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1. Introduction

1.1. Huge networks. In the last decade it became apparent that a
large number of the most interesting structures and phenomena of the world
can be described by networks: separable elements, with connections (or
interactions) between certain pairs of them.

• Among such a networks, the best known and the most studied is the
internet. Moreover, the internet (as the physical underlying net-
work) gives rise to many of the networks: the network of hyperlinks
(web, logical Internet), Internet based social networks, distributed
data bases, etc. The size of the internet is growing fast: currently
the number of web pages may be 30 billion or more, and the number
of devices is probably more than a billion.

• Social networks are basic objects of many studies in the area of
sociology, history, epidemiology and economics. The largest social
network is the acquaintance graph of all living people, with about
7 billion nodes.

• Biology contributes ecological networks, networks of interactions
between proteins, and the human brain, just to mention a few.
The human brain is really large for its mass, having about 1011

nodes.
• Statistical physics studies the interactions between large numbers of

discrete particles, where the underlying structure is often described
by a graph. For example, a crystal can be thought of as a graph
whose nodes are the atoms and whose edges represent chemical
bonds. A perfect crystal is a rather boring graph, but impurities
and imperfections create interesting graph-theoretical digressions.
12 gram of a diamond has about 6 × 1023 nodes.

• Some of the largest networks in engineering occur in chip design.
Even though these networks are man-made and planned, many of
their properties are difficult to determine by computation due to
their huge size. There can be more than a billion transistors on a
chip now.
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• To be pretentious, we can say that the whole universe is a single
(really huge, possibly infinite) network, where the nodes are events
(interactions between elementary particles), and the edges are the
particles themselves. This is a network with perhaps 1080 nodes.

These huge networks pose exciting challenges for the mathematician.
Graph Theory (the mathematical theory of networks) has been one of the
fastest developing areas of mathematics in the last decades; with the appear-
ance of the Internet, however, it faces fairly novel, unconventional problems.
In traditional graph theoretical problems the whole graph is exactly given,
and we are looking for relationships between its parameters or efficient algo-
rithms for computing its parameters. On the other hand, very large networks
(like the Internet) are never completely known, in most cases they are not
even well defined. Data about them can be collected only by indirect means
like random local sampling or by monitoring the behavior of various global
processes.

Dense networks (in which a node is adjacent to a positive percent of
others nodes) and sparse networks (in which a node has a bounded number
of neighbors) show a very diverse behavior. From a practical point of view,
sparse networks are more important, but at present we have more complete
theoretical results for dense networks.

1.2. What to ask about them? Let us discuss three possible ques-
tions that can be asked about a really large graph, say the internet.

Question 1. Does the graph have an odd number of nodes?

This is a very basic property of a graph in the classical setting. For
example, it is one of the first theorems or exercises in a graph theory course
that every graph with an odd number of nodes has a node with even degree.

But for the internet, this question is clearly nonsense. Not only does the
number of nodes change all the time, with devices going online and offline,
but even if we fix a specific time like 12:00am today, it is not well-defined:
there will be computers just in the process of booting up, breaking down etc.

Question 2. What is the average degree of nodes?

This, on the other hand, is a meaningful question. Of course, the average
degree can only be determined with a certain error, and it will change with
technology or the social composition of users; but at a given time, a good
approximation can be sought (I am not speaking now about how to find it).

Question 3. Is the graph connected?

To this question, the answer is almost certainly no: somewhere there
will be a faulty router with some unhappy users on the wrong side of it. But
this is not the interesting way to ask the question: we should consider the
internet disconnected if, say, an earthquake combined with a sunflare severs
all connections between the Old and New worlds. So we want to ignore
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small components that are negligible with respect to the whole graph, and
consider the graph disconnected only if it decomposes into two parts which
are commeasurable with the whole. On the other hand, we may want to
allow that the two parts be connected by a few edges, and still consider the
graph disconnected.

Question 4. Find the largest cut in the graph.

(This means to find the partition of the nodes into two classes so as to
maximize the number of edges connecting the two classes.) This example
shows that even if the question is meaningful, it is not clear in what form
can we expect the answer. The fraction of edges contained in the largest cut
can be determined relatively easily (with and error that is small with large
probability); but how to specify the largest cut itself (or even an approximate
version of it)?

1.3. How to obtain information about them? If we face a large
network (think of the internet) the first challenge is to obtain information
about it. Often, we don’t even know the number of nodes.

1.3.1. Local sampling. Properties of very large graphs can be studied
by sampling small subgraphs. The theory of this, called property testing in
computer science, emerged in the last decade, and will be one of the main
concerns of this paper.

In the case of dense graphs G, the sampling process is simple: we select
independently a fixed number k of random nodes, and determine the edges
between them, to get a random induced subgraph. We’ll call this subgraph
sampling. For each graph F , this defines a probability of seeing F when
|V (F )| nodes are sampled, and so it gives a probability distribution σG,k on
all graphs with k (labeled) nodes. It turns out that this sample contains
enough information to determine many properties and parameters of the
graph (with an error that is with large probability arbitrarily small if k is
sufficiently large depending only on the error bound).

To get a mathematically exact description of algorithms for very large
graphs, we define a subgraph sampling oracle as a black box that, for a given
positive integer m, returns a random m-node graph from some (otherwise
unknown) distribution. We think of this as a random induced subgraph
of a very large, otherwise unknown graph G. We assume that the oracle
is consistent in the sense that for any k there is a graph G such that the
distribution of the k-samples from G is arbitrarily close to the distribution
of the answers by the oracle. (Theorem 6.13 will give a characterization of
consistent distributions.)

In the case of sparse graphs with bounded degree, the subgraph sam-
pling method gives a trivial result: the sampled subgraph will almost cer-
tainly be edgeless. Probably the most natural way to fix this is to consider
neighborhood sampling. Let Gd denote the class of finite graphs with all
degrees bounded by d. For G ∈ Gd, select a random node and explore its
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neighborhood to a given depth m. This provides a probability distribu-
tion ρG,m on graphs in Gd, with a specified root node, such that all nodes
are at distance at most m from the root. We will shortly refer to these
rooted graphs as m-balls. Note that the number of possible m-balls is finite
if d and m are fixed. We can formulate this abstractly as a neighborhood
sampling oracle, a black box that, for a given positive integer m, returns
an m-ball.

The situation for sparse graphs is, however, less satisfactory than for
dense graphs, for two reasons. First, a full characterization of consistent
neighborhood sampling oracles is not known (cf. Conjecture 7.2). Second,
neighborhood sampling does not reveal important global properties of the
graph like expansion. This suggests looking at further possibilities. Suppose,
for example, that instead of exploring the neighborhood of a single random
node, we could select two (or more) random nodes and determine simple
quantities associated with them, like pairwise distances, maximum flow,
electrical resistance, hitting times of random walks. What information can
be gained by such tests? Is there a “complete” set of tests that would
give enough information to determine the global structure of the graph to
a reasonable accuracy? These methods should lead to different theories of
large graphs and their limit objects, largely unexplored.

Sample distribution (in both the dense and sparse cases) are equivalent
to counting induced subgraphs of a given type. Instead of this, we could
count homomorphism (or injective homomorphisms) of a “small” graphs into
the graph. The connection with sample distribution can be expressed by
inclusion-exclusion formulas, and it is not essential. Often homomorphism
numbers are algebraically better behaved, and they also have the advantage
that they suggest different, “dual” approaches by reversing the arrows in
the category of graph homomorphisms.

1.3.2. Observing global processes. Another source of information about
a network is the observation of the behavior of various global processes
either globally (through measuring some global parameter), or locally (at
one node, or a few neighboring nodes, but for a longer time). Statistical
physical models on the graph are examples of the first kind of approach (we
return to them in Section 2.3.3). Crawlers can be considered as examples
of the second, and there are some sporadic results about the local observa-
tion of simpler, random processes [14, 15]. A general theory of such local
observation has not emerged yet though.

1.3.3. Left and right homomorphisms. Instead of testing, it is often
more convenient to talk about homomorphisms (adjacency-preserving maps)
between graphs. This leads to the following setup. If we are given a (large)
graph G, we may try to study its local structure by counting homomor-
phisms from various “small” graphs F into G; and we can study its global
structure by counting its homomorphisms into various small graphs H. The
first type of information is closely related (in many cases, equivalent) to
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sampling, while the second is related to statistical physics. As in statistical
physics, one needs weighted graphs H here to get meaningful results.

1.4. How to model them?

1.4.1. Random graphs. We are celebrating the 50-th birthday of random
graphs this year: The simplest random graph model was developed by Erdős
and Rényi [44] and Gilbert [55] in 1959. Given a positive integer n and a
real number 0 ≤ p ≤ 1, we generate a random graph G(n, p) by taking n
nodes, say [n] = {1, . . . , n}, and connecting any two of them with probability
p, making an independent decision about every pair.

There are alternate models, essentially equivalent: we could fix the num-
ber of edges m, and then choose a random m-element subset of the set of
pairs in [n], uniformly from all such subsets. This random graph G(n, m) is
very similar to G(n, p) when m = p

(
n
2

)
. Another model, closer to some of

the more recent developments, is evolving random graphs, where edges are
added one by one, always choosing uniformly from the set of unconnected
pairs. Stopping this process after m steps, we get G(n, m).

Erdős–Rényi random graphs have many interesting, often surprising
properties, and a huge literature, see [20, 68]. One conventional wisdom
about random graphs with a given edge density is that they are all alike.
Their basic parameters, like chromatic number, maximum clique, triangle
density, spectra etc. are highly concentrated. This fact will be an important
motivation when defining the right measure of global similarity of graphs.

Many generalizations of this random graph model have been studied. For
example, one could have different probabilities assigned to different edges.
A variation of this idea, discovered independently in [85], [22] and perhaps
elsewhere, is the notion of W -random graphs, to be discussed in Section 3.1.2
and used throughout these notes.

1.4.2. Randomly growing graphs. Random graph models on a fixed set
of nodes, discussed above, fail to reproduce important properties of real-
life networks. For example, the degrees of Erdős–Rényi random graphs
follow a binomial distribution, and so they are asymptotically normal if the
edge probability p is a constant, and asymptotically Poisson if the expected
degree is constant (i.e., p = p(n) ∼ c/n). In either case, the degrees are
highly concentrated around the mean, while the degrees of real life networks
tend to obey the “Zipf phenomenon”, which means that the tail of the
distribution decreases according to a power law.

In 2002 Albert and Barabási [1, 13] created a random network model
growing according to natural rules, which could reproduce this behavior.
Since then a lot of variations of growing networks were introduced. The
process of graph generation usually consists of random steps obeying some
local rules.

This is perhaps the first point which suggests one of our main tools,
namely assigning limits to sequences of graphs. Just as the Law of Large
Numbers tells us that adding up more and more independent random
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variables we get an increasingly deterministically behaving number, these
growing graph sequences tend to have a well-defined structure, independent
of the random choices made along the way. In the limit, the randomness
disappears, and the asymptotic behavior of the sequence can be described
by a well-defined limit object. You will find more on this in Sections 1.5.3
and 6.5.

1.4.3. Quasirandom graphs. The theory of quasirandom graphs, intro-
duced by Thomason [117] and Chung, Graham and Wilson [33], is based on
the following observation: not only have random graphs a variety of quite
strict properties (with large probability), but for several of these basic prop-
erties, the exceptional graphs are the same. In other words, any of these
properties implies the others, regardless of any stochastic consideration.

To make this idea precise, we consider a sequence of graphs (Gn) with
|V (Gn)| → ∞. For simplicity, assume that |V (Gn)| = n. Let 0 < p < 1 be
a real number. Consider the following properties of these graphs.

(P1) All degrees are asymptotically pn and all codegrees (numbers of
common neighbors of two nodes) are asymptotically p2n.

(P2) For every fixed graph F , the number of homomorphisms of F into
Gn is asymptotically p|E(F )|n|V (F )|.

(P3) The number of edges is asymptotically pn2/2 and the number of
4-cycles is asymptotically p4n4/8.

(P4) The number of edges induced by a set of nodes of size αn is asymp-
totically pα2n2/2.

All these properties hold with probability 1 if Gn = G(n, p). However,
more is true: if a graph sequence satisfies either one of them, then it satisfies
all [33]. Such graph sequences are called quasirandom. The four properties
above are only a sampler; there are many other random-like properties that
are also equivalent to these [33, 108, 109].

Many interesting deterministic graph sequences are quasirandom. We
mention an important example from number theory:

Example 1.1. Paley graphs. Let pn be the n-th prime congruent 1
modulo 4, and let us define a graph on {1, . . . , pn} by connecting i and j if
and only if i−j is a quadratic residue. The Paley graphs form a quasirandom
sequence.

The theory of convergent graph sequences (Section 6) can be considered
as a rather far-reaching generalization of quasirandom sequences.

1.5. How to approximate them? We want a compact approximate
description of a very large network, usually in the form a (relatively) small
networks or at least a network with a compact description. To make this
mathematically precise, we need to define what we mean by two graphs to
be “similar” or “close”, and describe what kind of structures we use for
approximation.
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1.5.1. The distance of two graphs. There are many ways of defining the
distance of two graphs G and G′. Suppose that the two graphs have a
common node set [n]. Then a natural notion of distance is the edit distance,
defined as the number of edges to be changed to get from one graph to the
other. Since our graphs are very large, we want to normalize this, and define

d1(G, G′) =
|E(G)�E(G′)|(

n
2

) .

While this distance plays an important role in the study of testable graph
properties, it does not reflect structural similarity well. To raise one objec-
tion, consider two random graphs on [n] with edge-density 1/2. As men-
tioned in the introduction, these graphs are very similar from almost every
aspect, but their normalized edit distance is large (about 1/2 with large
probability). One might try to improve this by relabeling one of them to get
the best overlay minimizing the edit distance; but the improvement would
be marginal (o(1)).

Another trouble with the notion of edit distance is that it is only defined
when the two graphs have the same number of nodes.

We could base the measurement of distance on sampling. We define the
sampling distance of two graphs G and G′ by

(1) dsample(G, G′) =
∞∑

k=1

1
2k

dtv(σG,k, σG′,k)

(where dtv(α, β) = supX |α(X) − β(X)| denotes the total variation distance
of the distributions α and β). Here the coefficients 1/2k are quite arbitrary,
only to make the sum convergent. This distance, however, would not directly
reflect any structural similarity.

In Section 4 we will define a further distance between graphs, which
will be satisfactory from all these points of view: it will be defined for two
graphs with possibly different number of nodes, the distance of two random
graphs with the same edge density will be very small, and it will reflect
global structural similarity. It will define the same topology as dsample.

The construction of the sampling distance can be carried over to bounded
degree graphs, by replacing in (1) the sampling distributions σG,k by the
neighborhood distributions ρG,k. We must point out, however, that it
seems to be difficult to define a notion of distance between two graphs with
bounded degree reflecting global similarity.

1.5.2. Approximation by smaller: Regularity Lemma. As the exact
description of huge networks is not known, and they are too big for direct
study (e.g., for testing different algorithms or protocols directly on the whole
internet), an important operation would be to “scale down” by producing
a smaller network with similar properties. The main tool for doing so is
the “Szemerédi-partition” or “Regularity Lemma”. Szemerédi developed
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his Regularity Lemma for his celebrated proof of the Erdős–Turán Conjec-
ture on arithmetic progressions in dense sets of integers in 1975. Since then,
the Lemma has emerged as a fundamental tool in graph theory, with many
applications in extremal graph theory, combinatorial number theory, graph
property testing etc., and became a true focus of research in the past years.

This lemma can be viewed as an archetypal example of dichotomy
between randomness and structure, where we try to decompose a (large
and complicated) object A into a more highly structured object A′ with a
(quasi)random perturbation (cf. Tao [116]). The highly structured part
may be easier to handle, the quasirandom part will often be simpler due to
Laws of Large Numbers. We’ll introduce this partition in Section 5 (and use
it throughout).

Finding the Szemerédi partition of a huge dense graph is an example
of the problem posed in Question 4 in Section 1.2. Algorithm 5.4.2 will
be an example of a possible solution: how a partition of the nodes can be
determined in an implicit form, even if describing for each node which class
it belongs to would take too much space.

