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The last two decades is a period when exchange of ideas between
algebraic geometry and theoretical physics has created several fast advanc-
ing branches in algebraic geometry. The research on Gromov-Witten (GW-)
invariants is a notable example of such branches.

GW-invariants is a mathematical foundation to the type II Super-String
theory. In terms of algebraic geometry, it is a “virtual” counting of holomor-
phic maps from algebraic curves to a projective variety. Via a multiple cover
relation, the GW-invariants will provide a “virtual” counting of holomorphic
embedded curves.

Properties of GW-invariants differ according to the kinds of the
varieties. One indicator is the Kodaira dimensions. The Theory of GW-
invariants of Fano varieties is the complete opposite of those with positive
Kodaira dimensions, the former is much richer than the later. However, the
GW-invariants of Calabi-Yau varieties are the most mysterious and chal-
lenging. In this note, we will comment on the recent progress in research
on the GW-invariants of Calabi-Yau threefolds. Due to the interest of the
author, we will only report on progress via algebraic geometry approach.

The investigation of GW-invariants went through several periods of
development. Inspired by the σ-model in Super-String theory [37] and
using pseudo-holomorphic maps introduced by Gromov, Ruan-Tian [32]
constructed the GW-invariants of semi-positive, including Calabi-Yau,
symplectic manifolds. Later, Li-Tian [23] and Behrend-Fantechi [5, 4] con-
structed the GW-invariants of all smooth projective varieties via algebraic
geometry. Their construction is based on the construction of virtual
cycles of the moduli of Kontsevich’s stable morphisms, and the GW-
invariants are the degree of these cycles paired with tautological classes of
the moduli space. The symplectic construction of GW-invariants was com-
pleted by the work of Fukaya-Ono [9] and Li-Tian [24], Ruan [31] and Siebet
[33]; also a much detailed technical account by Zinger [42]. The equivalence
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of the algebraic and the symplectic construction was proved by Li-Tian [25]
and by Siebert [34]. This concludes the foundation of the GW-invariants.

By the time the rigorous construction of the GW-inariants is completed,
several groups had already made progress in uncovering the structure of
the GW-invariants of Calabi-Yau threefolds. The first major advancement
was from the mirror symmetry by Super-String theorists on the genus zero
GW-invariants of Calabi-Yau threefolds: many of such invariants can be
effectively be computed by studying the variation of Hodge structures of
the mirror Calabi-Yau threefolds at large complex structure limit. The
first striking example is that of the quintic Calabi-Yau threefolds in P4 by
Candelas-Ossa-Green-Parkes [7]. Shortly after, more and more were com-
puted. This was an exciting period. Unlike the term-by-term approach that
was typical for problems of that complexity, one can explicitly and effec-
tively find closed formulas of the generating functions of all degree genus
zero GW-invariants for a large class of Calabi-Yau threefolds.

That brought the task of mathematically proving these formulas to the
forefront. Though the mirror symmetry is effective in providing convincing
closed forms for the genus zero GW-invariants, mathematical proofs are nec-
essary to confirm and to further this circle of ideas. Two effective methods
sprung out this urge: one is the hyperplane property of the GW-invariants
and the other is the localization by group actions.

In his paper, Kontsevich [16] proposed to use a hyperplane theorem of
genus zero GW-invariants to relate that of a smooth Calabi-Yau quintic with
that of P4, and then evaluate them using localization via the C∗-action on
P4. This combination transforms the genus zero GW-invariants into a sum
formula over a set of combinatoric data. Much later, the genus zero formula
of Candelas for quintics was proved by the independent work of Givental [10]
and Lian-Liu-Yau [26].

For higher genus GW-invariants, based on the Kodaira-Spencer theory
of gravity developed by Bershadsky-Cecotti-Ooguri-Vafa [6], genus one and
more GW-invariants of quintics were derived. On the other hand, mathe-
matically little progress is made on high genus GW-invariants of quintics, let
along other closed Calabi-Yau threefolds. The main obstacle is the lack of an
analogue hyperplane property for high genus GW-invariants of Calabi-Yau
complete intersection in projective spaces.

Recently, Li-Zinger [22] proved the hyperplane formula for genus one
reduced GW-invariants of complete intersection Calabi-Yau threefolds and
proved a splitting formula relating the genus one GW-invariants in terms of
the genus zero GW-invariants and the reduced genus one GW-invariants.
This is the generalization of the hyperplane property of the genus zero
GW-invariants of complete intersections.

Based on this hyperplane property of the reduced genus one invari-
ants, Zinger [40] proved the conjectural generating function of genus one
GW-invariants of quintic Calabi-Yau threefolds.
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Another direction of progress on GW-invariants is for toric Calabi-Yau
threefold. In this direction, following the lead of the topological vertex
theory of Aganagic-Klemm-Marino-Vafa [1], Li-Liu-Liu-Zhou developed a
mathematical treatment of such theory [20] using moduli of relative stable
morphisms to formal toric Calabi-Yau threefolds. The last remaining step
of their treatment was recently completed by the work of Maulik-Oblomkov-
Okounkv-Pandharipande [29].

