set CCA, such that for all x E C : icί(x :
A) > K*(x) — c, for c some constant and t € α;(nlog(n)).

Note that the theorem is also true for EXP and <ξ_tt-reductions. The
theorem states that there is an exponentially dense subset of any complete
set for E that has hard instances. This is in contrast with the fact that
there also exists a subset of A that is in P [Ber77] 4 and hence has constant
instance complexity for all x. Note also that Theorem 27 implies that any
set B that is <£tt-hard for E contains infinitely many instances x such that
ict(x : B) > cKt(x)—d for some constants c and d. It remains open however
whether Theorem 27 can be proven for complete sets with respect to other
reductions. It even remains open if we drop the density requirement.

4 See [HW94] for an extensive study on immunity and ^^-complete sets for EXP
and NEXP.
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It is not known whether Theorem 27 is true for ^-complete sets for
NP. However, Orponen showed in [Orp90] that under the assumption that
E φ NE the NP-hard sets have P-hard instances.

Theorem 28 ([Orp90]) //NE φ E then all <%_tt-hard sets for NP have
P-hard instances.

A special type of complete sets in EXP does have p-hard instances as is
shown in [FK95]

Theorem 29 ([FK95]) If A is complete in EXP under honest ^-re-
ductions, then A has P-hard instances.

Specific open problems remain:

1. If A is complete for EXP under <£tt, <ft or <^, does A have ί-hard
instances, for t a polynomial?

2. If A is complete for EXP under <ft or < ,̂ does A have P-hard
instances?

3. Is the set of hard instances in 1 or 2 dense?

4. Do many-one complete sets for NP have ί-hard instances?

9 Post's Program Revisited

The final structural property that we wish to address in this paper is that
of auto-reducibility and the closely related notion of mitoticity.

Trakhtenbrot [Tra70] introduced the notion of autoreducibility on re-
cursive sets. Informally a set is auto-reducible, if can be recognized by an
oracle machine that on input x never queries x and uses the set itself as
an oracle. As such, a set that is auto-reducible can be viewed as having a
redundancy of information. The information that a string x is a member
of A is also present in other strings in A and this is true for every mem-
ber of A. The notion of autoreducibility is closely related to the notion of
mitoticity introduced by Ladner in [Lad73]. Informally a set is mitotic if
it can be split into two disjoint subsets, such that both parts are reducible
to each other and moreover the original set is reducible to both parts (and
vice versa.) As such, mitoticity is a form of ordered auto-reducibility. The
parts of the set that contain information about the other parts are neatly
ordered in disjoint subsets.

The term mitotic stems from biology, where the mitosis indicates the
splitting of a cell into two cells that both contain the same information
stored in the DNA of the original cell. As such this term is very appropri-
ately chosen for the subsets that contain precisely the information of the
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original set. Ladner showed that the two seemingly different, but apparently
related notions of auto-reducibility and mitoticity coincide for r.e. sets.

Ambos-Spies [AS84] was the first to carry over the notions of auto-
reducibility and mitoticity to the realm of complexity theory. The auto-
reducibility notion translates into:

Definition 9.1 A set A is polynomially autoreducible (autoreducible for
short) if there exists a polynomial time oracle Turing machine M such
that:

1. A = L(M,A).

2. for all x: x £ Q(M, x, A).

Where Q(M, a:, A) is the set of queries M generates on input x with A as
an oracle.

There also exists a randomized version of auto-reducibility called coher-
ence [Yao90, BF92].

Translating mitoticity [AS84] to the polynomial time setting gives a less
clean transition.

Definition 9.2

1. A recursive set A is polynomial time m(T)-mitotic (m(T)-mitotic for
short) if there exists a set B £ P such that:

2. A recursive set A is polynomial time weakly m(T)-mitotic (weakly
m(T)-mitotic for short) if there exists disjoint sets AQ and A\ such
that:
A = AO U Ai and A =p

m(τ) AQ =^(τ) AI .

Although mitoticity implies weak mitoticity, the two notions are quite
different in the polynomial time setting. From [AS84] we learn the following
about their relation.