1.5.3. Approximation by infinite: convergence and limits. This idea can
be motivated by how we look at a large piece of metal. This is a crystal, that
is a really large graph consisting of atoms and bonds between them. But
from many points of view (e.g., the use of the metal in building a bridge), it
is more useful to consider it as a continuum with a few important parameters
(density, elasticity etc.). Its behavior is governed by differential equations.
Can we consider a more general very large graph as some kind of continuum?

One way to make this intuition precise is to consider a growing sequence
(Gn) of graphs whose number of nodes tends to infinity, and to define when
such a sequence is convergent. (We have mentioned this idea in connection
with randomly growing graphs, but now we don’t assume anything about
how the graphs in the sequence are obtained.) Our discussion of sampling
suggests a general principle leading to a definition: we consider samples of
a fixed size k from Gn, and their distribution. We say that the sequence
is locally convergent (with respect to the given sampling method) if this
distribution tends to a limit as n → ∞ for every fixed k. The family of
limiting distributions (one for each k) can be considered as a limit object of
the sequence.

For dense graphs, this notion of convergence was suggested by Erdős,
Lovász and Spencer [43], and elaborated by Borgs, Chayes, Lovász, Sós,
Szegedy and Vesztergombi [28, 29, 30]. For sparse graphs, this kind of
convergence was introduced by Aldous [2] and by Benjamini and Schramm
[16]. These notions will be discussed in Sections 6.1 and 7.1, respectively.

The definition above represents the limit of a graph sequence as a collec-
tion of probability distributions on graphs, one for each sample size. This is
not always a helpful representation of the limit object, and a more explicit
description is desirable. A next step is to represent the family of distribu-
tions on finite graphs (the samples) by a single probability distribution on



VERY LARGE GRAPHS 77

countable graphs. For sparse graphs, Benjamini and Schramm provide such
a description as certain measures on countable rooted graphs with bounded
degree (see Section 3.2), and a similar description for dense graph limits is
also known as certain ergodic measures on countable graphs ([111, 91]; see
Theorem 6.13).

More explicit descriptions of these limit objects can also be given. Let us
start with the dense case. Here the limit object can be described as a two-
variable measurable function W : [0, 1]2 → [0, 1], called a graphon (Lovász
and Szegedy [85]; see Section 3.1). These limit objects can be considered as
weighted graphs with a continuum underlying set, or (if you wish) as graphs
on a nonstandard model of the unit interval.

Let us describe an example here; more to follow in Section 6.5.2. The
picture on the left hand side of Figure 1 is the adjacency matrix of a graph
G with 100 nodes, where the 1’s are represented by black squares and the
0’s, by white squares. The graph itself is constructed by a simple random-
ized growing rule: Starting with a single node, we either add a new node or
a new edge; a new node is born with probability 1/n, where n is the cur-
rent number of nodes. (A closely related graph sequence (randomly grown
uniform attachment graphs) will be discussed in detail in Section 6.5.2.)

The picture on the right hand side is a grayscale image of the function
U(x, y) = 1 − max(x, y). The similarity with the picture on the left is
apparent; and suggests that the limit of the graph sequence on the left is
this function. This turns out to be the case in a well defined sense. It follows
that to approximately compute various parameters of the graph on the left
hand side, we can compute related parameters of the function on the right
hand side. For example, the triangle density of the graph on the left tends
(as n → ∞) to the integral∫

[0,1]3
U(x, y)U(y, z)U(z, x) dx dy dz.

Two more remarks on the dense case. Of course, a graphon can be
infinitely complicated. But in many cases limits of growing graph sequences
have a limit graphon that is a continuous function described by a simple

Figure 1. A randomly grown uniform attachment graph
with 100 nodes
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formula (see a couple of examples in Section 6.5.2). Such a limit graphon
provides a very useful approximation of a large dense graph.

Instead of the interval [0, 1], we can consider any probability space
(Ω,A, π) with a symmetric measurable function W : Ω × Ω → [0, 1]. This
would not give a greater generality, but it is sometimes useful to represent
the limit object by other probability spaces. We’ll see an example of this in
Section 6.5.2.

In the sparse case, the limit object can be described as a graphing (known
from group theory or ergodic theory, Elek [37]), or as a measure preserving
graph (see Section 3.2), or as a distribution on rooted countable graphs with
special properties.

Instead of sampling, we can use dual (global) measurements, more pre-
cisely, homomorphisms into fixed small graphs, to define convergence. The
remarkable fact is that under the right conditions, this leads to an equivalent
notion! (See Sections 6.6, 7.3.)

1.5.4. Optimization problems for graphs. We have presented the theory
of convergent graph sequences and their limits as an answer to problems
coming from very large networks, but a very strong motivation comes from
extremal graph theory.

Consider the following two optimization problems.
Classical optimization problem. Find the minimum of x3−6x where

x is a nonnegative real number.
Graph optimization problem. Find the minimum of t(C4, G) over

all graphs G with t(K2, G) ≥ 1/2. (Here t(F, G), the homomorphism density
of F in G, denotes the probability that a random map of V (F ) into V (G)
preserves the edges. C4 denotes the 4-cycle and K2 is the complete graph
with 2 nodes.)

The solution of the classical optimization problem is of course x =
√

2.
This means that it has no solution over the rationals, but we can find rational
numbers that are arbitrarily close to being optimal. If we want a single
solution, we have to go to the completion of the rationals, i.e., to the reals.

The graph optimization problem may take a bit more effort to solve, but
it is not hard to show that if the edge-density is 1/2, then the 4-cycle density
is larger than 1/16. Furthermore, this density gets arbitrarily close to 1/16
for appropriate families of graphs: the most important example is a random
graph with edge-density 1/2 (cf. also Section 1.4.3 and Theorem 9.5).

This suggests that we could try to enlarge the set of (finite) graphs with
new objects so that the appropriate extension of our optimization problem
has a solution among the new objects. Furthermore, we want that these
new objects should be approximable by graphs, just like real numbers are
approximable by rationals.

Many of the basic tools in the theory of very large graphs have been first
applied in extremal graph theory: the Regularity Lemma [113], convergent
graph sequences [43], quasirandom graphs [117, 33].
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The example above shows that limit objects may provide cleaner formu-
lations of extremal graph theory results, with no error terms. In some cases
this goes further, and the limit objects provide a way to state, in an exact
way, questions like “How do extremal graphs look like?”. They have similar
uses in the theory of computing. We discuss these applications in Sections 8
and 9.

1.6. Mathematical tools. It is clear from the above that this area
is at the crossroads of different fields of mathematics. Graph theory and
computer science are the main sources, and probability and mathematical
statistics are crucial tools. Group theory, in particular finitely generated
groups, have provided many of the questions and ideas in the theory of
limits of graphs with bounded degree. Ergodic theory may play a similar
role in the dense case. Measure theory is needed, and an important new
general proof method uses nonstandard analysis.

We will discuss one further tool, namely Frobenius algebras, which are
used in the proofs of characterization theorems of homomorphism functions,
but also in some other studies of graph parameters; see Section 2.6.

2. Graph parameters

A graph parameter is a real valued function defined on isomorphism
types of graphs (including the graph K0 with no nodes and edges). A sim-
ple graph parameter is defined only on isomorphism types of simple graphs
(i.e., on graphs with no loops or multiple edges). A graph parameter f is
multiplicative if f(G) = f(G1)f(G2) whenever G is the disjoint union of G1
and G2. We say that a graph parameter is normalized if its value on K1,
the graph with one node and no edge, is 1. Note that if a graph parameter
is multiplicative and not identically 0, then its value on K0 (the graph with
no nodes and no edges) is 1.

2.1. Connection matrices and reflection positivity. A k-labeled
graph is a graph in which k of the nodes are labeled by 1, . . . , k (there may
be any number of unlabeled nodes). A 0-labeled graph is just an unla-
beled graph.

Let F1 and F2 be two k-labeled graphs. We define the k-labeled graph
F1F2 by taking their disjoint union, and then identifying nodes with the
same label. Clearly this multiplication is associative and commutative. For
two 0-labeled graphs, F1F2 is their disjoint union.

Let f be any graph parameter and fix an integer k ≥ 0. We define the
k-th connection matrix of the graph parameter f as the (infinite) symmet-
ric matrix M(f, k), whose rows and columns are indexed by (isomorphism
types of) k-labeled graphs, and the entry in the intersection of the row
corresponding to F1 and the column corresponding to F2 is f(F1F2).

We call the graph parameter reflection positive if all the corresponding
connection matrices are positive semidefinite.
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2.2. Homomorphisms from the left

2.2.1. Versions of homomorphism numbers. For two finite graphs F
and G, let hom(F, G) denote the number of homomorphisms of F into G
(adjacency-preserving maps from V (F ) to V (G)), inj(F, G), the number of
injective homomorphisms of F into G, and ind(F, G), the number of embed-
ding of F into G as an induced subgraph.

These quantities are closely related:

inj(F, G) =
∑

F ′⊇F

ind(F ′, G),

where F ′ ranges over all graphs obtained from F by adding edges, and

hom(F, G) =
∑
F ′′

inj(F ′′, G),

where F ′′ ranges over all graphs obtained from F by identifying nodes.
Conversely, ind can be expressed by inj, which in turn can be expressed by
hom using inclusion-exclusion.

This definition can be extended to the case when G has nodeweights αv

and edgeweights βuv:

hom(F, G) =
∑

ϕ: V (F )→V (G)

∏
u∈V (F )

αϕ(u)(G)
∏

uv∈E(F )

βϕ(u),ϕ(v)(G).

We often normalize these homomorphism numbers, and consider the
homomorphism densities

t(F, G) =
hom(F, G)
|V (G)||V (F )| ,

which is the probability that a random map of V (F ) into V (G) is a homo-
morphism. We can define similarly

(2) tinj(F, G) =
inj(F, G)

n(n − 1) · · · (n − k + 1)

and

(3) tind(F, G) =
ind(F, G)

n(n − 1) · · · (n − k + 1)
.

We have

(4) tinj(F, G) =
∑

F ′⊇F

tind(F ′, G)

and the inversion formula

(5) tind(F, G) =
∑

F ′⊇F

(−1)|E(F ′)\E(F )|tinj(F ′, G).
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For hom and inj the relationship is not so simple due to the different normal-
ization, but recalling that we are interested in large graphs G, the following
fact is usually enough to go between them:

(6) tinj(F, G) − t(F, G) = O(
1

|V (G)|).

We note that tind(F, G) is the probability that sampling V (F ) nodes of
G, we see the graph F . So it follows that (for very large graphs, up to the
error in (6)) subgraph sampling provides the same information as any of the
homomorphism densities t, tinj, tind.

2.2.2. Spectra. Homomorphisms of “small” graphs into G are related to
sampling, as mentioned earlier. There are less obvious applications of these
numbers.

Example 2.1. If Ck denote the cycle on k nodes, then hom(Ck, G) is
the trace of the k-th power of the adjacency matrix of the graph G. In other
words,

hom(Ck, G) =
n∑

i=1

λk
i ,

where λ1, . . . , λn are the eigenvalues of the adjacency matrix of G. From
here, eigenvalues with large absolute value can be recovered. For example,
hom(C2k, G)1/(2k) tends to the largest eigenvalue of G as k → ∞.

2.3. Homomorphisms to the right

2.3.1. Colorings and independent sets. Several important graph param-
eters can be expressed in terms of homomorphisms into fixed “small” graphs.

Example 2.2. If Kq denotes the complete graph with q nodes (no loops),
then hom(G, Kq) is the number of colorings of the graph G with q colors,
satisfying the usual condition that adjacent nodes must get different colors.

Example 2.3. Let H be obtained from K2 by adding a loop at one of the
nodes. Then hom(G, H) is the number of independent sets of nodes in G.

2.3.2. Multicuts. An important graph parameter is the maximum cut
Maxcut(G), the maximum number of edges between a set S ⊆ V (G) of nodes
and its complement. While finding minimum cuts is perhaps more natural,
the maximum cut problem comes up when we want to approximate general
graphs by bipartite graphs, in computing ground states in statistical physics
(see next section), and in many other applications. For our purposes, it will
be more convenient to consider the normalized maximum cut, defined by

maxcut(G) =
Maxcut(G))

|V |2 = max
S⊆V

eG(S, V \ S)
|V |2

(here eG(X, Y ) denotes the number of edges in G connecting node sets X
and Y ).



82 L. LOVÁSZ

The following easy fact relates maximum cuts and homomorphism
numbers. Let H be the weighted graph on {1, 2} with nodeweights and
edgeweights 1 except for the non-loop edge, which has weight 2. Then we
have the trivial inequalities

2Maxcut(G) ≤ hom(G, H) ≤ 2|V (G)|2Maxcut(G),

which upon taking the logarithm and dividing by |V (G)|2 becomes

(7) maxcut(G) ≤ log2 hom(G, H)
|V (G)|2 ≤ maxcut(G) +

1
|V (G)| .

So the homomorphism number into this simple 2-node graph determines
maxcut(G) asymptotically.

An important extension of the maximum cut problem involves partitions
into q ≥ 1 classes instead of 2. Instead of just counting edges between differ-
ent classes, we specify in advance numbers βij (i, j ∈ [q]) such that βij = βji.
We define the maximum multicut density (with the target weights βij) as

mmcut(G, β) = max
1

|V (G)|2
∑
i,j

βijeG(Si, Sj),

where the maximum is taken over all partitions {S1, . . . , Sq} of V (G).
A further important extension is to fix the proportion into which the cut

separates the node set. For example, the “maximum bisection problem” asks
for the maximum size of a cut that separates the nodes into two equal parts
(we allow a difference of 1 if the number of nodes is even). More precisely,
we can formulate the restricted multicut problem as follows. We specify (in
addition to the βij) numbers α1, . . . , αq > 0 with α1 + · · ·+αq = 1. It is con-
venient to consider the parameters αi and βij as the nodeweights and edge
weights of a weighted graph H with V (H) = [q]. Then we are interested in

(8) E(G, H) = max
1

|V (G)|2
∑
i,j

βijeG(Si, Sj),

where {S1, . . . , Sq} ranges over all partitions of V (G) such that

(9) ||Si| − αi|V (G)|| < 1 (i = 1, . . . , q).

(This can be defined for all graphs H with positive nodeweights, by scaling
the nodeweights so that they sum to 1.)

The following extension of (7) is easy to prove: for H fixed and
|V (G)| → ∞,

(10)
log2 hom(G, H)

|V (G)|2 = mmcut(G, β) + O(
1

|V (G)|).

(Note that log2 hom(G, H)/|V (G)|2 is asymptotically independent of the
node weights of H.)

The restricted maximum multicut problem is also related to counting
homomorphisms, but the relationship is a little more complicated. Let G
be a (very large) simple graph and H, a weighted graph with V(H)=[q].
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In the definition of t(G, H) we considered random maps V (G) → V (H),
where the image of each node is chosen independently from the distribution
on V (H) defined by the node weights. For most of these random maps ϕ,
|ϕ−1(i)| ≈ αi(H)|V (G)|| by the law of large numbers. It turns out that
often it is advantageous to restrict ourselves to maps that are “typical”
in this sense. More precisely, let S(G, H) denote the set of those maps
ϕ : V (G) → V (H) for which

∣∣|ϕ−1(i)| − αi|V (G)|
∣∣ < 1 for all i ∈ V (H).

Using this notation, we can write

rmcut(G, H) = max
ϕ∈S(G,H)

∑
u,v∈V (G)

βϕ(u),ϕ(v).

Let H̃ be the weighted graph in which the edge weights are β̃ij = exp(βij)
instead of βij . If we define

hom∗(G, H̃) =
∑

ϕ∈S(G,H)

∏
uv∈E(G)

β̃ϕ(u),ϕ(v),

then the following inequality analogous to (10) holds for |V (G)| → ∞:

(11) rmcut(G, H) =
log hom∗(G, H̃)

|V (G)|2 + O(
1

|V (G)|).

2.3.3. Statistical physics. Graph homomorphism functions can be used
to express partition functions of various statistical physical models. Two
basic types of such models are “hard-core” and “soft-core”.