Another topic we will touch on is the recent progress toward Gopakumar-
Vafa conjectrue using Donaldson-Thomas invariants. This opens a way to
use moduli of sheaves to study GW-invariants of Calabi-Yau threefolds.

1. GW-invariants of Calabi-Yau threefolds

Let X be a smooth projective variety. For a homology class d ∈ H2(X, Z)
and integers g, n, one forms the moduli of stable morphisms from genus g,
n-pointed nodal curves to X of fundamental class d:

Mg,n(X, d) = {f :C → X, p1, · · · , pn ∈ C : f∗([C]) = d, f stable}/∼ .

Here a morphism f is stable if there are at most finitely many automorphisms
of the domain that fixes the marked points and leaves f invariants.

The moduli space Mg,n(X, d) admits an obvious obstruction theory, and
is perfect. Thus according to the construction of virtual cycles developed for
this purpose by Li-Tian [23] and Behrend-Fantechi [5, 4], it has a virtual
fundamental class

[Mg,n(X, d)]vir ∈ H2ν(Mg,n(X, d), Q),

of degree twice of the virtual dimension of Mg,n(X, d):

ν = (g − 1)(3 − dim X) + d · c1(X) + n.

The full GW-invariants of X is defined by pairing the virtual cycle with
the tautological classes of Mg,n(X, d). First, the moduli space Mg,n(X, d)
admits two tautological morphisms: one evaluation and the other forgetful:

ev : Mg,n(X, d) −→ Xn and π : Mg,n(X, d) −→ Mg,n.

Pulling back cohomology classes of X via the evaluation map ev provides
the first set of tautological classes on Mg,n(X, d); pulling back the classes
on Mg,n via π provides the second set of tautological classes. The numerical
GW-invariants (with insertions) are∫

[Mg,n(X,d)]vir
ev∗(τ1 · · · τn) · π∗(c1(ψ1)k1 · · ·π∗c1(ψn)kn).

For X a Calabi-Yau threefold, one notes that the virtual dimension of
Mg(X, d) (in case n = 0) are zero regardless of the choices of g and d. Thus
the cycles [Mg,n(X, d)]vir are dimension zero classes; taking their degrees,
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we obtain the degree d genus g GW-invariants of X:

Nd
g = deg[Mg(X, d)]vir ∈ Q.

Since Mg(X, d) is a DM-stack, the degree is a rational number.
The GW-invariants Nd

g form a generating function (as a formal power
series)

FX(λ, q) =
∑

FX,g(q)λ2g−2 =
∑

Nd
g λ2g−2qd

The structure of this series is the focus of this note.

2. The conjectures from Super-String theories

To motivate the subject, let us first recall a few outstanding conjectures
on GW-invariants of Calabi-Yau threefolds from mathematical physics. To
keep focused, we will only bring up the mirror symmetry and its generali-
zation of Calabi-Yau threefolds, the Goparkumar-Vafa conjecture on the
BPS states of Calabi-Yau threefolds, and the topological vertex theory of
the toric Calabi-Yau threefolds.

Mirror symmetry is about the equivalence of two Super-String theories
associated to mirror pairs of Calabi-Yau varieties. Its early application to
GW-invariants provided the prediction of the genus zero invariants for quin-
tic CY-threefolds in P4 by Candelas et al. [7]. Later, it was generalized
to the high genus case by Vafa et al. [6]. In short, given a pair of mirror
CY-threefolds X and X ′, one can form a smooth section FX of the tauto-
logical line bundle L2−2g on the moduli of deformations of the complex
structure of X; for the mirror X ′ one takes the FX′ defined using the
GW-invariants of X ′, viewed as a function over the space of complexified
Kahler classes. The BCOV theory (a generalization of mirror symmetry)
states that the section FX satisfies an equation that makes it uniquely
determined up to a finite dimensional freedom; the limiting behavior of FX

recovers FX′ . Based on this reasoning, low genus GW-invariants of quintic
CY-threefolds can be explicitly determined.

Equally important is the notion of “virtual embedded curves” in a Calabi-
Yau threefold. Unlike the GW-invariants that take values in Q, the “virtual”
number of curves are integer valued. Drawing insights from Super-String
theories, Goparkumar-Vafa [11] conjectured that the “virtual” number nd

g

of curves of genus g and class d in a Calabi-Yau threefold X are related to
the GW-invariants Nd

g via

FX =
∑
d,g

Nd
g λ2g−2qd =

∑
d,g,k

nd
g

k

(
2 sin

kλ

2

)2g−2

qkd.

Notice that collecting the coefficients of λ−2, one derives the multiple cover
formula of Morrison-Plesser in the case of g = 0 [27].

For toric Calabi-Yau threefolds, the theory of topological vertex is an
effective theory on their all genus GW-invariants. In [1], Aganagic-Klemm-
Marino-Vafa developed a theory computing the GW-invariants of toric
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Calabi-Yau threefolds in all genera and all degrees. Their theory is based
on the open Gromov-Witten invariants and on a physically derived
duality between Chern-Simons theory and Gromov-Witten theory that the
topological vertex can be expressed in terms of the explicitly computable
Chern-Simons link invariants. Then by a gluing algorithm, they derived an
algorithm computing all genera Gromov-Witten invariants of toric Calabi-
Yau threefolds.