Theorem 30 ([AS84])

1. For any A, if A is m(T)-mitotic then A is m(T)- autoreducible.

2. On recursive tally sets m-mitoticity and m-autoreducibility are the
same.

3. There exists a weakly m-mitotic set that is not m- auto reducible.

4. There exists a tally set which is T- autoreducible but not T-mitotic.

5. There exists a weakly T-mitotic set that is not T- autoreducible.

The questions whether
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• m-autoreducibility implies m-mitoticity, or

• m-autoreducibility implies weakly m-mitoticity, or

• T-autoreducibility implies weakly T-mitoticity,

remain open. In the following we will turn back to the complete sets.

9.1 Completeness

In this subsection we will address the question of mitoticity and auto-
reducibility for complete sets. We will treat these questions separately.

9.1.1 Mitoticity

On the class NP we note that all natural NP complete sets are m-mitotic.
These sets are all p-isomorphic to SAT [BH77] and SAT can easily be shown
to be mitotic. Moreover all the notions of mitoticity and autoreducibility
are invariant under p-isomorphisms. Thus it follows that if the isomorphism
conjecture is true, then all <^ -complete sets for NP are m-mitotic (and
hence weakly m-mitotic). Similar observations are valid for all levels of the
Polynomial Hierarchy and PSPACE. However it is open whether any com-
plete degree (under some reduction) for these classes is completely (weakly)
m(T)-mitotic. For EXP a little bit more can be said:

Theorem 31 ([BHT93]) All <^ -complete sets for EXP are weakly m-
mitotic.

This theorem parallels nicely the situation for r.e. sets. On the other hand
it is shown also that not all <£t -complete sets are weakly m-mitotic.

Theorem 32 ([BHT93]) There exists a <l_tt -complete set for EXP
that is not weakly m-mitotic.

For NEXP the situation is even less clear. It can be shown that every
<^ -complete set can be split into infinitely many disjoint subsets, such
that each of these subsets is =^ to A [BHT93], but nothing is known for
the mitotic case. Specific open problems are:

• Are all ̂ -complete sets for EXP m-mitotic?

• Are all ̂ -complete sets for NP, PH, PSPACE, or NEXP (weakly)
m(T)-mitotic?

• Are all <£-complete sets for NP,PH, PSPACE, EXP or NEXP
(weakly) ra(T)-mitotic?
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9.1.2 Autoreducibility

The situation with respect to autoreducibility is somewhat better under-
stood. Surprisingly, the parallel with recursion theory disappears with re-
spect to complete sets. Of course the same remarks about <^-complete
sets that were made for mitoticity are true for autoreducibility but the
<^-complete sets seem to behave differently.

Theorem 33 ( [BF92, BT96]) Every <p

τ-complete set for NP is au-
toreducible.

In fact in [BF92] it is shown that all <^-degrees that contain a self-
reducible set are completely autoreducible hence:

Theorem 34 ( [BF92]) All <p

τ -complete sets for all levels of the Poly-
nomial Hierarchy and PSPACE are autoreducible.

Unfortunately the techniques in [BF92] only apply to sets within PSPACE.
Extending the techniques in [BT96] it can be shown that also the complete
sets for EXP are autoreducible.

Theorem 35 ( [BFT95]) All<p

τ -complete sets for PSPACE and EXP
are autoreducible.

It can also be shown that all <£-« -complete sets for EXP are 2-tt-
autoreducible. Recently Buhrman, Fortnow and Torenvliet [BFT95] estab-
lished that this is not true for <3_tΓreductions. They show the existence
of a set that is 3-tt complete for EXP but not <£tt-auto-reducible. Trans-
lation of this theorem to a larger complexity class gives a 3-tt complete
set in EEXPSPACE that is not (Turing) auto-reducible. It follows that
it is most urgent to determine the autoreducibility of sets complete in the
class EXPSPACE. If all these sets are auto-reducible then NL φ NP,
and if there is one that is not auto-reducible then P ^ PSPACE (See
also [BFvMT98].)

Other questions that remain:

• Are all <£, -complete sets for NP or PSPACE m-autoreducible?

• Are all <p

tt -complete sets for NP, PSPACE or EXP tt-autore-
ducible?

• Are all <^ -complete sets for NEXP autoreducible?
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