To describe an example of a hard-core model, let G be an n × n grid,
and suppose that every node of G (every “site”) can be in one of two states,
“UP” or “DOWN”. The properties of the system are such that no two adja-
cent sites can be “UP”. A “configuration” is a valid assignment of states to
each node. The number of configurations is the number of independent sets
of nodes in G, which in turn can be expressed as the number of homomor-
phisms of G into the graph H consisting of two nodes, “UP” and “DOWN”,
connected by an edge, and with an additional loop at “DOWN”.

In a soft-core spin model the sites are again nodes of a graph G, which
can be in one of q possible states. For any two states i and j, we specify
an “energy of interaction” in the form of a real number Jij . A given con-
figuration (assignment of states) is given by a map ϕ : V (G) → [q], and its
“energy density” is expressed as

(12) Eϕ =
2

|V (G)|2
∑

uv∈E(G)

Jϕ(u),ϕ(v),

From this, one defines the partition function as

(13) Z(G, J) =
∑

ϕ:V (G)→[q]

exp(−Eϕ).

Another important quantity is the ground state energy

(14) E(G, J) = min
ϕ:V (G)→[q]

Eϕ.
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Note that both of these quantities are familiar: if we take β = −J , then
E(G, J) = −rmcut(G, β), and if we take βij = exp(Jij), then Z(G, J) =
hom(G, β). Even restricted multiway cuts correspond to a quantity studied
in statistical physics: it is called microcanonical ground state energy there.

The above definitions don’t work well for dense graphs G: as remarked
after (10), the numbers log2 hom(G, H)/|V (G)|2 are essentially independent
of the node weights of H, so we loose information here. In the mean-field
theory, we define the mean field partition function of a simple graph G by

(15) Z(G, J) =
∑

ϕ:V (G)→[q]

e−|V (G)|Eϕ .

The free energy is defined by

(16) F(G, H) = − lnZ(G, H)
|V (G)| .

Note that the normalization is different from (13) in the exponent and there-
fore we only divide by |V (G)| (as opposed to (10)).

For more about this connection, we refer to [30].

2.4. Homomorphisms densities in the sparse case. The best ana-
logue for sparse graphs of the homomorphism density t(F, G) is

(17) s(F, G) =
hom(F, G)

|V (G)| ,

which we consider for connected graphs F . We can interpret this number as
follows. For u ∈ V (F ) and v ∈ V (G), let homu→v(F, G) denote the number
of homomorphisms ϕ of F into G with ϕ(u) = v. Now we fix any node u of
F and select a uniform random node v of G. Then s(F, G) is the expectation
of homu→v(F, G). We can interpret

sinj(F, G) =
inj(F, G)
|V (G)| , sind(F, G) =

ind(F, G)
|V (G)|

similarly.

Remark 2.4. For bounded degree graphs the order of magnitude of
hom(F, G) (where F is fixed and V (G) tends to infinity) is |V (G)|c(F ), where
c(F ) is the number of connected components of F . But since hom(F, G)
is multiplicative over the connected components of F , we don’t loose any
information if we restrict the definition s(F, G) to connected graphs F .

The sparse homomorphism densities (17) contain the same information
as the distribution of neighborhood samples. The proof of this is a bit
trickier here than in the dense case.

From the interpretation of s(F, G) given above, we see that it can be
obtained as the expectation of the number of homu→vs(F,B), where B is a
random ball from the neighborhood sample distribution ρG,r, with center v
and radius r = |V (F )|.
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To compute the neighborhood sample distributions from the quantities
s(F, G), we first express the quantities sinj(F, G) via inclusion-exclusion. By
a similar argument, we can express the quantities sind(F, G).

Next, we consider graphs F together with maps δ : V (F ) → {0, . . . , d},
and we determine the numbers

sind(F, δ, G) =
ind(F, δ, G)

|V (G)| ,

where ind(F, δ, G) is the number injections ϕ : V (F ) → V (G) which embed
F in G as an induced subgraph, so that the degree of ϕ(v) is δ(v). This is
again done by an inclusion-exclusion argument.

Given a ball B of radius r, the fraction of nodes v ∈ V (G) for which
B(v, r) = B is

∑
δ ind(B, δ, G), where the summation extends over all func-

tions δ which assigns to each node of B at distance < r from the root its
degree in B. This proves that homomorphism densities and neighborhood
sampling are equivalent.

2.5. Characterizing homomorphism numbers. Multigraph para-
meters of the form hom(·, H), where H is a weighted graph, were character-
ized by Freedman, Lovász and Schrijver [51].

Theorem 2.5. Let f be a graph parameter defined on multigraphs with-
out loops. Then f is equal to hom(., H) for some weighted graph H on q
nodes if and only if it is reflection positive and rk(M(f, k)) ≤ qk for all k.

Several improvements and versions of this result have been obtained. It
is shown in [89] that it is enough to assume the rank condition for k ≤ 2.
Analogous characterizations can be given for graph parameters of the form
hom(·, H) where the nodeweights in H are all 1 [106], and where H is
an unweighted graph without multiple edges (but with loops allowed) [81].
There is also an analogous (dual) characterization of graph parameters of
the form hom(F, .), defined on simple graph with loops, where F is also a
simple graph with loops [81]. These results can be extended to directed
graphs, hypergraphs, semigroups, and indeed, to all categories satisfying
reasonable conditions [82].

The two conditions on connection matrices in the theorem have inter-
esting uses of their own.

2.5.1. Reflection positivity and extremal graph theory. Theorem 6.13 will
give a number of equivalent (cryptographic) descriptions of limit objects of
growing graph sequences, and it can be used to characterize all reflection
positive graph parameters, see Corollary 6.14.

Reflection positivity implies a number of very useful relations between
the densities of various subgraphs in a given graph, which in turn can be used
to prove results in extremal graph theory. We will illustrate this in Section 9.

We’ll return to applications of reflection positivity of connection matrices
in the context of continuous generalizations of graphs (Section 9) and in
extremal graph theory (Section 9).
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2.5.2. Finite connection rank. The finiteness of the rank of connection
matrices is also interesting. One reason to be interested in this question is
the fact that such a graph parameter can be evaluated in polynomial time
for graphs with bounded treewidth [78].

There are several examples of graph parameters with finite connection
rank [77]: the number of perfect matchings, the number of all matchings,
the number of Hamiltonian cycles, any evaluation of the Tutte polynomial.

A challenging problem is to determine all graph parameters for which
all the connection matrices have finite rank. Homomorphism functions
hom(., H) are examples for every weighted graph H (here the nodeweights
and edgeweights can be negative). Dual homomorphism densities hom(F, .)
also have finite connection rank. Every evaluation of the Tutte polynomial
is a further example.

Very recently Godlin and Makowski proved that all graph parameters
which are evaluations of graph polynomials definable in Monadic Second
Order Logic have finite connection rank. This result can be used mostly as
a tool to prove that certain properties are not definable this way.

Further variants of this problem ask for the characterization of graph
parameters with exponentially bounded connection rank, or polynomially
bounded connection rank.

2.6. Graph algebras. A quantum graph is defined as a formal linear
combination of a finite number of graphs with real coefficients. For every
quantum graph x, let N(x) be the maximum number of nodes in the graphs
occurring in x with nonzero coefficient. The definition of hom(F, G) and
t(F, G) extends to quantum graphs linearly: if f =

∑n
i=1 λiFi and g =∑m

j=1 μjGj , then we define

hom(f, g) =
n∑

i=1

m∑
j=1

λiμjhom(Fi, Gj).

Quantum graphs are useful in expressing various combinatorial situations.
For example, for any graph F we define

(18) F̂ =
∑

F ′:V (F ′)=V (F )
E(F ′)⊇E(F )

(−1)|E(F ′)|F ′.

Then t(F̂ , G) is just the probability that a random map V (F ) → V (G)
preserves adjacency as well as non-adjacency.

Let f be any graph parameter and fix an integer k ≥ 0. Let Qk denote
the (infinite dimensional) vector space of all k-labeled quantum graphs. We
can turn Qk into an algebra by using F1F2 introduced above as the prod-
uct of two generators, and then extending this multiplication to the other
elements linearly. Clearly Qk is associative and commutative. The graph
Ok on k nodes with no edges is the multiplicative unit in Qk. If all nodes
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of F are labeled, then both F and the quantum graph F̂ introduced above
(keeping the node labels) are idempotent: F 2 = F and F̂ 2 = F̂ .

Every graph parameter f can be extended linearly to quantum graphs,
and defines an inner product on Qk by

(19) 〈x, y〉 := f(xy).

This means that our graph algebra is a Frobenius algebra (see [70]). This
inner product has nice properties, for example

(20) 〈x, yz〉 = 〈xy, z〉.
Let Nk(f) denote the kernel of this inner product, i.e.,

Nk(f) := {x ∈ Qk : f(xy) = 0 ∀y ∈ Qk}.

Then we can define the factor algebra

Qk/f := Qk/Nk(f).

Example 2.6. As an example, consider the number pm(G) of perfect
matchings in the graph G. It is a basic property of this value that subdi-
viding an edge by two nodes does not change it. This can be expressed as
P4 − P2 ∈ N2(pm), where Pk denotes the paths with k nodes, of which the
two endnodes are labeled.

We can introduce a third “product”: the tensor product G ⊗ H of a
k-labeled graph G and an l-labeled graph H is defined as the (k + l)-labeled
graph obtained as the disjoint union of G and H, where the labels in H are
increased by k. If k = l = 0, then the tensor product is the same as the
product in the algebra Qk.

The parameter f is reflection positive if and only if the inner product
(19) is positive semidefinite on Qk; equivalently, positive definite on Qk/f ,
so it turns Qk/f into a Hilbert space. In fact, the factor algebra Qk/f is
a commutative ∗-algebra, which has both a commutative and associative
product and a positive definite inner product, related by 〈x, yz〉 = 〈xy, z〉.

The dimension of Qk/f is the rank of the connection matrix. If this
rank is a finite number m and the parameter is reflection positive, it follows
that Qk/f is isomorphic R

m endowed with the coordinate-wise product and
the usual inner product.

There are many algebraically interesting connections between these alge-
bras, for example, there is an embedding given by the tensor product

(21) Qk/f ⊗ Ql/f ↪→ Qk+l/f,

which shows that dim(Qk/f) is a superadditive function of k.
This nice algebraic structure can be exploited in various ways [51, 78,

84, 86]. Let us sketch the proof of Theorem 2.5 in an (easier) special
case: when there is no degeneracy in the sense that the embedding in (21)
is an isomorphism (this is in fact the generic case, which occurs whenever
f = hom(., H), where H has no “twin” nodes nor any nontrivial automor-
phism). So we have dim(Qk/f) = qk for all k.
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Let p1, . . . , pq be the basis of Q1/f consisting of idempotents (corre-
sponding to the standard basis vectors in R

q). Define pϕ = pϕ(1)⊗· · ·⊗pϕ(k)
for all ϕ : [k] → [q], then the k-labeled quantum graphs pϕ form a basis of
Qk/f consisting of idempotents.

We can define a weighted complete graph H on [q] as follows: let αi =
f(pi) and define βij by expressing the graph k2 (a single edge with both
nodes labeled) in the idempotent basis:

k2 =
∑

i,j∈[q]

βij(pi ⊗ pj)

This defines nodeweights αi and edgeweights βij for H. The nodeweights
are positive, since

αi = f(pi) = f(p2
i ) > 0.

The definition of the βij implies that

(22) k2(pi ⊗ pj) = βij(pi ⊗ pj).

We claim that the weighted graph H obtained this way satisfies f(G) =
hom(G, H) for every multigraph G. Indeed, we may assume that V (G) = [k]
and all nodes of G are labeled. Then we can write

G =
∏

uv∈E(G)

Kuv,

where Kuv consists of k labeled nodes and a single edge connecting u and
v. Equation (22) implies that

pϕKuv = βϕ(u)ϕ(v)pϕ.

Using (20) repeatedly, we get

G =

⎛⎝ ∑
ϕ: [k]→[q]

pϕ

⎞⎠ G =
∑

ϕ: [k]→[q]

pϕ

∏
uv∈E(G)

Kuv =
∑

ϕ: [k]→[q]

∏
uv∈E(G)

βϕ(u)ϕ(v)pϕ,

and so

f(G) =
∑

ϕ: [k]→[q]

∏
uv∈E(G)

βϕ(u)ϕ(v)

∏
u∈V (G)

αϕ(u) = hom(G, H).

3. Graph-like structures on probability spaces

The aim of this section is to introduce certain analytic objects, which
will serve as limit objects for graph sequences, separately in the dense and
sparse case. It is an interesting feature of these structures that they have
come up in different studies.

In the dense case, several versions of these objects turn out to be equiv-
alent; graphons are very simple objects (2-variable measurable functions),
but they turn out to be equivalent, among others, to exchangeable random
variables.
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In the bounded degree case, several related, but non-equivalent notions
have been proposed, at least one of which (graphings) is also known from
group theory.

3.1. Graphons. Let W denote the space of all bounded symmetric
measurable functions W : [0, 1]2 → R (i.e., W (x, y) = W (y, x) for all
x, y ∈ [0, 1]). Let W0 denote the set of all functions W ∈ W such that
0 ≤ W ≤ 1.

A function W ∈ W is called a stepfunction, if there is a partition S1 ∪
· · · ∪ Sk of [0, 1] into measurable sets such that W is constant on every
product set Si × Sj . The number k is the number of steps of W .

For every weighted graph G, we define a stepfunction WG ∈ W0 as
follows. Let V (G) = [n]. Split [0, 1] into n intervals J1, . . . , Jn of length
λ(Ji) = αi/αG. For x ∈ Ji and y ∈ Jj , let

WG(x, y) = βij(G).

Let W ∈ W and let ϕ : [0, 1] → [0, 1] be a measure preserving map. We
can define another function Wϕ by

Wϕ(x, y) = W (ϕ(x), ϕ(y)).

From the point of view of using these functions as continuous analogues
of graphs, the functions W and Wϕ are not essentially different (they are
related like two isomorphic graphs in which the nodes are labeled differently).
One has to be a little careful though, because measure preserving maps are
not necessarily invertible, and so the relationship between W and Wϕ is not
symmetric. We call two graphons W and W ′ weakly isomorphic, if there is
a third graphon U and measure preserving maps ϕ, ϕ′ : [0, 1] → [0, 1] such
that W = Uϕ and W ′ = Uϕ′

almost everywhere. It is not hard to show that
weak isomorphism is an equivalence relation.

Equivalence classes of functions in W0 under weak isomorphism are
called graphons. (Sometimes we call a function W ∈ W0 a graphon; by
analogy with graphs, these functions could be called “labeled graphons”.)

3.1.1. Homomorphisms into graphons and from graphons. Counting
homomorphism into graphs extends to counting homomorphism into
graphons in the following sense: For every W ∈ W and simple graph
F = (V, E), define

t(F, W ) =
∫

[0,1]V

∏
ij∈E

W (xi, xj)
∏
i∈V

dxi

Then it is easy to verify that for every graph G,

(23) t(F, G) = t(F, WG).

Of the two modified versions of homomorphism densities (2) and (3), the
former has not significance in this context since a random assignment
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i �→ xi (i ∈ V (F ), xi ∈ [0, 1] is injective with probability 1. But the induced
subgraph density is worth defining, and in fact it can be expressed as

(24) tind(F, W ) =
∫

[0,1]V

∏
ij∈E

W (xi, xj)
∏

ij∈(V
2)\E

(1 − W (xi, xj))
∏
i∈V

dxi.

We have then

(25) tind(F, G) = tind(F, WG),

and the inclusion-exclusion formula (5) follows by expanding the parentheses
in the integrand (24).

Borgs, Chayes and Lovász [26] proved that the homomorphism densities
determine the graphon:

Theorem 3.1. Two graphons are weakly isomorphic if and only if
t(F, W ) = t(F, W ′) for every simple graph F .