In recent years, we have seen progress on GW-invariants on the above
mentioned directions. The mathematical theory of the topological vertex
theory on GW-invariants of toric Calabi-Yau threefolds was developed; the
hyperplane property of the genus one GW-invariants of complete intersec-
tion Calabi-Yau threefolds was established; the conjectural mathematical
definition of the “virtual” number of embedded curves in Calabi-Yau three-
folds was formulated. We are at the beginning of a fast pace progress on the
GW-invariants of Calabi-Yau threefolds.

In the remainder of this note, we will go through these developments.

3. All genera GW-invariants of toric Calabi-Yau threefolds

The all genera GW-invariants of toric Calabi-Yau threefolds have been
completely solved by the combined work of Aganagic-Klemm-Marino-Vafa
[1], Li-Liu-Liu-Zhou [20] and Maulik-Oblomkov-Okounkv-Pandharipande
[29].

3.1. We begin with a brief outline of the topological vertex theory of
AKMV. The starting point is the existence of certain open GW invariants
that count holomorphic maps from bordered Riemann surfaces to C3 with
boundaries mapped to three specific Lagrangian submanifolds L1, L2 and
L3. Such invariants depend on the date that include (1) the topological
type of the domains classified by the genus and the number of boundary
circles; (2) the topological type of the maps characterized by a triple of
partitions �μ = (μ1, μ2, μ3) that keeps track of the “winding numbers” of
the boundary circles in Li

∼= S1 × C; (3) by the “framing” ni ∈ Z of the
Lagrangian submanifolds Li.

The topological vertex
C�μ(λ;n)

is a generating function in indeterminant λ and indexed by �μ and n after
summing the invariants over the genus of the domains.

By a duality between Chern-Simons theory and GW-invariant theory in
Super-String theory, Vafa et al. demonstrated that the topological vertex
is given in terms of W�μ(q), a combinatorial expression of the Chern-Simons
link invariants, in the simple form

C�μ(λ;n) = q
1
2 (

∑3
i=1 κνini)W�μ(q), q = e

√
−1λ.

For general toric Calabi-Yau threefold, its GW invariants can be expressed in
terms of C�μ(λ;n) by explicit gluing algorithms. Then by deriving explicitly
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the Chern-Simons link invariants, this theory effectively computes all
GW-invariants of toric Calabi-Yau threefolds.

This is a beautiful and powerful theory; it is also a mystery to mathe-
maticians why such a theory should exist. To carry out the program mathe-
matically, along the strategy given by the work of topological vertex, one
needs to develop a theory of open string GW-invariant theory, find degen-
eration of a general toric Calabi-Yau to a union of elementary ones, prove a
degeneration formula and then relate that of the elementary one to Chern-
Simons link invariants.

3.2. The approached developed in [20] is to define the topological vertex
C�μ(λ;n) via algebraic geometry using moduli of relative stable morphisms
developed [18, 19, 13]. In the work of Li-Liu-Liu-Zhou [20], following the
earlier work on open string theory in [21], they envisioned that the topo-
logical vertex should be the degree of the virtual cycle of the moduli of
relative stable morphisms to a toric Calabi-Yau containing three P1 inter-
secting at a single point, relative to the divisor the three other points on the
three P1. Note that the topological types of such maps are given by their
Euler characteristics and the winding numbers �μ at the relative divisor (the
degree is determined by the winding numbers in this case.) The choice of
the framing, interpreted in algebraic geometry, is the splitting type of the
normal bundle to the three lines in the Calabi-Yau threefold.

More precisely, for any choice of n = (n1, n2, n3), we form a pair (Ŷ , D̂)
of a formal relative toric Calabi-Yau threefold with an invariant divisor D̂
such that (a) as set Ŷset is the union of lines C1, C2 and C3 intersecting at a
single point; it can be the three axes of C3 compactified by adding three ∞
to the three lines; the divisor D̂ ∩ Ŷset is the three ∞’s added; (b) the pair
(Ŷ , D̂) is Calabi-Yau in that ∧3ΩŶ (log D̂) ∼= OŶ ; (c) The normal bundle to
Ci in Ŷ is OCi(ni) ⊕ OCi(−ni − 1).

Note that (Ŷ , D̂) being a relative Calabi-Yau forces the degree of the
tangent bundle T Ŷ along each Ci to be 1.

For a given choice of n, we pick (Ŷ , D̂) be as before. Then for any choice
of χ and �μ, we form the moduli space M•

χ(Ŷ , �μ) of relative stable morphisms
to Ŷ , relative to D̂, of not necessarily connected domains X of χ(OX) = χ/2,
so that its contact order with D̂i is given by μi in �μ = (μ1, μ2, μ3). Since
Ŷ is smooth, the moduli space is a formal Deligne-Mumford stack with a
perfect obstruction theory [18].

To define the topological vertex of type (�ν,n), we further pick three
(C∗)3-invariant divisors L̂i ⊂ D̂i and form their union L̂ = ∪3

i=1L̂i. We let

M•
χ(Ŷ , �μ, L̂) ⊂ M•

χ(Ŷ , �μ)

be the closed sub-stack that is the moduli of relative stable morphisms
with additional constraint that the intersection of the image of the relative
stable maps with D̂ lie in L̂. The two stacks share identical closed points;



RECENT PROGRESS IN GW-INVARIANTS OF CALABI-YAU THREEFOLDS 83

however their obstruction theories are different. The virtual dimension of
M•

χ(Ŷ , �μ, L̂) is zero.
We let [M•

χ(Ŷ , �μ, L̂)]vir be the virtual cycle of the perfect obstruction
theory of M•

χ(Ŷ , �μ, L̂). It is a dimension zero class. The mathematical def-
inition of the topological vertex C�μ(λ;n) is the degree of [M•

χ(Ŷ , �μ, L̂)]vir.

3.3. One difficult remains: since M•
χ(Ŷ , �μ, L̂) is a formal DM-stack, the

class [M•
χ(Ŷ , �μ, L̂)]vir is a formal class; its degree is not defined. To overcome

this difficulty, we shall use the (C∗)3-localization to define its degree.
We pick a subgroup

T ∼= (C∗)2 ⊂ (C∗)3

that leaves the Calabi-Yau form ω ⊂ Γ(∧3ΩŶ (log D̂)) invariant. Since
the pair (Ŷ , D̂) is T -invariants, both the moduli space M•

χ(Ŷ , �μ, L̂) and
its obstruction theory are T -invariants, thus the cycle [M•

χ(Ŷ , �μ, L̂)] is a
T -equivariant cycle. We have
Definition-Theorem: We define

C�μ(λ;n) =
∫

[M•
χ(Ŷ ,�μ,L̂)]vir

1 ∈ Q(u1/u2),

where ui are the characters of the two copies of C∗ in T . The integral
C�μ(λ;n), which appriori it is a degree zero rational function in u1 and u2,
is a constant. It only depend on χ, �μ and n. We call this rational number
the relative GW-invariants of the topological vertex (Ŷ , D̂).

This constancy result is miraculous. It fails if we view [M•
χ(Ŷ , �μ, L̂)]vir

as a (C∗)3-equivariant class. This constancy result strengthen the belief
that for Calabi-Yau threefold, the open GW-invariants with boundaries on
(special) Lagrangian submanifolds should be well-defined.

3.4. The constancy result holds true for general smooth relative toric
Calabi-Yau threefold. Let (W, V ) be such a pair. To define its relative GW-
invariants, one can mimic the case of (Ŷ , D̂) by first forming the moduli
of relative stable morphisms to (W, V ) and then take the degree of the
T -equivariant virtual cycle of the moduli space. Here T ⊂ (C∗)3 is the
two-dimensional torus fixing the Calabi-Yau form of (W, V ). The resulting
integral of the T -equivariant virtual cycle is a rational number, independent
of u1/u2.

To relate the relative GW-invariants of (W, V ) to the topological vertex
C̃�μ(λ;n), we need to degenerate the pair (W, V ) to a union of the elementary
(Ŷ , D̂)’s constructed before. The degeneration exists if we replace W by the
formal completion Ŵ of W along the closure of the union of one-dimensional
orbits of W , and replace V by the divisor V̂ = V ×W Ŵ .
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The pairs (Ŵ , V̂ ) are examples of relative formal-toric-Calabi-Yau
(FTCY) threefolds defined in [20]. In general, smooth relative FTCY three-
fold are constructed by a plenary trivalent graph with flags attached to the
bivalent and univalent vertices. For a Toric Calabi-Yau, the graph is the
image of one dimensional orbits under the moment map of T .

3.5. Introducing FTCY threefolds has two benefits:
Equivalence Theorem: Let (W, V ) be a smooth relative toric Calabi-Yau
threefold and let (Ŵ , V̂ ) be its counterpart of relative FTCY threefold. The
the relative GW-invariants of (W, V ) coincides with the corresponding one
of (Ŵ , V̂ ) defined using the localization formula.

The proof of this Theorem is a tautology. First, since (W, V ) is a toric
relative Calabi-Yau threefold, its GW-invariants

deg[Mχ,d(W, �μ)]vir

(here d is the degree of the maps consistent with the branching assignment
�μ) can be evaluated by the localization formula. On the other hand, a simple
observation shows that the fixed loci

Mχ,d(W, �μ)T = Mχ,d(Ŵ , �μ)T

and the obstruction near the fixed loci are identical. Thus the localization
formula of the T -equivariant degrees of

degT [Mχ,d(W, �μ)]T,vir = degT [Mχ,d(Ŵ , �μ)]T,vir

are identical.
Geometric Operation on FTCY: We can perform the following list of
geometric operatios on FTCY threefolds: degeneration, smoothing, gluing
and decomposition.

Let (Ŵ , V̂ ) be a FTCY threefold. Since Ŵset is a union of formal three-
folds supported on P1’s, we can pick one Σ ∼= P1 ⊂ Ŵset and degenerate
Ŵset to Ŵset,1 union with Ŵset,2 by degenerating the chosen Σ to a chain of
two P1’s. We denote the two P1’s by Σ1 ∪ Σ2, agreeing that Σi ⊂ Wi.