A natural idea of the proof of this theorem would be to bring every
graphon to a “canonical form”, so that weakly isomorphic graphons would
have identical canonical forms. In the case of functions in a single vari-
able, a canonical form that works in many situations can be obtained
through “monotonization”: for every bounded real function on [0, 1] there
is an unique monotone increasing left-continuous function on [0, 1] that has,
among others, the same moments. For graphons this does not seem to
be doable, but the proof of Theorem 3.1 goes by constructing, for every
graphon W , a “canonical ensemble”: a probability distribution on graphons
on the same canonical σ-algebra and weakly isomorphic to W , such that
two graphons are isomorphic if and only if their ensembles can be coupled
so that corresponding graphons are identical.

Alternate proofs of Theorem 3.1 have been given by Diaconis and Janson
[35] using the theory of exchangeable random variables, and by Bollobás
and Riordan [24] combining Theorem 6.2 below with measure-theoretic
arguments.

There is probably no good way to define homomorphism numbers from
graphons into graphs or into other graphons. The parameters related to
such homomorphisms that extend naturally to graphons are defined by max-
imization, like the normalized maximum cut, and more generally, restricted
maximum multiway cuts. Let H be a weighted graph with V (H) = [q] and
W , a graphon. Then we can define

E(W, H) = sup
Si

∑
i,j∈V (H)

βij

∫
Si×Sj

W (x, y) dx dy,

where {S1, . . . , Sq} ranges over all partitions of [0, 1] into measurable sets
with λ(Si) = αi(H). This quantity does not exactly extend E(G, H) as
defined in (8), but the error is small: it was proved in [30] that for a fixed
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weighted graph H,

(26) E(G, H) − E(WG, H) = O
( 1

|V (G)|

)
(|V (G)| → ∞).

3.1.2. W -random graphs. A graphon W gives rise to a way of gener-
ating random graphs that are more general than the Erdős–Rényi graphs.
This construction was introduced by Lovász and Szegedy [85] and Bollobás,
Janson and Riordan [22].

Given a graphon W and an integer n > 0, we can generate a random
graph G(n, W ) on node set [n] as follows: We generate n independent num-
bers X1, . . . , Xn from the uniform distribution on [0, 1], and then connect
nodes i and j with probability W (Xi, Xj), making an independent decision
for distinct pairs (i, j).

As a special case, if W is the identically p function, we get “ordinary”
random graphs G(n, p).

We can extend this construction to generating a countable random graph
G(W ) on N: We generate an infinite sequence X1, X2, . . . of uniformly dis-
tributed random points from [0, 1], and (as before) connect nodes i and j
with probability W (Xi, Xj).

Graphons will come up in several ways in our discussions. In Theorem
6.13 we will collect the many disguises in which they occur.

3.2. Graphings

3.2.1. Measure preserving graphs. Let G be a graph with node set [0, 1],
with all degrees bounded by d. We call G measurable, if for every (Lebesgue)
measurable set B the neighborhood N(B) in G is also measurable.

For every set A ⊆ [0, 1] and x ∈ [0, 1], let dA(x) denote the number of
neighbors of x in B. One can prove using the measurability of G that dA(x)
is a measurable function of x. We say that G is measure preserving, if it is
measurable and for any two measurable sets A, B,

(27)
∫

A
dB(x) dx =

∫
B

dA(x) dx.

Assuming that this relation holds, we can define a measure μ on the Borel
sets of [0, 1]2 by μ(A × B) =

∫
A dB(x) dx. This measure is concentrated on

the set of edges (which can be considered as a subset of [0, 1]2). Furthermore,
the marginals of μ are absolutely continuous with respect to the Lebesgue
measure, and their Radon-Nikodym derivative is the degree function.

In every measure preserving graph G, we can define the density s(F, G)
of a graph F . Indeed, let us recall that s(F, G) is the expectation of
homv→u(F, G), where v is a fixed node of F and u is a random node of
G. Since we have a probability distribution on V (G), and homv→u(F, G) is
a bounded measurable function of u, this definition carries over verbatim.

Similarly, we can talk about the neighborhood distributions ρG,m in a
measure preserving graph.
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3.2.2. Graphings. Let A1, . . . , Ad, B1, . . . , Bd be measurable subsets of
[0, 1], and let ϕi : Ai → Bi be bijective measure preserving maps. The
tuple H = ([0, 1], ϕ1, . . . , ϕd) is called a graphing (see [53, 69]). From every
graphing H we get a directed graph

−→
G on [0, 1] by connecting x and y in

[0, 1] if there is an i such that y = ϕi(x). The edges of this digraph are
colored with d colors in such a way that each color-class defines a measure
preserving bijection between two subsets of [0, 1].

Forgetting the orientation and the edge-colors of this digraph, we get a
measure preserving graph with degrees bounded by 2d. A measure preserv-
ing graph with its edges colored and oriented so that each color defines a
measure preserving bijection is equivalent to a graphing.

It would be perhaps more natural to assume that the maps ϕ1, . . . , ϕd are
involutions, in which case we get an undirected graph, and we can extend the
ϕi to measure preserving involutions [0, 1] → [0, 1]. It is true that for every
graphing there is such an involutive graphing defining the same measure
preserving graph; but the number of maps may become much larger.

Every measure preserving graph arises from a graphing:

Theorem 3.2. Let G be a measure preserving graph with degrees bounded
by d. Then there is a graphing H = ([0, 1], ϕ1, . . . , ϕr), where r ≤ d2, such
that the underlying graph is G.

One way of looking at a representation of a measure preserving graph
as a graphing is that it provides a certificate that the graph is measure
preserving. The graphing representing a given measure preserving graph
may not be unique.

Theorem 3.2 can be viewed as a measure preserving graph version of
Shannon’s Theorem, which asserts that the edges of a multigraph with max-
imum degree d can be colored by 3d/2 colors. (For simple graphs, Vizing’s
Theorem gives the better bound of d + 1.) The bound d2 is probably not
optimal in the measure preserving version either.

We will talk about s(F, H) if F is a (finite) graph and H is a graphing.
This will mean simply s(F, G), where G is the underlying measure preserving
graph.

We note that both in measure preserving graphs and graphings, we could
replace the probability space [0, 1] by any other standard probability space,
but this would not lead to any gain in generality. However, in some cases the
presentation of the measure preserving graph or graphing is more natural
on other probability spaces.

3.2.3. Random countable rooted graphs. Measure preserving graphs are
also related to certain probability distributions on rooted countable graphs,
introduced by Benjamini and Schramm [16].

Let G be a measure preserving graph and choose a uniform random point
x ∈ [0, 1]. The connected component Gx of G containing x is a countable
graph with degrees bounded by d, and with a “root” node x.
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Let Gd denote the set of connected countable graphs with all degrees
bounded by d, rooted at a node. Let Ad denote the σ-algebra on Gd gen-
erated by subsets obtained by fixing a finite neighborhood of the root. The
map x �→ Gx is measurable as a map [0, 1] → (Gd,Ad), and thus every mea-
sure preserving graph G defines a probability distribution π on (Gd,Ad).

Condition 27 implies the following property of the measure π. Selecting
a rooted graph G from π and then selecting a uniform random edge from the
root, we get a probability distribution π∗ on the set G′

d of rooted graphs in
Gd with an edge (the “root edge”) from the root also specified. We say that
π is unimodular, if the map G′

d → G′
d obtained by shifting the root node to

the other endnode of the root edge is measure preserving with respect to π.
The measure on Gd obtained from a measure preserving graph is uni-

modular. Vice versa, every such measure is obtained from a graphing (and
hence from a measure preserving graph; Elek [37]).

4. The cut-distance of two graphs

The definition of the distance of two arbitrary graphs is quite involved,
and we will approach the problem in steps: starting with two graphs on the
same node set, then moving to graphs with the same number of nodes (but
unrelated), then moving to the general case.

In this section we consider dense graphs. The definitions are of course
valid for all graphs, but they give a distance of o(1) between two graphs
with edge-density o(1).

4.1. Two graphs on the same set of nodes. Let G and G′ be two
graphs with a common node set [n]. The distance notion discussed here
was initiated by Frieze and Kannan [52], and elaborated, e.g., in [29]. For
an unweighted graph G = (V, E) and sets S, T ⊆ V , let eG(S, T ) denote
the number of edges in G with one endnode in S and the other in T (the
endnodes may also belong to S ∩T ; so eG(S, S) is twice the number of edges
spanned by S). For two graphs G and G′ on the same node set [n], we define
their cut distance by

d�(G, G′) =
1
n2 max

S,T⊆V (G)
|eG(S, T ) − eG′(S, T )|.

Note that we are dividing by n2 and not by |S| × |T |, which would look
more natural. However, dividing by |S| × |T | would emphasize small sets
too much, and the maximum would be attained when |S| = |T | = 1. With
our definition, the contribution of a pair S, T is at most |T | · |S|/n2 (for
simple graphs).

It is easy to see that d�(G, G′) ≤ d1(G, G′), and in general the two
sides are quite different. For example, if G and G

′ are two independent
random graphs on [n] with edge probability 1/2, then with large probability
d�(G, G′) = O(1/

√
n).
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4.2. Two graphs with the same number of nodes. If G and G′

are unlabeled unweighted graphs on different node sets but of the same
cardinality n, then we define their distance by

(28) δ̂�(G, G′) = min
G̃,G̃′

d�(G̃, G̃′),

where G̃ and G̃′ range over all labelings of G and G′ by 1, . . . , n, respec-
tively. (The hat above the δ indicates that the “ultimate” definition will be
somewhat different.)

4.3. Two arbitrary graphs. Let G = (V, E) and G′ = (V ′, E′) be
two graphs with (say) V = [n] and V ′ = [n′]. To define their distance, we
need a graph operation: for every graph G and positive integer m, let G(m)
denote the graph obtained from G by replacing each node of G by m nodes,
where two new nodes are connected if and only if their predecessors were.

We can use the distance δ̂� to define the distance

δ�(G, G′) = lim
k→∞

δ̂�(G[kn′], G′[kn]).

(Here G(kn′) and G′(kn) have the same number of nodes.)
A more complicated but “finite” definition of the same quantity can be

given as follows. A fractional overlay of G and G′ is a nonnegative n × n′

matrix X such that
∑n′

u=1 Xiu = 1
n and

∑n
i=1 Xiu = 1

n′ . If n = n′ and
σ : V → V ′ is a bijection, then Xiu = 1

n1σ(i)=u is a fractional overlay
(which in this case is an honest-to-good overlay). We denote by X (G, G′)
the set of all fractional overlays.

For a matrix M , let Σ(M) denote the sum of its entries. Then the
distance of the two graphs can be described by the following optimization
problem:
(29)

δ�(G, G′) = min
X∈X (G,G′)

max
Y,Z⊆V ×V ′

∣∣∣ ∑
iu∈Y, jv∈Z

ij∈E

XiuXjv −
∑

iu∈Y, jv∈Z
uv∈E′

XiuXjv

∣∣∣.
To illuminate this definition a little, we can think of a fractional overlay

as a coupling of the uniform distribution on V (G) with the uniform distribu-
tion on V (G′): it gives a probability distribution χ on V (G) × V (G′) whose
marginals are uniform. Select two pairs (i, u) and (j, v) from the distribution
χ. Then the first sum in (29) is the probability that “iu ∈ Y and jv ∈ Z
and ij ∈ E”, and the second sum is the probability that “iu ∈ Y and jv ∈ Z
and uv is an edge”. Thus (29) expresses some form of correlation between
ij being an edge and uv being an edge.

One word of warning: δ� is only a pseudometric, not a true metric,
because δ�(G, G′) may be zero for different graphs G and G′. This is the
case e.g. if G′ = G(k) for some k.

Definition (29) can be extended to weighted graphs, but instead of going
through the hairy formulas, we postpone this to the next section.
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We conclude with a problem for which only partial results are available.
If G and G′ have the same number of nodes, then the definition of δ� does
not give back δ̂�. It was proved in [29] that

(30) δ�(G, G′) ≤ δ̂�(G, G′) ≤ 32δ�(G, G)1/67.

This is a rather weak result, its significance being that δ� and δ̂� define the
same Cauchy sequences. Alon (unpublished) proved that

(31) δ̂�(G, G′) ≤ (1 + o(1))δ�(G, G)

if |V (G)| = |V (G′)| → ∞. We conjecture:

Conjecture 4.1. For any two graphs G and G′ on n nodes, δ̂�(G, G′) ≤
2δ�(G, G′).

An analogous result for the edit distance was proved by Pikhurko [96].

4.4. Distance of graphons. This notion of distance extends to
graphons as follows (and it is perhaps more natural in that context). We
consider on W the cut norm

‖W‖� = sup
S,T⊆[0,1]

∣∣∣∫
S×T

W (x, y) dx dy
∣∣∣

where the supremum is taken over all measurable subsets S and T . It is
sometimes convenient the use the corresponding metric d1(U, W ) = ‖U −
W}�. We define the cut distance

δ�(U, W ) = inf
ϕ

d�(U, Wϕ),

where ϕ ranges over all invertible measure preserving maps from [0, 1] →
[0, 1], and Wϕ(x, y) = W (ϕ(x), ϕ(y)).

The distance δ� of graphons is only a pseudometric, since different
graphons can have distance zero. This happens precisely when they are
weakly isomorphic.

If G and G′ are weighted graphs, then we have

(32) δ�(G, G′) = δ�(WG, WG′).

This could serve as a more natural (but not combinatorial) definition of
the distance of two graphs, and we will use it to define the distance of two
weighted graphs. Let K denote the graph with a single node of weight
1, endowed with a loop with weight 1/2. Then for a random graph G =
G(n, 1/2), we have δ�(G, K) = O(1/

√
n) with large probability.

Going into all the complications with using the cut norm and then mini-
mizing over measure preserving transformations is justified by the following
important fact.

Theorem 4.2. The pseudometric space (W0, δ�) is compact.
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The proof depends on Szemerédi partitions, to be discussed in Section 5.
Convergence in the ‖.‖� norm is stronger than weak-∗-convergence. To

be more precise, if ‖Wn − W‖� → 0 (n → ∞), then it follows immediately
from the definition that

(33)
∫

S×T
Wn →

∫
S×T

W,

and hence by standard arguments we get that

(34)
∫

[0,1]2
U · Wn →

∫
[0,1]2

U · W

for every integrable function U . However, weak-∗-convergence is not equiv-
alent of convergence in the ‖.‖� norm; a counterexample can be obtained
e.g. from Example 6.19 (see [31]).

Similar construction can be applied to other norms, e.g., from the L1-
norm

‖W‖1 =
∫

[0,1]2
|W (x, y)| dx

we get

d1(U, W ) = ‖U − W‖1 and δ1(U, W ) = infϕd1(U, Wϕ).

5. Szemerédi partitions

One of the most important tools in understanding large dense graphs
is the Regularity Lemma of Szemerédi [112, 113] and its extensions. This
lemma has many interesting connections to other areas of mathematics,
including analysis [87, 23] and information theory [114]. It also has weaker
(but more effective) and stronger versions. Here we survey as much as we
need from this rich theory.

5.1. ε-regular bipartite graphs and the original lemma. For a
graph G = (V, E) and for X, Y ⊆ V , let eG(X, Y ) denote the number of
edges with one endnode in X and another in Y ; edges with both endnodes
in X ∩ Y are counted twice. We denote by dG(X, Y ) = eG(X,Y )

|X|·|Y | the density
of edges between X and Y . If X and Y are disjoint, we denote by G[X, Y ]
the bipartite graph on X ∪Y obtained by keeping just those edges of G that
connect X and Y .

Let P = {V1, . . . , Vk} be a partition of V . We say that P is an equipar-
tition if �|V |/k� ≤ |Vi| ≤ �|Vi|/k� for all 1 ≤ i ≤ k. We define the weighted
graph GP on V by taking the complete graph and weighting its edge uv by
dG(Vi, Vj) if u ∈ Vi and v ∈ Vj .