To degenerate Ŵ , we only need to give Ŵset,1 and Ŵset,2 formal scheme
structures so that they are smooth formal toric Calabi-Yau threefolds. We
let l be the degree of the decomposition:

NΣ/Ŵ
∼= OΣ(l) ⊕ OΣ(−l − 2).

For Ŵ1, away from Σ1, it has the scheme structure of Ŵ ; along Σ1, we
choose an integer a and make

NΣ1/Ŵ1
∼= OΣ1(a) ⊕ OΣ1(−a − 1).

For Ŵ2, we do the same with Ŵ2 − Σ2 and choose

NΣ2/Ŵ2
∼= OΣ2(l − a) ⊕ OΣ1(a − l − 1).
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It remains to glue Ŵ1 and Ŵ2 to make the union a degeneration of Ŵ .
We let q = Σ1 ∩Σ2; we let R̂i be the germ at the origin of the fiber NΣi/Ŵi

|q.
Note that with V̂i be V̂ ∩ Ŵi ∪ R̂i, then both

(Ŵ1, V̂1) and (Ŵ2, V̂2)

are relative formal toric Calabi-Yau threefolds. The gluing Ŵ1 ∪R̂ Ŵ2 is
the result after gluing Ŵ1 and Ŵ2 along R̂1 ∼= R̂2 so that the factor OΣ(l)
degenerates to the gluing of OΣ1(a) and OΣ2(l − a). It is easy to see that
the pair (Ŵ , V̂ ) degenerates to (Ŵ1 ∪R̂ Ŵ2, V̂ ).

The smoothing is the reverse of the degeneration. The process of gluing
(Ŵ1, V̂1) with (Ŵ2, V̂2) along R̂1 = R̂2 is the gluing; its converse is the
decomposition.

3.6. Let the pairs (Ŵi, V̂i) be the result of degeneration followed by
decomposition, then the degeneration formula of GW-invariants of [18]
implies that the generating function of the GW-invariants of (Ŵ , V̂ ) takes
the form

F Ŵ •
χ,�μ =

∑
χ1+χ2−2�(ν)=χ

F Ŵ1 •
χ1,�μ1∪ν · zν · F Ŵ2 •

χ2,�μ2∪ν .

Here • stands for GW-invariants of not necessarily connected domains; the
symbol zν is some combinatorial factor; �μi is the part of the partitions in �μ
that associate to the relative divisor of Ŵi and ν is the partition associated
to the relative divisor R̂1 = R̂2 of length �(ν).

Since we can degenerate any P1 in a FTCY, by successively performing
the same technique, we can degenerate any FTCY threefold (Ŵ , V̂ ) to a
union of k topological vertex (Ŷ , D̂) constructed earlier. Repeatedly apply-
ing the degeneration formula, we can express the relative GW-invariant of
(Ŵ , V̂ ) as summation over all topological vertex Cχ,�μ(λ,n) that takes the
form

F Ŵ •
χ,�μ =

∑
C�μ1(λ,nk) · z· · · · z· · C�μk

(λ,nk)

The summation is over a group of combinatoric date determined by the
degeneration data of (Ŵ , V̂ ). This is the gluing algorithms described in the
topological vertex theory of [1].

This gives an explicit formula of all formal relative GW-invariants of
relative formal toric Calabi-Yau threefolds, which include the GW-invariants
of all toric Calabi-Yau threefolds, in terms of the simple ones Cχ,�μ(λ,n).

3.7. Computationally, it is significantly simpler than the traditional
algorithm of localization by summing over trees of the all curves types: given
a toric Calabi-Yau threefold, the generating function of its GW-invariants
in all genera in a fixed degree from summing over the trees gives rise to
an infinite series. By this formula, this infinite series is equal to a finite
sum in terms of symmetric functions. This simplification in part is from the
invariance theorem, which implicitly implies many vanishing results.
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The summation further simplifies by the explicit form of the topological
vertex Cχ,�μ(λ,n) based on physically derived duality between GW-invariants
with Chern-Simons invariants of links. This explicit form is recently proved
by Maulik-Oblomkov-Okounkv-Pandharipande [29]. This completes the
mathematical theory of topological vertex theory on effectively computing
all genera (relative) GW-invariants of smooth toric Calabi-Yau threefolds.

4. On positive genera GW-invariants

Another recent progress in Gromov-Witten theory is the proof by
Li-Zinger [22] of the hyperplane theorem for (reduced) genus one GW-
invariants of complete intersections and the proof by Zinger [40] of a conjec-
tural formula for the genus one GW-invariants of quintic threefolds (degree
5 hypersurfaces in P4).

4.1. The celebrated formula of Candelas et al. [7] is a closed formula
for genus zero GW-invariants of quintic threefolds. They derived this for-
mula via mirror symmetry by studying the variation of Hodge structures
on the mirror quintic. Bershadsky-Cecotti-Ooguri-Vafa [6] generalized this
to the so-called Kodaira-Spencer theory of gravity. This theory provides a
machinery that determines closed formulas for all genera GW-invariants of
Calabi-Yau threefolds up to a finite number of indeterminancies.

For the quintic threefolds, they derived a conjectural formula for a genus
one generating function. It takes the following form. Denote by Nd

g ∈ Q

the genus g degree d GW-invariant of a quintic threefold. Let Im(q) be the
degree m polynomial defined by

∞∑
m=0

Im(q)wm ≡
∞∑

d=0

qd

∏r=5d
r=1 (5w+r)∏r=d
r=1(w+r)5

and set

Q = eI1(q)/I0(q), J ′
1(q) ≡

{
1 +

d

dq

}(
I1(q)
I0(q)

)
.

The conjectured genus one formula [6, eq. (24)] is then equivalent to

(4.1) 2
∞∑

d=1

Nd
1 QdT =

25
6

lnQ + ln
(

I0(q)−62/3(1−55q
)−1/6

J ′
1(q)

−1
)
.

In this notation, the genus zero formula for the quintic [7, eq. (5.13)] is
equivalent to

∞∑
d=1

Nd
0 Qd = −5

2

((
I3(q)
I0(q)

)
−

(
I1(q)
I0(q)

)(
I2(q)
I0(q)

)
+

1
3

(
I3(q)
I0(q)

)3)
.

The last formula was proved in the mid 1990’s by Givental [10] and
by Lian-Liu-Yau [26] independently. Both of their proofs commence from
the hyperplane property for genus zero GW-invariants and use localiza-
tion by a torus action. This hyperplane property transforms many genus 0
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GW-invariants of complete intersections into twisted GW-invariants of the
ambient projective space; the localization is a computational tool that
reduces the computition of the twisted GW-invariants of Pn to a very intri-
cate combinatoric problem. This problem was solved by analyzing properties
of a generating function for equivariant twisted genus zero GW-invariants
of Pn.

4.2. The hyperplane property was proposed by Kontsevich [16]; its
proof follows from the work of [5, 23, 24]. In order to simplify the discussion,
we restrict the description here to projective hypersurfaces. Let Y ⊂ Pn be
a smooth hypersurface of degree r. For any degree d, we form the moduli
space of genus g stable morphisms to Y and to Pn, of degree d; both are
DM-stacks, and since Y ⊂ Pn the former is a closed substack of the latter:

Mg(Y, d) ⊂ Mg(Pn, d).

This inclusion can easily be defined as the vanishing of a global section.
Let

f : X −→ Pn, π : X −→ Mg(Pn, d)

be the universal family of Mg(Pn, d). The section s ∈ Γ(OPn(r)) defining
the hypersurface Y = (s = 0) induces a section s̃ = π∗f∗(s) of the sheaf

(4.2) π∗f
∗OPn(r) −→ Mg(Pn, d).

It is easy to see that

Mg(Y, d) = (s̃ = 0) ⊂ Mg(Pn, d).

This inclusion immediately leads to the hyperplane property for genus
zero GW-invariants. Since Pn has ample tangent bundle, M0(Pn, d) is a
smooth DM-stack of dimension (n+1)d + 1. The obstruction theory of
M0(Y, d) induced by the defining equation s̃ = 0 coincides with the stan-
dard obstruction theory of M0(Y, d). Consequently, the push-forward of the
virtual cycle [M0(Y, d)]vir in M0(Pn, d) is the Euler class e

(
π∗f∗O(r)

)
. In

the case of a quintic threefold Y5, we obtain the numerical relation

(4.3) Nd
0 =

∫
[M0(Y5,d)]vir

1 =
∫

M0(P4,d)
e
(
π∗f

∗O(5)
)
.

Note that the right hand side of (4.3) is the integration of a tautological class
against the (virtual) cycle [M0(P4, d)]; it is a twisted GW-invariant of P4.

In generalizing the hyperplane property to the positive genus case, we
face the difficulty that Mg(Pn, d) is singular for g ≥ 1 and the sheaf π∗f∗O(r)
is not locally free. Replacing the Euler class by the Chern class of the K-class
R•π∗f∗O(r) is not a solution for g ≥ 1.



88 J. LI

4.3. In 2004, Li-Zinger [22] proved that a hyperplane property holds
for reduced genus one GW-invariants of complete intersections. It is evident
from their definition in [39] that the reduced genus one GW-invariants differ
from the standard ones by some combination of genus GW-invariants. An
explicit formula for the difference is given in [41]. It takes a particularly
simple form in dimensions 2 and 3 as already observed in [39]. In the case
of a quintic threefold Y5 (or any Calabi-Yau threefold),

(4.4) Nd
1 = Nd,red

1 +
1
12

Nd
0 ,

where Nd,red
1 ∈ Q is the reduced genus one degree d GW-invariant of Y5.

Theorem (Li-Zinger [22]). The reduced genus one GW-invariants of a
complete intersection involving only restrictions of cohomology classes from
the ambient projective space (and descendant invariants) equal to certain
twisted reduced genus one GW-invariants of the ambient projective space.