The Regularity Lemma says, roughly speaking, that every graph has
a partition P into a “small” number of classes such that GP is “close” to
G. There are (non-equivalent) forms of this lemma, depending on how we
measure the error.
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Let G be a bipartite graph G with bipartition {U, W}. On the average,
we expect that for X ⊆ U and Y ⊆ W ,

eG(X, Y ) ≈ dG(X, Y )|X| · |Y |.
For two arbitrary subsets of the nodes, eG(X, Y ) may be very far from this
“expected value”, but if G is a random graph, then, however, it will be close;
random graphs are very “homogeneous” in this respect. We say that G is
ε-regular, if

(35)
∣∣∣∣eG(X, Y )

|X| · |Y | − d

∣∣∣∣ ≤ ε

holds for all subsets X ⊆ U and Y ⊆ W such that |X| > ε|U | and
|Y | > ε|W |.

Notice that we could not require condition (35) to hold for small X and
Y : for example, if both have one element, then the quotient eG(X, Y )/(|X| ·
|Y |) is either 0 or 1. However, we could replace it by the condition

(36) |eG(X, Y ) − d|X| · |Y || ≤ ε|U | · |W |
for all Y ⊆ U and Y ⊆ W . Indeed, (35) implies (36) for |X| > ε|U | and
|Y | > ε|W |, while if e.g. |X| ≤ ε|U |, then eG(X, Y ) ≤ ε|U | · |W | and
d|X| · |Y || ≤ ε|U | · |W |, so (36) holds trivially. Conversely, if (36) holds with
ε replaced by ε3, then∣∣∣∣eG(X, Y )

|X| · |Y | − d

∣∣∣∣ ≤ ε3|U | · |W |
|X| · |Y | < ε

if |X| > ε|U | and |Y | > ε|W |.
With these definitions, the Regularity Lemma can be stated as follows:

Lemma 5.1 (Szemerédi Regularity Lemma, usual form). For every ε > 0
there is a k = k(ε) such that every graph G = (V, E) on at least k nodes
has an equipartition {V1, . . . , Vk} (1/ε ≤ k ≤ k(ε)) such that for all but εk2

pairs of indices 1 ≤ i < j ≤ k, the bipartite graph G[Vi, Vj ] is ε-regular.

One feature of the Regularity Lemma, which unfortunately forbids prac-
tical applications, is that k(ε) is very large: the best proof gives a tower of
height about 1/ε2, and unfortunately this is not far from the truth, as was
shown by Gowers [60].

5.2. Weak Regularity Lemma and distance of graphs. A version
with a weaker conclusion but with a more reasonable error bound was proved
by Frieze and Kannan [52].

Lemma 5.2 (Weak Regularity Lemma). For every k ≥ 1 and every graph
G = (V, E), V has a partition P into k classes such that

d�(G, GP) ≤ 2√
log k

.
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Note that we do not require here that P be an equipartition; it is not
hard to see that this version implies that there is also an equipartition with
similar property, just we have to increase the error bound to 4/

√
log k.

To see the connection with the original lemma, we note that if G is an
ε-regular bipartite graph say in the sense of (36), and H is the weighted
complete bipartite graph with the same bipartition {U, W} and with edge
weights d, then (36) says that d�(G, H) ≤ ε. Hence if P is a Szemerédi
partition in the sense of Lemma 5.1, then the distance between the bipar-
tite subgraph of G induced by Vi and Vj , and the corresponding weighted
bipartite subgraph of GP , is at most ε for all but εk2 pairs (i, j), and at
most 1 for the remaining εk2 pairs. It is easy to see that this implies that
the distance between G and GP is at most ε. So the partition in Lemma 5.2
has indeed weaker properties than the partition in Lemma 5.1. Of course,
this is compensated for by the relatively decent number of partition classes.

If we keep in GP an edge with weight p with probability p and delete
it with probability 1 − p, then we get a random graph H, and it is easy
to see that with large probability d�(GP , H) ≤ 10√

|V (G)|
. This implies the

following version of the Weak Regularity Lemma:

Lemma 5.3. For every k ≥ 1 and graph G, there is a graph H with k
nodes such that

δ�(G, H) ≤ 10√
log k

.

5.3. Strong Regularity Lemma and compactness. Other versions
of the Regularity Lemma strengthen, rather than weaken, the conclusion
(of course, at the cost of replacing the tower function by an even more
formidable value). Such a “super-strong” Regularity Lemma was proved by
Alon, Fisher, Krivelevich and Szegedy [5]. We state the following equivalent
version from [87].

Lemma 5.4 (Strong Regularity Lemma). For every sequence (ε0, ε1, ...)
of positive numbers there is a positive integer k0 such that for every graph
G = (V, E), there is a graph G′ on V , and V has a partition P into k ≤ k0
classes such that

(37) d1(G, G′) ≤ ε0 and d�(G′, G′
P) ≤ εk.

Note that the first inequality involves the normalized edit distance, and so
it is stronger than a similar condition with the cut distance would be. The
second error bound εk in (37) can be thought of as very small. If we choose
εk = ε0, we get the Frieze–Kannan version 5.2 (with ε = 2ε0). Choosing
εk = ε0/k2, the partition obtained satisfies the requirements of the original
Regularity Lemma 5.1.

The strong version itself follows rather easily from the compactness of
the space (W0, δ�) (Theorem 4.2); see [85] for details.
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5.4. Partitions into sets with small diameter

5.4.1. Small diameter sets and regularity. We can equip every graph
G = (V, E) with a metric as follows. Let A be the adjacency matrix of
G. We define the similarity distance d2(x, y) of two nodes i, j ∈ V as the
1 distance of the corresponding rows of A2 (squaring the matrix seems
unnatural, but it is crucial; it turns out to get rid of random fluctuations).
The following was proved (in somewhat different form) in [87].

Theorem 5.5. Let G be a graph and let P = {V1, . . . , Vk} be a partition
of V .

(a) If d�(G, GP) = ε, then there is a set S ⊆ V with |S| ≤ 8
√

ε|V |
such that for each partition class, Vi \ S has diameter at most 8

√
ε

in the d2 metric.
(b) If there is a set S ⊆ V with |S| ≤ δ|V | such that for each par-

tition class, Vi \ S has diameter at most δ in the d2 metric, then
d�(G, GP) ≤ 24δ.

Theorem 5.5 suggests to define the dimension of a family G of graphs
as the infimum of real numbers d > 0 for which the following holds: for
every ε > 0 and G ∈ G the node set of G can be partitioned into a set of
at most ε|V (G)| nodes and into at most ε−d sets of diameter at most ε.
(This number can be infinite.) In the cases when the graphs have a natural
dimensionality, this dimension tends to give the right value. For example,
let G be obtained by selecting n random points on the d-dimensional unit
sphere, and connecting two of these points x and y with a probability
W (x, y), which is a continuous function of x and y. With probability 1,
this sequence has dimension Θ(d).

5.4.2. Computational applications. As an easy application of Theorem
5.5, we give an algorithm to compute a weak Szemerédi partition in a huge
graph. Our goal is to illustrate how an algorithm works in the pure sampling
model, as well as in what form the result can be returned. This way of
presenting the output of an algorithm for a large graph was proposed by
Frieze and Kannan [52].

We start with an auxiliary algorithm that computes (approximately) the
d2 distance of two nodes.

Algorithm 5.6.
Input: A graph G given by an sampling oracle, two nodes u, v ∈ V ,

and an error bound ε > 0.

Output: A number D2(u, v) ≥ 0 such that with probability at
least 1 − ε,

D2(u, v) − ε ≤ d2(u, v) ≤ D2(u, v) + ε.

To see how this can be done, we rewrite the definition of the d2 distance
as follows. For x, y ∈ V (G), let a(x, y) be the corresponding entry of the
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adjacency matrix of G: this is 1 if they are adjacent and 0 otherwise. Define

a2(x, y) = Eza(x, z)a(y, z),

where z is a uniform random node in V ; this is the corresponding entry of
the square of the adjacency matrix, normalized by |V (G)|. Finally, let

d2(x, y) = Ez(|a2(x, z) − a2(y, z)|),

where again z is a uniform random node in V . Drawing a sufficiently
large sample (depending on ε), these expectations can be approximated by
averaging.

Algorithm 5.6 enables us to encode a partition of V (G) as a subset
R ⊆ V (G): for each r ∈ R, we define the partition class Vr as the set of
nodes u ∈ V such that the node in R closest to u is r. Ties will be broken
arbitrarily, and nodes to which there are several “almost closest” nodes may
be misclassified, but this is the best one can hope for. To formalize,

Algorithm 5.7.
Input: A graph G given by an sampling oracle, a subset R ⊆ V (G), a

node u ∈ V , and an error bound ε > 0.

Output: An r ∈ R such that with probability at least 1 − ε, d2(u, r) ≤
(1 + ε)d2(u, R).

The way this second algorithm works is that it uses Algorithm 5.6 to
compute (approximately) the distances d2(u, r), r ∈ R, and returns the
node r ∈ R that it finds closest to u. Borrowing a phrase from geometry,
we compute the Voronoi cells of the set R.

Using this encoding of the partition, the following algorithm computes
a weak Szemerédi partition.

Algorithm 5.8.
Input: A graph G given by an sampling oracle, and an error bound ε.

Output: A set R ⊆ V (G) with |R| ≤ 22/ε2
such that, with probability

at least 1 − ε, d2(u, R) ≤ ε for all but an ε fraction of the nodes u.

The set R is grown step by step, starting with the empty set. At each
step, a new uniform random node w of G is generated, and the approximate
distances D2(u, v) are computed for all r ∈ R with error less than ε/|R|. If
all of these are larger than ε/2, w is added to R. Else, w is thrown out and
a new random node is generated. If R is not increased in 1/ε2 steps, the
algorithm halts.

It is clear that if more than an ε fraction of the nodes are farther than ε
from R, then in 1/ε2 iterations we are very likely to sample one of these, and
then with large probability we get the distances right and so we increase R.

Theorem 5.5 says in this context that the partition determined by
Algorithms 5.6–5.8 satisfies d�(G, GP) ≤ (4ε)1/4 with large probability.
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We conclude with an answer to Question 4 in Section 1.2. For the
partition P implicitly determined above, we can also compute the edge den-
sities between the partition classes, which we use to weight the edges of the
complete graph on R, so that we get a weighted graph H. We find the max-
imum cut in H by brute force, to get a partition R = R1 ∪ R2. This gives
an implicit definition of a cut in G, where a node u if put on the left side of
the cut iff D2(u, R1) < D2(u, R2) for the approximate distances computed
by Algorithm 5.6.

5.5. Regularity Lemmas for bounded degree graphs? The Regu-
larity Lemma as discussed above does not say anything for non-dense graphs.
Several extensions for this case are known [71, 54], but they are meaningless
for graphs that are very sparse, in particular if they have bounded degree.

Is there a Regularity Lemma for graphs with bounded degree? There
are great difficulties here, but three results justify cautious optimism.

An observation of Alon (unpublished) implies that a weak analogue of
the Regularity Lemma, version 5.3, holds. Using the sampling distance
introduced in Section 1.3.1, we can state this as follows:

Proposition 5.9. For every d ≥ 1 and ε > 0 there is an n = n(d, ε)
such that for every graph G with degrees bounded by d there is a graph H
with degrees bounded by d and |V (H)| ≤ n, such that dsample(G, H) ≤ ε.

Unfortunately, no effective bound on n follows from the proof. It would
be very interesting to give any explicit bound on the function n(d, ε), or to
give an algorithm to construct H from G. Ideally, one would like to design
an algorithm that would work in the sampling framework, similarly as the
algorithm in Section 5.4.2 works in the dense case.

It was proved recently by Elek and Lippner [41], and independently by
Angel and Szegedy [11] that every graph with degrees bounded by d can be
decomposed by deleting εn edges into “highly homogeneous” parts, where
the number of these parts is bounded by a function of d and ε. Unfortunately,
the highly homogeneous parts can still have a complex structure, but this
may be a first important step in the direction of finding an analogue of the
Regularity Lemma.

A third idea of decomposition is related to Følner sequences in the theory
of amenable groups, and is called hyperfiniteness for general graph sequences
[40, 102]. A family G of graphs with bounded degree is called hyperfinite,
if for every ε > 0 there is a kε ≥ 1 such that from every graph G ∈ G we can
delete ε|V (G)| edges so that every connected component of the remaining
graph has at most kε nodes. Schramm [102] showed that for a convergent
graph sequence, hyperfiniteness is reflected by the limit object.

A special case of a hyperfinite family is a family G of graphs with subex-
ponential growth, familiar from group theory. This property is defined by
requiring that there is a function f : N → N such that (ln f(m))/m → 0
(m → ∞), and for any graph G ∈ G, any v ∈ V (G) and any m ∈ N, the
number of nodes in the m-neighborhood of v is at most f(m).



102 L. LOVÁSZ

It is likely that large real-life networks can be thought of as hyperfinite;
on the other hand, hyperfinite families of graphs seem to be much better
behaved, and some of the theory of dense graph sequences can be extended
at least to this case.

6. Convergence and limits I: the dense case

6.1. Subgraph sampling. Recall that we can define a notion of con-
vergence if we fix a sampling method. For dense graphs, we use subgraph
sampling: We select uniformly a random k-element subset of V (G), and
return the subgraph G[k] induced by them. The probability that we see
a given graph F is the quantity tind(F, G) introduced in (3). A sequence
of graphs (Gn) with |V (Gn)| → ∞ is convergent if the induced subgraph
densities tind(F, Gn) converge for all finite graphs F .

We use this sampling method for dense graphs (otherwise all these den-
sities tend to 0).

Instead of the induced subgraph densities tind(F, Gn), we could use
the subgraph densities tinj(F, Gn) or the homomorphism densities t(F, Gn).
Indeed, the subgraph densities can be expressed as linear combinations of
induced subgraph densities and vice versa, while the difference t(F, G) −
tinj(F, G) = O(1/|V (G)|), and so it tends to 0 if |V (G)| → ∞.

We can extend this sampling procedure to graphons, and we get to the
construction of W -random graphs.

6.2. Convergence in distance. The definition of convergence can
be reformulated using the notion of sampling distance 1: a sequence
(Gn) of simple graphs with |V (Gn)| → ∞ is convergent if for every
graph F , (tind(F, Gn) : i = 1, 2, . . . ) is a Cauchy sequence (equivalently,
(t(F, Gn) : i = 1, 2, . . . ) is a Cauchy sequence). This is equivalent to saying
that the graph sequence is Cauchy in the dsample metric. The following the-
orem, which is one of the main results in this theory, justifies the use of the
cut metric δ�.

Theorem 6.1. A sequence (Gn) of simple graphs (|V (Gn)| → ∞) is
convergent if and only if it is a Cauchy sequence in the metric δ�.

A quantitative form of this equivalence is given by the following theorem.
Part (a) is a generalization of what is called the “Counting Lemma” in the
theory of Szemerédi partitions; part (b) may be called the “Anti-counting”
lemma.

Theorem 6.2. Let U, W ∈ W0.
(a) For every simple finite graph F ,

|t(F, U) − t(F, W )| ≤ |E(F )| · δ�(U, W ).

(b) Let k be a positive integer, and assume that for every simple graph
F on k nodes, we have

|t(F, U) − t(F, W )| ≤ 2−k2
.
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Then
δ�(U, W ) ≤ 20√

log k
.

The proof of part (a) is quite simple; part (b) depends on the sampling
lemmas to be discussed in Section 6.4.

Theorem 6.1 can be generalized to characterize convergence in the
space W:

Theorem 6.3. Let (Wn) be a sequence of graphons in W0 and let W ∈
W0. Then t(F, Wn) converges for all finite simple graphs F if and only if Wn

is a Cauchy sequence in the δ� metric. Furthermore t(F, Wn) → t(F, W )
for all finite simple graphs F if and only if δ�(Wn, W ) → 0.

6.3. Convergence from the right. Convergence of a graph sequence
can also be characterized in terms of mappings “to the right”. Several
characterizations along these lines were given in [30]; here we state one:

Theorem 6.4. Let (Gn) be a sequence of simple graphs such that
|V (Gn)| → ∞ as n → ∞. Then the sequence (Gn) is left-convergent if
and only if the sequence E(Gn, H) is convergent for every weighted graph H.

6.4. Sampling and distance. The proof of the results in the previous
section depends on a couple of probabilistic lemmas, which relate sampling
to cut distance. The first of these lemmas is due to Alon, Fernandez de la
Vega, Kannan and Karpinski [6], with an improvement from [29]. Its proof
is quite involved. Its main implication is that the d�-distance of two graphs
G and H on the same set of nodes can be estimated by sampling. It should
be noted that the bound given is quite sharp.

Lemma 6.5. Let k be a positive integer and let G and H be graphs with
V (G) = V (H), |V (G)| ≥ k and edge weights in [0, 1]. Let S be chosen
uniformly from all subsets of V (G) of size k. Then with probability at least
1 − 2e−

√
k/8.

|d�(G[S], H[S]) − d�(G, H)| ≤ 10
k1/4 .

The second lemma about sampling [29] shows that a sample is close to
the original graph with large probability. Note that here we have to use the
δ� distance (since no overlaying is given a priori), and also that the bound
on the distance is much weaker than in the previous lemma.

Lemma 6.6. Let k ≥ 1, and let G be a simple graph on at least k nodes.
If S is a random subset of V (G) of size k, then with probability at least
1 − 2−k,

δ�(G, G[S]) ≤ 10√
log k

.

This lemma follows from Lemma 6.5 and the Weak Regularity Lemma
5.2. Let us sketch this proof.
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Proof. Fix some m ≥ 1. By Lemma 5.2, there is an equipartition
P = {V1, . . . , Vm} of V (G) into m classes such that

d�(G, GP) ≤ 4√
log m

.

Now let S be a random k-subset. By Lemma 6.5, we have

|d�(G[S], GP [S]) − d�(G, GP)| ≤ 10
k1/4

with large probability. If k is sufficiently large relative to m, then every class
Vi will contain about k/m nodes from S.

Now blow up each node of GP [S] into n/k twins to get a weighted graph
G′ (in notation: G′ = GP [S](n

k )). Then each set Vi ∩ S is blown up into a
set V ′

i of size k
n |Vi ∩ S| ≈ |Vi| = n

m .
It follows that we can overlay G′ and GP so that corresponding edges

have the same weight except for edges inside the classes Vi and edges incident
with at most

∑m
i=1

∣∣|V ′
i | − |Vi|

∣∣ nodes. This is only a fraction of 1
m + 4m√

k
of

all edges, which shows that

δ�(GP , GP [S]) = δ�(GP , G′) ≤ 1
m

+
4m√

k
.

Hence

δ�(G, G[S]) ≤ δ�(G, GP) + δ�(GP , GP [S]) + δ�(GP [S], G[S])

≤ 4√
log m

+
10

k1/4 +
( 1

m
+

4m√
k

)
.

Choosing m = k1/4, we get

δ�(G, G[S]) ≤ 8√
log k

+
10

k1/4 +
( 1

k1/4 +
4

k1/4

)
<

10√
log k

if k is large enough. �
Both Lemmas 6.5 and 6.6 extend to graphons. We only formulate the

second one, which can be stated in terms of the W -random graphs G(k, W ).

Lemma 6.7. Let k ≥ 1, and let W be a graphon. Then with probability
at least 1 − 2−k,

δ�(G(k, W ), W ) ≤ 11√
log k

.

To illustrate how these lemmas fit in the proofs, let us first sketch how
Lemma 6.7 implies the “anti-counting lemma” (Theorem 6.2(b)). Assume
that U, W ∈ W0 satisfy

|t(F, U) − t(F, W )| ≤ 2−k2

for every graph F with k nodes. In terms of the W -random graphs G(k, U)
and G(k, W ), this implies (by inclusion-exclusion) that

|Pr(G(k, U) ∼= F ) − Pr(G(k, W ) ∼= F )| ≤ 2(k
2)2−k2

,
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and hence∑
F

∣∣Pr(G(k, U) ∼= F ) − Pr(G(k, W ) ∼= F )
∣∣ ≤ 2k(k−1)2−k2

= 2−k.

This means that we can couple G(k, U) and G(k, W ) so that G(k, U) ∼=
G(k, W ) with probability at least 1 − 2−k. Lemma 6.7 implies that with
probability at least 1 − 2−k, we have

δ�(U, G(k, U)) ≤ 10√
log k

,

and similar assertion holds for W . Whenever all three happen, we get

δ�(U, W ) ≤ δ�(U, G(k, U)) + δ�(G(k, U), G(k, W )) + δ�(W, G(k, W ))

≤ 20√
log k

.

6.5. Dense limit. The main motivation behind considering graphons
is the following theorem [85]:

Theorem 6.8. For any convergent sequence (Gn) of simple graphs there
exists a graphon W such that t(F, Gn) → t(F, W ) for every simple graph F .

We say that this graphon W is the limit of the graph sequence, and write
Gn → W .

One might wonder if we really need complicated objects like integrable
functions to describe these limits; would perhaps piecewise linear, or mono-
tone, or continuous functions suffice? The following two results tell us
that (up to weak isomorphism) all measurable functions are needed: every
graphon W can be obtained as the limit of a sequence of simple graphs [85],
and the limit is essentially unique [26].

Theorem 6.9. For any W ∈ W0, the graph sequence G(n, W ) converges
to the graphon W with probability 1.

On the other hand, Theorem 3.1 implies:

Theorem 6.10 ([26]). The limit graphon of a convergent graph sequence
is uniquely determined up to weak isomorphism.

There are two quite different proofs of the (main) theorem 6.8. The orig-
inal one in [85] uses Szemerédi partitions and the Martingale Convergence
Theorem; a more recent proof by Elek and Szegedy [42] first constructs a
different limit object in the form of an uncountable graph by taking the
ultraproduct, and them obtains the graphon as an appropriate projection
of this (in terms of non-standard analysis, the graphon is a non-standard
Szemerédi partition of this graph on a non-standard [0, 1] interval).

The first proof has the obvious advantage of being a constructive; but
the second proof is very general, it extends to hypergraphs and many other
structures, and leads to new understanding of the Regularity Lemma for
hypergraphs [60, 61, 100] and its consequences [115].
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Convergence to the limit object can also be characterized by the distance
function introduced above [29]:

Theorem 6.11. For a sequence (Gn) of graphs with |V (Gn)| → ∞ and
graphon W , we have Gn → W if and only if δ�(WGn , W ) → 0.

Note that the function WGn depends on the labeling of the nodes of
Gn (the distance δ�(WGn , W ) does not, since relabeling Gn results in weak
isomorphism of WGn). Choosing the labeling appropriately, we can say
more:

Theorem 6.12. For a sequence (Gn) of graphs with |V (Gn)| → ∞ and
graphon W , we have Gn → W if and only if the graphs Gn can be labeled so
that ‖WGn − W‖� → 0.

6.5.1. Equivalent descriptions of the limit. A random graph model is a
probability distribution on simple graphs on [n], for every n ≥ 1, which is
invariant under the reordering of the nodes. In other words, it is a sequence
of random variables Gn, whose values are simple graphs on [n], and isomor-
phic graphs have the same probability. We say that a random graph model is
consistent if deleting node n from Gn, the distribution of the resulting graph
is the same as the distribution of Gn−1. We say that the model is local, if
for every 1 < k < n, the subgraphs of Gn induced by [k] and {k + 1, . . . , n}
are independent as random variables.

It is easy to see that for every graphon W ∈ W0, G(n, W ) is a consistent
and local random graph model.

A related notion is the following. Let G be the set of graphs on N; we
can think of G as the product space {0, 1}E , where E =

(
N

2

)
is the set of

all (unordered) pairs of elements of N. This also equips G with a σ-algebra.
Let Σ be the group of permutations of N, and let Σ2 be the action of Σ on
E. Recall that a probability measure π on G is called ergodic with respect
to Σ2 if it is invariant under Σ2 and G has no measurable subset G′ with
0 < π(G′) < 1 invariant under Σ2.

It is easy to see for that every W ∈ W, the random graph G(W ) defines
a probability measure on G invariant under Σ2. B. Szegedy [111, 91] showed
that this measure is also ergodic.

After this preparation, we can formulate the theorem describing the
many notions equivalent to graphons.

Theorem 6.13. The following structures are cryptomorphic:

(a) a graphon W ∈ W0, up to weak isomorphism;
(b) A graph parameter f that is the limit of graph parameters t(., Gn)

for some convergent graph sequence (Gn).
(c) A multiplicative, reflection positive graph parameter f satisfying

f(K1) = 1,
(d) a consistent local random graph model;
(e) an ergodic measure on G invariant under Σ2.
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The equivalences of these structures are mostly contained in results men-
tioned previously. Let us sketch these constructions.

(a)→(b): Every graphon W ∈ W0 gives rise to the graph parameter
t(., W ); furthermore, W is the limit of a convergent graph sequence (Gn)
(for example, of the sequence of W -random graphs), and for this sequence
t(F, Gn) → t(F, W ) for all F .

(b)→(c): If a graph parameter is the limit of graph parameters t(., Gn),
which satisfy the conditions in (c), then clearly so does their limit.

(c)→(d): In the special case when f = t(., G) is the probability that a
random map from F to some graph G is a homomorphism, we can express
the probability that a sample of n points gives a given graph F0, by inclusion-
exclusion in terms of the numbers f(F ). We can apply the same formula to
any graph parameter f satisfying (c), and get a probability distribution on
n-point graphs (here the conditions in (c) are used), which is a consistent
local random graph model.

(d)→(a): Generating a random graph Gn from the consistent local ran-
dom graph model, it can be shown that we get a convergent graph sequence
with probability 1, which tends to a graphon W . For this graphon, G(n, W )
gives back the random graph model we started with.

(d)↔(e): It is easy to see that a consistent random graph model is
equivalent to a probability distribution on G invariant under Σ2. The proof
that locality is equivalent to ergodicity [111, 91] is trickier and not given
here.

Corollary 6.14. A graph parameter f is reflection positive if and only
if it is either identically 0, or there is a probability distribution ρ on the
Borel sets of (W0, δ�) such that if W denotes a random function from this
distribution, then

f(F ) = Et(F,W).

6.5.2. Examples. We start with two easy examples.

Example 6.15. Complete bipartite graphs. It is natural to guess, and
easy to prove, that complete bipartite graphs Kn,n converge to the function
defined by W (x, y) = 1 if 0 ≤ x ≤ 1/2 ≤ y ≤ 1 or 0 ≤ y ≤ 1/2 ≤ x ≤ 1, and
W (x, y) = 0 otherwise.

Example 6.16. Threshold graphs. These graphs are defined on the set
{1, . . . , n} by connecting i and j if and only if i + j ≤ n. These graphs
converge to the function defined by W (x, y) = 1x+y≤1.

Example 6.17. A sequence of graphs tending to the identically-p func-
tion is exactly what we called a quasirandom sequence with density p.

Two examples of randomly growing graph sequences:

Example 6.18. Randomly grown uniform attachment graph. We start
with a single node. At the n-th iteration, a new node is born, and then
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every pair of nonadjacent nodes is connected with probability 1/n. We call
this graph sequence a randomly grown uniform attachment graph sequence.

Let us do some simple calculations. After n steps, let {0, 1, . . . , n − 1}
be the nodes (born in this order). The probability that nodes i < j are
not connected is j

j+1 · j+1
j+2 · · · n−1

n = j
n . These events are independent for all

pairs (i, j). From here, one can easily figure out that the expected number
of edges is (n2 − 1)/6.

To describe the limit function, note that the probability that nodes i
and j are not connected is max(i, j)/n. If i = xn and j = yn, then this is
max(x, y). Using that these events are independent, we can prove that the
graph sequence Gua

n tends to the limit function 1 − max(x, y) with probabil-
ity 1.

Example 6.19. Randomly grown prefix attachment graph. In this con-
struction, it will be more convenient to label the nodes starting with 1. At
the n-th iteration, a new node n is born, a node z ≤ n is selected at ran-
dom, and the new node is connected to nodes 1, . . . , z − 1. We denote the
n-th graph in the sequence by Gpfx

n , and call this graph sequence a randomly
grown prefix attachment graph sequence.

The expected number of edges is n(n − 1)/4, and one can compute
subgraph densities with some effort to see that the sequence is convergent
with probability 1. It is more difficult to figure out the limit graphon.

We can try to proceed similarly as in the case of uniform attachment
graphs. The probability that i and j are connected is |j − i|/ max(i, j); if
i = xn and j = yn, then this is |x − y|/ max(x, y). Does this mean that the
function U(x, y) = |x − y|/ max(x, y) is the limit? Surprisingly, the answer
is negative, which we can see by computing triangle densities.

The key to describe the limit is the remark at the end of Section 1.5.3,
namely that instead of the uniform distribution over the interval [0, 1], we
can use other probability spaces. Let us label a node born in step k, con-
nected to {1, . . . , m}, by the pair (k/n, m/k) ∈ [0, 1] × [0, 1]. Then we can
observe that nodes with label (x1, y1) and (x2, y2) are connected if and only
if either x1 < x2y2 or x2 < x1y1.

From this observation one can prove that the prefix attachment graphs
Gpfx

n converge, with probability 1, to the function W : [0, 1]2×[0, 1]2 → [0, 1],
given by

Wpfx((x1, y1), (x2, y2)) =

{
1, if x1 < x2y2 or x2 < x1y1,

0, otherwise.

This gives a nice and simple representation of the limit object with the
underlying probability space [0, 1]2 (with the uniform measure). If we want a
representation on [0, 1], we can map [0, 1] into [0, 1]2 by any measure preserv-
ing map ϕ; then Wϕ

pfx(x, y) = W pfx(ϕ(x), ϕ(y)) gives a weakly isomorphic
graphon. This function is 0 − 1 valued, but its support is fractal-like.
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It is interesting to note that the graphs G(n, W ) form a different growing
sequence of random graphs tending to the same limit W with probability 1.

6.6. Convergence from the right. Paper [30] contains several condi-
tions that characterize convergent dense graph sequences in terms of homo-
morphisms “to the right” (we have seen that these correspond to parame-
ters with meaning in statistical physics). We only state one of these, in our
terms:

Theorem 6.20. Let (Gn) be a sequence of graphs such that |V (Gn)| →
∞ as n → ∞. Then the sequence (Gn) is convergent if and only if the
restricted multicut densities rmcut(Gn, H) are convergent for every weighted
graph H.

By (11), the value rmcut in this theorem could be replaced by
hom∗(G, H), and by our discussion in Section 2.3.3, we could talk about
microcanonical ground state energies instead of restricted multicuts.

6.7. Limits of other dense combinatorial structures. Limit
objects can be defined for multigraphs, directed graphs, colored graphs,
hypergraphs etc. In many cases, like directed graphs without parallel edges,
or graphs with nodes colored with a fixed number of colors, this can be done
along the same lines as for simple graphs.

But in other cases there are some surprises. For example, limits of multi-
graphs with edge-multiplicities are not real valued functions, but 2-variable
functions whose values are random variables with nonnegative integral values
[89]. If W is such a function, we can generate a W -random multigraph by
selecting n independent random points X1, . . . , Xn from the uniform distri-
bution on [0, 1], and then connecting nodes i and j with W (Xi, Xj) parallel
edges (which is a random integer).

The case of hypergraphs is much more interesting and important.
Formulating regularity lemmas and constructing limits of sequences of
r-uniform hypergraphs, where r is fixed, is a highly nontrivial task, but
it is essentially solved now, thanks to the work of Rödl and Skokan and
Gowers [100, 59]; see also [114, 42].

However, it seems that no good extension of the distance δ� has been
found to hypergraphs (just as for the regularity lemma, the first natural
guesses are wrong). Another open question is to extend these results to
nonuniform hypergraphs, with unbounded edge-size.

The semidefiniteness conditions for homomorphism functions can be
extended to hypergraphs (see e.g. [80]). One area of applications of these
conditions is extremal graph theory, and it is natural to ask if the semidefi-
niteness conditions can be useful in extremal hypergraph theory, especially
since extremal problems for hypergraphs tend to be much harder than for
graphs, and even basic questions are unsolved.
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7. Convergence and limits II: bounded degree graphs

7.1. Neighborhood sampling. Recall the sampling process for
bounded degree graphs: For a fixed nonnegative integer r, we select uni-
formly a random node v ∈ V (G), and return the ball BG(v, r) with center v
and radius r (i.e., the subgraph induced by those nodes that can be reached
from v on a path of length r or less). For a given rooted graph F , we denote
by ρG,r(F ) the probability that this sampling method returns F (with the
root as the center). So ρG,r(F ) defines a probability distribution on rooted
graphs F with radius at most k, which we denote by ρG,r.