In light of the hyperplane property for genus zero GW-invariants, this
theorem is essentially equivalent to a hyperplane property for the ordi-
nary genus one GW-invariants of complete intersections. It is applied by
Zinger [40] to confirm the BCOV prediction for the genus one GW-invariants
of a quintic threefold.

Theorem (Zinger [40]). The genus one GW-invariants of a quintic
threefold are given by (4.1).

4.4. The moduli space M1(Pn, d) splits into two parts: one consists
of stable morphisms u : C → Pn whose restrictions to the smallest genus
one subcurve Ce ⊂ C are non-constant; the other consists of those such
that u|Ce ≡ const.. (In the later case, we say that u has a ghost elliptic
subcurve.) The first part is a Zariski open subset of M1(Pn, d); it is smooth
and irreducible of dimension (n + 1)d. Its closure

M1(Pn, d)0 ⊂ M1(Pn, d),

called the primary component of M1(Pn, d), is singular though.
Roughly speaking, the standard GW-invariants arise from the moduli

spaces Mg(Pn, d), while the reduced genus one GW-invariants arise just
from the primary component M1(Pn, d)0 of M1(Pn, d). They are obtained
by integration of natural cohomology classes against the virtual class of the
“primary component”

M1(Y, d)0 ⊂ M1(Y, d)

of the moduli space of stable maps into Y . If Y ⊂ Pn,

M1(Y, d)0 = M1(Y, d) ∩ M1(Pn, d)0 ⊂ M1(Pn, d);

this definition of M1(Y, d)0 is independent of the embedding Y ↪→ Pn.
The sheaf (4.2) is the sheaf of sections of the morphism

p : Mg(L, d) −→ Mg(Pn, d),
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where L is the total space of the line bundle OPn(r) and p is simply the
composition with the projection map L−→Pn. This sheaf is not locally free
and p is not a vector bundle if g ≥ 1. Nevertheless, Zinger [38] shows that
the restriction of p to the primary component M1(Pn, d)0 has a well-defined
euler class, even though this restriction is still not a vector (orbi-)bundle (the
rank of the fibers of p jumps over the elements of M1(Pn, d)0 with a ghost
elliptic subcurve). In particular, the euler class of every desingularization of
this restriction of (4.2) is essentially the same. It is shown in [22] that this
euler class provides a hyperplane property for genus one GW-invariants of
complete intersections.

Theorem (Li-Zinger [22]). For any degree r hypersurface Y in Pn, the
image of [M1(Y, d)0]vir in the homology of M1(Pn, d)0 is the Euler class of
the restriction of the sheaf (4.2) to M1(Pn, d)0 :

(4.5) ι∗[M1(Y, d)0]vir = e(π0∗f
∗O(r)) ∩ [M1(Pn, d)0].

In the case of a quintic threefold Y5 ⊂ P4, the relation (4.5) reduces to

(4.6) Nd,red
1 =

∫
M1(P4,d)0

c5d (π∗f
∗O(5)).

The Atiyah-Bott localization theorem [3] then reduces the computation
of (4.6) to integration over neighborhoods of the fixed loci of M1(P4, d)0
under the (C∗)5-action. The results of this computation for d = 2, 3, 4
(M1(P4, 1)0 = ∅) were announced in [22] and agreed with the BCOV pre-
diction (4.1).

An explicit desingularization of the primary component M1(Pn, d)0 of
M1(Pn, d),

M̃1(Pn, d)0 −→ M1(Pn, d)0,

is constructed by Vakil-Zinger [36]. Let

f̃0 : X0 → Pn and π̃0 : X0 → M̃1(Pn, d)0

denote the pull back of the universal family on M1(Pn, d). It was shown in
[36] that the direct image sheaf

π̃0∗f
∗
0 O(r) −→ M̃1(Pn, d)0

is locally free of rank rd. On the other hand, (4.6) immediately leads to

(4.7) Nd,red
1 =

∫
M̃1(P4,d)0

c5d

(
π̃0∗f̃

∗O(5)
)
.

This re-statement of (4.6) is more computationally convenient as the local-
ization theorem immediately reduces the right-hand side of (4.7) to integra-
tion over the (C∗)5-fixed loci in M̃1(P4, d)0, rather than their neighborhoods.
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4.5. The original approach of Li-Zinger [22] is analytic, built on the
delicate analysis of Zinger [39]. Roughly speaking, the reduced genus one
invariants of Y are first defined intrisically in [39] by deforming the Cauchy-
Riemann equation. In the case Y is a complete intersection in Pn, it is
then shown in [22] that the CR-equations for Y and Pn can be deformed
in consistent fashion. Furthermore, it is shown that the obstruction theory
for the primary component of the moduli space of solutions of the deformed
CR-equation for Y viewed as the vanishing locus of the section s̃ coincides
with its standard obstruction theory. This then implies the theorem.

In contrast to the hyperplane property for genus zero GW-invariants, the
hyperplane property in genus one is far less immediate even assuming the
restriction of the sheaf (4.2) to M̃1(Pn, d)0 has a well-defined Euler class. In
fact, the argument in [22] includes another, more robust, way of assembling
the local analytic results of [39] to construct the Euler class.