We use this method if the degrees of nodes in G are bounded by a fixed
number d; then the number of possible neighborhoods is finite.

A sequence of graphs (Gn) with degrees uniformly bounded by d and
|V (Gn)| → ∞ is convergent (or more precisely locally convergent) if the
neighborhood densities ρGn,r(F ) converge for all r and all finite rooted
graphs F .

Similarly as for the subgraph sampling, there are equivalent density type
parameters whose convergence could be used instead of the neighborhood
densities, for example, we could stipulate the convergence of s(F, Gn) for
every connected graph F .

7.2. Local (weak) limit

7.2.1. Different forms. A weakly convergent bounded degree graph
sequence has several, not quite equivalent limit objects, which we have intro-
duced in Section 3.2. Part (a) of the following theorem is due to Benjamini
and Schramm [16]; part (b) was suggested by R. Kleinberg (unpublished);
part (c), which implies (b), is due to Elek [37].

Theorem 7.1. Let (Gn) be a locally convergent sequence of graphs with
degrees bounded by d. Then

(a) There is a unique unimodular distribution τ on countable rooted
graphs with degrees bounded by d such that ρGn,r → ρτ .

(b) There is a measure preserving graph G such that ρGn,r → ρG,r for
every k ≥ 1.

(c) There is a graphing G such that ρGn,r → ρG,r for every k ≥ 1.

Note that in (b) we don’t claim uniqueness. We could replace “graphing”
by “measure preserving graph”.

A big difference from the dense case is that there does not seem to be
any easy way to construct a sequence that converges to a given graphing in
this sense.

Conjecture 7.2 (Aldous–Lyons). Every graphing is the limit of a con-
vergent sequence of bounded-degree graphs. Equivalently, every unimodular
distribution on rooted countable graphs with bounded degree is the limit of
a bounded degree graph sequence.



VERY LARGE GRAPHS 111

7.2.2. Is the limit informative enough? The problem of the Regularity
Lemma is related to conjecture 7.2. Indeed, suppose that we have a construc-
tive way of finding, for an arbitrarily large graph G with bounded degree,
a graph H of size bounded by a function of r and ε that approximates the
distribution of r-neighborhoods in G with error ε. The same construction
should also work with a graphing instead of G. Letting r → ∞ and ε → 0,
this would give a sequence of finite bounded degree graphs converging to the
given graphing.

Part of the problem is to recognize “globally” when H is a good approx-
imation of G. Is there a good notion of “distance” (analogous to δ�) for
graphs with bounded degree?

The limit graphon of a dense sequence of graphs contains very much
information about the asymptotic properties of the sequence. This is not so
for the dense case, unfortunately.

Problem 7.3. Is there a notion of convergence for graphs with bounded
degree that is stronger than Benjamini–Schramm? (For example, one should
be able to read off from the limit that the graphs are expanders.)

Let us illustrate this by a couple of simple examples.

Example 7.4. Let (Gn) be a sequence of 3-regular bipartite expander
graphs with their girth tending to infinity. Let Hi consist of two disjoint
copies of Gi. The Benjamini–Schramm limit of both sequences is a distribu-
tion concentrated on a single 3-regular rooted tree. In the Elek description,
we get a graphing (Ω, T1, T2, T3), where T1, T2 and T3 generate a free group
which acts on Ω without fixed points.

This limit graphing is not uniquely determined. One feels that in the
case of the limit of the sequence (Gn), the action of the free group should
be ergodic, while in the case of the Hn, Ω should split into two invariant
subsets of measure 1/2. So it appears that in the limit object, the underlying
σ-algebra also carries combinatorial information. This is in stark contrast
with the dense case [26].

Example 7.5. Let Gn denote the n × n grid. The Benjamini–Schramm
limit object is a probability distribution concentrated on the infinite grid
with a specified root (the “origin”). A limit graphing can be described as
the uniform measure on the 2-dimensional torus, together with the rotations
by an irrational number α in one coordinate and the other.

However, in many respects the “right” limit object of the sequence of
grids is a solid square. In other words, instead of larger and larger pieces of
the infinite grid, we consider finer and finer subdivisions of the unit square.

This last example suggests that we can consider our graphs “on a differ-
ent scale”, and study them as metric spaces with the usual graph distance
as metric, normalized by the diameter. We can then consider the limit of
these metric spaces in the sense of Gromov [62]. For example, the limit of
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a sequence of larger and larger square grids in this sense is a (full) square.
This global structure is not revealed by the Benjamini–Schramm limit.

It is easy to construct examples where the interesting structure of the
graphs appears on an intermediate scale. It would be very interesting to
describe and possibly unify limit objects belonging to different scales. Per-
haps we can we understand different limit objects using ultraproducts, sim-
ilarly to the work of Elek and Szegedy in the dense case.

7.3. Convergence from the right. While the description of conver-
gent sequences in the bounded degree case lacks some of the key results
that hold in the dense case, most notably a good notion of distance, we can
formulate a result (Borgs, Chayes, Kahn and Lovász [25]) which shows that
convergence defined in terms of homomorphisms from the left and homo-
morphisms to the right are equivalent under some circumstances.

To state this, let us define for every simple graph G and weighted graph
H the quantity

u(G, H) =
log hom(G, H)

|V (G)| ,

To see the meaning of u(G, H), consider the case when H is simple. Then
hom(G, H) ≤ q|V (G)|, and so after taking the logarithm and dividing by
|V (G)|, we get a number less than q. So u(G, Kq) expresses the freedom
(entropy) we have in choosing the image of a node v ∈ V (G) in a homomor-
phism G → H.

For a weighted graph H, we define and

βmax = max
i,j

βij , D(H) =
∑

i,j∈V (H)

αiαj

α2
H

(
1 − βij

βmax

)
.

Theorem 7.6. Let (Gn) be a sequence of graphs with maximum degree
at most d.

(a) If (Gn) is convergent, then for every weighted graph H be a weighted
graph with D(H) ≤ 1

2d , the sequence u(Gn, H) is convergent.
(b) Assume that for every q ≥ 1 there is an εq > 0 such that for every

weighted graph H on q nodes with D(H) ≤ εq the sequence q(Gn, H)
is convergent. Then the sequence (Gn) is convergent.

In the special case H = Kq is the complete graph on q nodes (without
loops), we have D(Kq) = 1/q, and hom(G, Kq) is the number of q-colorings
of G. So it follows that if (Gn) is convergent and q ≥ 2d, then the number
of q-colorations grows as c|V (Gn)| for some c. It is easy to see that some
condition on q is needed: for example, if Gn is the n-cycle and q = 2, then
q(Gn, K2) oscillates between −∞ and ≈ 0 as a function of n.
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8. Testing

What can we learn about a huge graph G from sampling? There are two
related, but slightly different ways of asking this question, property testing
and parameter estimation.

8.1. Sample concentration. Before discussing these tasks, let us
address the following concern: if we take a bounded size sample from a
graph, we can see very different graphs. For a random graph, for example,
we can see anything. The natural way to use the sample G[S] is to compute
some graph parameter f(G[S]). But this parameter can vary wildly with
the choice of the sample, so what information do we get?

The following two theorems assert that every reasonably smooth param-
eter of a sample is highly concentrated. (Note: we don’t say anything here
about the value of the parameter on the whole graph.)

The first version applies to parameters where smoothness is defined
locally. The proof depends on the theory of martingales (Azuma’s
Inequality).

Theorem 8.1. Let f be a graph parameter and assume that |f(G) −
f(G′)| ≤ 1 for any two graphs on the same node set which differ only in edges
incident with a single node. Then for every graph G and 1 ≤ k ≤ |V (G)|
there is a value f0 such that if S ⊆ V (G) is a random k-subset, then for
every t > 0,

|f(G[S]) − f0| <
√

2tk

with probability at least 1 − e−t.

The second version applies to parameters which are smooth with respect
to our global distance function. The proof follows from a modification of
the proof of Theorem 6.6.

Theorem 8.2. Let f be a graph parameter and assume that |f(G) −
f(G′)| ≤ d�(G, G′) for any two graphs on the same node set. Then for
every graph G and 1 ≤ k ≤ |V (G)| there is a value f0 such that if S ⊆ V (G)
is a random k-subset, then

|f(G[S]) − f0| <
20√
k

with probability at least 1 − 2−k.

8.2. Parameter estimation. We want to determine some parameter
of a very large graph G. Of course, we’ll not be able to determine the
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exact value of this parameter; the best we can hope for is that if we take a
sufficiently large sample, we can find the approximate value of the parameter
with large probability.

To be precise, a graph parameter f is testable, if for every ε > 0 there is
a positive integer k such that if G is a graph with at least k nodes and we
select a set X of k independent uniform random nodes of G, then from the
subgraph G[X] induced by them we can compute an estimate g(G[X]) of f
such that

P(|f(G) − g(G[X])| > ε) < ε.

It is an easy observation that we can always use g(G[X]) = f(G[X])
(cf. [57]).

It is easy to see that testability is equivalent to saying that for every
convergent graph sequence (Gn), the sequence of numbers (f(Gn)) is con-
vergent. (So graph parameters of the form t(F, .) are testable by the defi-
nition of convergence.) This is, however, more-or-less just a reformulation
of the definition. Paper [29] contains a number of more useful conditions
characterizing testability of a graph parameter. We formulate one, which is
perhaps easiest to verify:

Theorem 8.3. A graph parameter f is testable if and only if the follow-
ing three conditions hold:

(i) For every ε > 0 there is an ε′ > 0 such that if G and G′ are
two simple graphs on the same node set and d�(G, G′) ≤ ε′ then
|f(G) − f(G′)| ≤ ε.

(ii) For every simple graph G, f(G(m)) has a limit as m → ∞. (Recall
that G(m) denotes the graph obtained from G by blowing up each
node into m twins.)

(iii) If G+ is obtained from G by adding a single isolated node, then
f(G+) − f(G) → 0 if |V (G)| → ∞.

Note that all three conditions are special cases of the statement that
(iv) if |V (Gn)|, |V (G′

n)| → ∞ and δ�(Gn, G′
n) → 0, then f(Gn) −

f(G′
n) → 0.

This condition is also necessary, so it is equivalent to its own three special
cases (i)–(iii) in the theorem.

Example 8.4. As a basic example, consider the density of maximum
cuts (recall Section 2.3.2). One of the first substantial results on property
testing [56, 12] is that this parameter is testable. It is relatively easy
to see (using high concentration results like Azuma’s inequality) that if S
is a sufficiently large random subset of nodes of G, then maxcut(G[S]) ≥
maxcut(G) − ε: a large cut in G, when restricted to S, gives a large cut in
G[S]. It is harder, and in fact quite surprising, that if most subgraphs G[S]
have a large cut, then so does G. This follows from Theorem 8.3 above,
since conditions (i)–(iii) are easily verified for f = maxcut.
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Example 8.5. The free energy (16) for a fixed weighted graph H is
a more complicated example of a testable parameter, which illustrates the
power of Theorem 8.3. It is difficult to verify directly either the definition, or
say condition (iv). The theorem splits this into three: condition (i) is easy
by the definition of d�(G, G′); (ii) is a matter of classical combinatorics,
counting mappings that split the twin classes in given proportions; finally,
(iii) is trivial.

8.3. Dense property testing. Instead of estimating a numerical
parameter, we may want to determine some property of G: Is G 3-colorable?
Is it connected? Does it have a triangle? The answer will of course have
some uncertainty. A precise definition was given by Rubinfeld and Sudan
[101] and Goldreich, Goldwasser and Ron [56]. In the slightly different
context of “additive approximation”, closely related problems were studied
by Arora, Karger and Karpinski [12] (see e.g. [45] for a survey). Many
extensions deal with situations where we are allowed to sample more than
a constant number of nodes of the large graph G; our concern will be the
original setup, where the sample size is bounded.

A graph property P is testable, if there exists another property P ′ (called
a “test property”) such that

(a) if a graph G has property P, then for all 1 ≤ k ≤ |V (G)| at least
2/3 of its k-node induced subgraphs have property P ′, and

(b) for every ε > 0 there is a kε ≥ 1 such that if G is a graph whose edit
distance from P is at least ε|V (G)|2, then for all kε ≤ k ≤ |V (G)|
at most a fraction of 1/3 of the k-node induced subgraphs of G
have property P ′.

This notion of testability is usually called oblivious testing, which refers
to the fact that no information about the size of G is assumed. The constants
1/3 and 2/3 are arbitrary, and it would not change the notion of testability
if we replaced them by any two real numbers 0 < a < b < 1.

It is surprising that this rather restrictive definition allows many testable
graph properties: for example, bipartiteness, triangle-freeness, every prop-
erty definable by a first order formula [5].

A surprisingly general result was proved by Alon and Shapira [8]. A
graph property P is called hereditary if G ∈ P implies that G′ ∈ P for every
induced subgraph G′ of G.

Theorem 8.6 (Alon–Shapira). Every hereditary graph property is
testable.

Fischer and Newman [46] proved that a property is testable if and only
if the normalized edit distance from the property is a testable parameter.
Alon et al. characterized testable graph properties in terms of Szemerédi
partitions [7].
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Going to the limit gives a tool of studying testability in a “cleaner” form
(Lovász and Szegedy [88]). It turns out that this leads to an interesting
interplay between the cut-norm and the L1-norm on W0.

A graph property P can be thought of as a subset of W0 (through the
correspondence G �→ WG), and we can consider its closure P in the metric
space (W0, δ�). For example, the closure of the set of triangle-free graphs is
the set of triangle-free graphons, which can be characterized by the property
t(K3, W ) = 0. More generally, let P be a hereditary graph property. Then
its closure is characterized by the (infinitely many) equations

(38) tind(F, W ) = 0 for all F /∈ P.

Closures of testable graph properties will be called testable graphon prop-
erties. These graphon properties can also be characterized in terms of a
sampling method: we consider the W -random graph G(k, W ) as the sample
of size k from W .

Theorem 8.7. A graphon property R is testable if and only if there is
a graph property R′ such that

(a) Pr(G(k, W ) ∈ R′) ≥ 2/3 for every function W ∈ R and every
k ≥ 1, and

(b) for every ε > 0 there is a kε ≥ 1 such that Pr(G(k, W ) ∈ R′) ≤ 1/3
for every k ≥ kε and every function W ∈ W0 with d1(W, R) ≥ ε.

We quote an analytic characterization of testable graphon properties
[88]. Recall that the distances d1 and d� are related trivially by d� ≤ d1.
Testability of a property concerns an inverse relation:

Theorem 8.8. A graphon property R is testable if and only if either one
of the following conditions hold:

(a) For every ε > 0 there is an ε′ > 0 such that if d�(W, R) ≤ ε′ for
some graphon W , then d1(W, R) ≤ ε.

(b) d1(W, R) is a continuous function of W in the cut norm.

Condition (b) can be viewed as the graphon analogue of the theorem
of Fischer and Newman mentioned above (and the finite theorem can be
derived from it). Condition (a) is a special case of (b).

Example 8.9. Let R = {U}, where U ∈ W is the identically 1/2 func-
tion. Clearly this property is invariant under weak isomorphism. Consider
the random graphs Gn = G(n, 1/2); then ‖WGn −U‖� → 0 with probability
1, but ‖WGn − U‖1 = 1/2 for every n. So this property is not testable by
Theorem 8.8.

Let us sketch how the graphon version of Theorem 8.6 follows from this.
A property R of functions W ∈ W0 is called flexible if for every function U
such that U(x, y) = W (x, y) for all x, y with W (x, y) ∈ {0, 1}, we also have
U ∈ R. First, one proves that
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Lemma 8.10. The closure of a hereditary property is flexible.

Indeed, each of the equations (38) is preserved if we change the value of
W at points where this value is positive.

Next, we assume that R is a closed flexible property which is not testable.
By Theorem 8.8, there is a sequence of functions Wn such that d�(Wn,R) →
0 but d1(Wn,R) ≥ ε for some fixed ε > 0. By Theorem 4.2, we may assume
that Wn converges to some W ∈ R in the ‖.‖� norm. Let S0 = W−1(0) ,
S1 = W−1(1) and let Zn ∈ W0 denote the function which is 1 on S1, 0 on
S0 and is identical with Wn anywhere else. By flexibility, we have Zn ∈ R,
and by (34),

‖Wn−Zn‖1 =
∫

S0

Wn+
∫

S1

(1−Wn) →
∫

S0

W+
∫

S1

(1−W ) = 0 (n → ∞),

and so d1(Wn,R) → 0, a contradiction. So it follows that the closure of
every hereditary property is testable.

From this, one can derive that hereditary properties are testable. Some
further arguments are needed, since a graph property can have a testable
closure without itself being testable. (An example is the property that
the graph is complete if the number of nodes is even but edgeless if the
number of nodes is odd.) One can add further conditions that lead to a
characterization, but we don’t go into these technical issues here.

8.4. Sparse property testing. We say that a graph property P is
testable for graphs in Gd if for every ε > 0 there are integers r = r(d, ε) ≥ 1
and k = k(d, ε) such that sampling k neighborhoods of radius r from a graph
G with degree bounded by d, we can compute “YES” or “NO” so that:

(a) if we answer “NO”, then G /∈ P;
(b) if we answer “YES”, then we can change at most ε|V (G)| edges in

G to get a graph in P.

An important analogue of the result of Alon and Shapira discussed above
is the following theorem of Benjamini, Schramm and Shapira [17]. We
must recall a fundamental notion from graph theory: a minor of a graph
G is any other graph obtained from G by deleting edges and/or nodes,
and contracting edges. A graph property is minor-closed, if it is preserved
by these operations. Planarity of a graph is an example of a minor-closed
property.

Theorem 8.11. Every minor-closed property is testable for graphs with
bounded degrees.

A related result was proved by Elek [38]:

Theorem 8.12. If a graph property is preserved by edge/node deletion
and disjoint union, then it is testable for graphs with bounded degrees and
subexponential growth.
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9. Extremal graph theory

9.1. Some classical results. In this section we describe applications
of the theory of graph homomorphisms and graph limits to extremal graph
theory. As an introduction, let us recall some classical results.

Define the Turán graph T (n, r) (1 ≤ r ≤ n) as follows: we partition [n]
into r classes as equitably as possible, and connect two nodes if and only if
they belong to different classes.

Theorem 9.1 (Turán’s Theorem). Among all graphs on n nodes con-
taining no Kk, the graph T (n, k − 1) has the maximum number of edges.

Since we are interested in large n and fixed k, the complication that the
classes cannot be exactly equal in size (which causes the formula for the
number of edges of T (n, k − 1) to be a bit ugly) should not worry us. We
will be interested in the following corollary:

Corollary 9.2. If a graph on n nodes has more than
(
k−1
2

)(
n

k−1

)2

edges, then it contains a Kk.

The case k = 3 was proved by Mantel before Turán. We will use this
case to illustrate the ideas, but the general case could be treated similarly.

One can ask for not just the existence of complete k-graphs, but for
their number. Generalizing Turán’s Theorem, the following lower bound
was proved by Goodman (for k = 3) and by Moon and Moser.

Theorem 9.3. If a graph on n nodes has a
(
n
2

)
edges (0 ≤ a ≤ 1), then

it contains at least a(2a − 1) . . . ((k − 2)a − k + 1)
(
n
k

)
complete k-graphs.

This bound is tight for Turán graphs, but their edge density attains
only certain values of a. The best lower bound in terms of a and n is quite
complicated. To illustrate these complications, we represent each graph G
by the points (t(K2, G), t(K3, G) in the unit square (see Figure 2). The
lower bounding curve consists of infinitely many concave cubic arcs, and its
validity was only recently proved by Razborov [98]. This was extended to

Figure 2. Possible edge and triangle densities of a graph
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the best lower bound on the number of K4-s by Nikiforov [95], but even the
edge–Kq diagram is only conjectural [83] for q ≥ 5.

One can also ask for an upper bound on the number of complete k-graphs
in a graph with given number of edges. A special case of the Kruskal–Katona
Theorem answers this (the whole theorem gives the precise value, not just
asymptotics, and concerns uniform hypergraphs, not just graphs).

Theorem 9.4. If a graph on n nodes has a
(
n
2

)
edges (0 ≤ a ≤ 1), then

it contains at most ak/2
(
n
k

)
complete k-graphs.

Asymptotic equality is attained when the graph consists of a clique and
isolated nodes. Not every edge density a can be realized by such graphs,
but the attainable edge densities are dense in [0, 1], and so Theorem 9.4 is
asymptotically tight for all values of a.

Instead of counting complete graphs, we one can consider the number of
copies of some other graph F in G. We have already come across counting
4-cycles twice: in Section 1.4.3 and in Section 1.5.4. Giving just the simpler
asymptotic version:

Theorem 9.5 (Erdős). If a graph on n nodes has a
(
n
2

)
edges (0 < a ≤ 1),

then it contains at least (1
8 + o(1))a4n4 4-cycles.

Graphs with asymptotic equality here are quasirandom graphs.
The number of paths of length k is a more difficult question, but it turns

out to be equivalent to a theorem of Blakley and Roy [18] in matrix theory.
Again asymptotically,

Theorem 9.6. If a graph on n nodes has a
(
n
2

)
edges (0 < a ≤ 1), then

it contains at least (1
2 + o(1))ak−1nk paths of length k.

Regular graphs give asymptotic equality here.

9.2. Algebraic proofs of extremal graph results. The classi-
cal extremal problems in the previous section can be expressed as alge-
braic inequalities between the subgraph densities t(F, W ) that hold for all
graphons W . Often “going to the infinity” provides cleaner formulations
(no error terms). Here are a few examples:

Example 9.7.
(a) Turán’s theorem. We state just the case of triangles (due to

Mantel):

(39) t(K3, W ) = 0 ⇒ t(K2, W ) ≤ 1/2,

which follows from the algebraic inequality due to Goodman [58]:

(40) t(K3, W ) ≥ t(K2, W )(2t(K2, W ) − 1).

(b) The Kruskal–Katona theorem for graphs:

(41) t(K3, W ) ≤ t(K2, W )3/2.
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(c) Erdős’s bound on the number of quadrilaterals:

(42) t(C4, W ) ≥ t(K2, W )4.

(d) The Blakley–Roy inequality:

(43) t(Pk, W ) ≥ t(K2, W )k−1.

(e) The Sidorenko Conjecture (unsolved) generalizes the last two
results in the direction that for every bipartite graph F ,

(44) t(F, W ) ≥ t(K2, W )|E(F )|.

This conjecture is proved for trees, many small graphs, complete bipartite
graphs (Sidorenko [107]) and also for cubes (Hatami [64]).

Using the formalism introduced above, the results in Example 9.7 can
be expressed as follows:

(a) K3 ≥ 2K2
2 − K2;

(b) K2
3 ≥ K3

2;
(c) C4 ≥ K2

4;
(c) P4 ≥ K2

3;
(d) F ≥ K2

|E(F )| (if F is bipartite).
The first three inequalities can be proved easily using the reflection pos-

itivity of the graph parameters t(., W ). We will illustrate the method by
deriving (a) through formal algebraic manipulations.

Proof of (a) (Goodman’s extension of the Mantel–Turán Theorem). Let
F denote the graph K2K1 (an edge and an isolated node), and let F1, F2
and F3 be obtained from F by labeling all three nodes, one endpoint of
the edge, and the isolated node, respectively. Consider the quantum graph
F̃1

2+2(F2−F3)2, which is obviously nonnegative. Unlabeling the nodes and
deleting isolated nodes, we get K3 − 2K2

2 + K2, which is thus nonnegative
(see Figure 3).

Figure 3. A computation proving the Mantel-Turán Theorem
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Of the above inequalities, also (b) and (c) can be proved by similar argu-
ments. The Blakley–Roy inequality (c) is more difficult, but some extension
of this kind of argument does work [74]. Sidorenko’s conjecture (d) would
of course be very nice to prove this way (or by any other means).

Using related methods, Razborov [98] solved the long-standing problem
of characterizing the possible (edge-density, triangle-density) pairs, which in
this setting means a description of the set (t(K2, W ), t(K3, W )) : W ∈ W0)
by algebraic inequalities.

The inequality in (c) also follows from reflection positivity if k is even.
It is not known whether (c) for odd k (or perhaps every valid algebraic
inequality between subgraph densities) follows from a finite number of
semidefiniteness inequalities. However, every valid linear inequality between
homomorphism densities follows from semidefiniteness constraints (equiva-
lently, from “sums of squares” computations in graph algebras), as we shall
see in the next section.

9.3. Positivstellensatz for graphs and spectral norms. The
machinery introduced in the previous sections allows us to suggest a very
general approach to extremal graph theory.

We can define the following partial order on Q0: we say that a quantum
graph x ≥ 0, if t(x, W ) ≥ 0 for all W ∈ W0.

Let us call a quantum graph y a square-sum if there are k-labeled quan-
tum graphs y1, . . . , yk for some k such that y can be obtained from

∑
i y

2
i by

forgetting the labels. It is easy to see that every square-sum satisfies y ≥ 0.
As an example, recall the definition (18) of the “inclusion-exclusion”

quantum graph F̂ . Let us label all nodes of F̂ , square it, and then forget
the labels: we obtain F̂ itself. This implies that F̂ ≥ 0 for all F . In the
special case when W = WG for some graph G, this also follows from our
previous remark that t(F̂ , G) is a probability, and hence nonnegative.

Is there a quantum graph x ≥ 0 which is not a square sum? I suspect that
such quantum graphs exist, but it might be difficult to prove this property.
However, the following weaker result can be proved [91].

Theorem 9.8. Let x be a quantum graph. Then x ≥ 0 if and only if for
every ε > 0 there is a square-sum y such that N(y) ≤ N(x) and ‖x−y‖2 < ε.

The proof depends on the duality theory of semidefinite programs. Note
that we do not claim that the k-labeled quantum graphs yi in the square-
sum representation of y also have bounded N(yi); the proof gives arbitrarily
large graphs if ε is small.

In analogy with the Positivstellensatz for real polynomials, we may try
to represent quantum graphs x ≥ 0 as quotients of square-sums: if y and z
are square-sums and y = zx, then x ≥ 0.

We mention a couple of related questions. For every even positive integer
k, the functional t(Ck, W )1/k defines a norm on W (the Neumann-Schatten
norm). This suggests the question: For which other simple graphs F is
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t(F, W )1/|E(F )| a norm (or seminorm) on W? Hatami [64] proved that if a
simple graph F has the property that ‖W‖ = t(F, |W |)1/|E(F )| is a norm,
then it satisfies Sidorenko’s conjecture 9.7(d). He also proved that all cubes
have this property.

In view of the usefulness of extending graphs to graphons, it seems nat-
ural to define graph algebras of infinite linear combinations of graphs with
appropriate convergence properties. It is not worked out, however, what the
structure of the resulting algebra is, and how it is related to graphons.

9.4. The maximum distance from a hereditary graph property.
A surprisingly general result is the theorem of Alon and Stav [9], proving
that for every hereditary property, a random graph with appropriate den-
sity is asymptotically the farthest from the property in edit distance. The
analytic results developed in this paper allow us to state and prove a simple
analytic analogue of this fact, from which the original result follows along
with generalizations.

Theorem 9.9 (Alon and Stav). For every hereditary graph property P
there is a number p, 0 ≤ p ≤ 1, such that for every graph G with |V (G)| = n,

d1(G, P) ≤ E(d1(G(n, p),P)) + o(1) (n → ∞).

The following theorem [88] states a graphon version of this fact.

Theorem 9.10. If R is the closure of a hereditary graph property, then
the maximum of d1(.,R) is attained by a constant function.

Our point in giving this generalization is to illustrate the power of
extending graph problems to a continuum. The key observation is the fol-
lowing, which follows from Lemma 8.10.

Lemma 9.11. If R is the closure of a hereditary graph property, then the
set W0 \ R is convex.

Hence it follows that the d1 distance from P is a concave function on
W0 \ R. Since W0 \ R is obviously invariant under the group of invertible
measure preserving transformations of [0, 1], it is not hard to argue that
there is a point (graphon) in W0 \R maximizing the distance from P which
is invariant under these measure preserving transformations, and so it must
be a constant function.

9.5. Which graphs are extremal? (Finitely forcible graphons).
We call a graphon W ∈ W0 finitely forcible if there exist a finite list of graphs
F1, . . . , Fm and real numbers a1, . . . , am such that the equations t(F1, U) =
a1, . . . , t(Fm, U) = am are satisfied by precisely those functions U ∈ W0
which arise from W by measure preserving transformations.
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Let us consider a very general type of graph theoretic extremal problem:

maximize t(f, W )

subject to t(g1, W ) = a1

t(g2, W ) = a1(45)
...

t(gk, W ) = a1

where f, g1, . . . , gk are given quantum graphs. Most of the graphon versions
of extremal problems discussed so far fit in this scheme.

It is easy to see that every finitely forcible graphon is the solution of an
extremal problem of the type (45). We conjecture the following converse:

Conjecture 9.12. Every extremal problem has a finitely forcible opti-
mum. In other words, if a finite set of constraints of the form t(Fi, W ) = ai

is satisfied by some graphon, then it is satisfied by a finitely forcible
graphon.

This may seem far fetched, but the following heuristic supports it. Sup-
pose that t(F1, W ) = a1, . . . , t(Fk, W ) = ak has a solution in W , but this is
not forced by these constraints. Then there is a graph F such that t(F, W )
is not determined, i.e., a = min t(F, W ) < max t(F, W ) = b (the max and
min are taken over all solutions W of the system). Now add one of the
conditions t(F, W ) = a or t(F, W ) = b to the system and repeat. It seems
that in very few (2–3) steps we always get a unique solution, i.e., a finitely
forcible graphon.

Almost all classical extremal problems have a solution that is a step-
function. It was shown by Lovász and Sós [84] that every stepfunction is
finitely forcible, and it was conjectured that these are the only ones. Recently
B. Szegedy and Lovász [90] found other finitely forcible graphons, and so
the problem of characterizing finitely forcible graphons is wide open.

We mention two examples of finitely forcible graphons that are not step-
functions (the proof is not quite easy).

Example 9.13. Let p(x, y) is a symmetric real polynomial that is mono-
tone increasing on [0, 1]2. Define

W (x, y) =

{
1, if p(x, y) > 0,

0, otherwise,

Then W is finitely forcible. It is conjectured that monotonicity is not
needed here.

In contrast, one can show that if W (x, y) is a polynomial in x and y (not
a function of the sign), then it is not finitely forcible.
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Example 9.14. Let

W (x, y) =

⎧⎪⎨⎪⎩
1, if the first bit where the binary expansions of x and y

differ is at an odd position,

0, otherwise,

The W is finitely forcible.
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[87] L. Lovász and B. Szegedy: Szemerédi’s Lemma for the analyst, Geom. Func. Anal.
17 (2007), 252–270.

[88] L. Lovász, B. Szegedy: Testing properties of graphs and functions, to appear in Isr.
J. Math, ftp://ftp.research.microsoft.com/pub/tr/TR-2005-110.pdf

[89] L. Lovász and B. Szegedy: The graph theoretic moment problem (manuscript)
http://www.cs.elte.hu/∼lovasz/moment.pdf

[90] L. Lovász and B. Szegedy: Finitely forcible graphons (manuscript) http://arxiv.org/
abs/0901.0929

[91] L. Lovász and B. Szegedy: Random Graphons and a Weak Positivstellensatz for
Graphs (manuscript) http://arxiv.org/abs/0902.1327

[92] R. Lyons: Asymptotic enumeration of spanning trees Combin. Prob. Comput. 14
(2005) 491–522.
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