Currently, Hu-Li [12] and Chang-Li [8] are developing an algebraic
approach to reduced GW-invariants of complete intersections, the hyper-
plane property for them, and the splitting property (4.4) for Calabi-Yau
complete intersections. The genus one case is almost complete; higher genus
cases are promising. In the remainder of this section, we briefly outline
the main ideas behind the algebraic construction in genus one and discuss
possible generalizations to higher genus.

4.6. The first step is to reprove Vakil-Zinger’s desingularization via an
algebraic approach. To desingularize the moduli space M1(Pn, d), Hu-
Li [12] first describe a modular blowup of the moduli space of weighted
nodal curves and then take a fiber product with M1(Pn, d) to obtain the
desired modular desingularization.

Definition. A weight on a nodal curve C is an element w ∈ H2(C, Z)
such that w(Σ) ≥ 0 for every irreducible component Σ ⊂ C. A weighted
nodal curve is a pair (w, C) of a weight w on a curve C.

We can make sense of a flat family of weighted nodal curves by requiring
that the total weight on any flat family of closed subcurves be constant. We
call a weighted nodal curve stable if every smooth ghost (i.e., weight 0)
rational subcurve contains at least three nodes of the curve.

For any genus g > 0, the moduli space Mw
g of stable weighted nodal

curves is a smooth Artin stack of dimension 3g − 3. The projection Mw
g →

Mg, where Mg is the Artin stack of nodal genus g curves, induced by for-
getting the weight assignment is étale.

4.7. Each element (w, C) either has a ghost-core or a non-ghost core
curve. If (w, C) ∈ Mw

1 , since C has genus 1, it has a smallest elliptic
subcurve, denoted by Ce and called the core curve of C. We say (w, C) has
a ghost-core curve if the restriction of w to Ce is zero. Otherwise, we say
(w, C) has a non-ghost core curve.
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The stack Mw
1 contains an open substack Θ̊0 of weighted curves with

non-ghost core curves. The complement Mw
1 \ Θ̊0 admits a natural partition

according to the number of rational trees attached to the ghost core curve:
Θ̊k is the subset of pairs (w, C) such that C can be obtained from the ghost
core Ce ⊂ C by attaching k (connected) trees of rational curves to Ce at
k distinct smooth points of Ce. Then Mw

1 =
∐

k≥0 Θ̊k. We let Θk be the
closure of Θ̊k.

We can successively blow up Mw
1 along the loci Θk. Θ1 is a smooth

Cartier divisor; blowing up along Θ1 does nothing. We then proceed to blow
up Mw

1 along the locus Θ2, which is a smooth codimension 2 closed substack
of Mw

1 ; we denote the resulting smooth stack by Mw
1,[2]. Inductively, after

obtaining Mw
1,[k−1], we blow it up along the proper transform of the closed

substack Θk ⊂ Mw
1 . Since the proper transform is a smooth closed substack

of Mw
1,[k−1] of codimension k, the new stack is smooth. We continue this

process for all k ≥ 1. Since each connected component of Mw is of finite
type, the blowup process on each component will terminate after a finite
number of steps. Therefore, the limit stack is a well-defined smooth Artin
stack; we denote it by M̃w

1 .

4.8. The desingularization of M1(Pn, d) is constructed via the fiber
product

M̃1(Pn, d) = M1(Pn, d) ×Mw
1

M̃
w
1 .

Here the morphism
M1(Pn, d) −→ M

w

is defined via the domain curves of the universal family f : X → Pn of
M1(Pn, d) together with the degree of the first Chern class c1(f∗OPn(1)).

Note that since c1(f∗OPn(1)) has degree d, defining M̃1(Pn, d) requires
blowing up Mw along the proper transforms of Θk from k = 2 to k = d.
That is,

M̃1(Pn, d) = M1(Pn, d) ×Mw
1

M
w
1,[d].

This recovers Vakil-Zinger’s virtual blowup of M1(Pn, d).

Theorem (Vakil-Zinger [36], Hu-Li [12]). M̃1(Pn, d) is a DM-stack
with smooth irreducible components that intersect transversally.

The direct image sheaves are regularized at the same time. Let

M̃1(Pn, d)0 ⊂ M̃1(Pn, d)

be the component associated to the primary component M1(Pn, d)0 of M1
(Pn, d). For each k > 0, let

M̃1(Pn, d)k ⊂ M̃1(Pn, d)

be the pre-image of

M1(Pn, d)k = M1(Pn, d) ×Mw
1

Θk
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under the blow-down map. Let

fk : Xk −→ Pn and π̃k : Xk −→ M̃1(Pn, d)k

be the pull back universal family.

Proposition ([36, 12]). The sheaves π̃k∗f
∗
kO(r) are locally free on

M̃1(Pn, d)k.

4.9. As shown in [8], this proposition leads directly to the hyperplane
property for the reduced genus one GW-invariants of complete intersections.

For any complete intersection Y ⊂ Pn, we define

M1(Y, d)0 = M1(Y, d) ×M1(Pn,d) M1(Pn, d)0,

M̃1(Y, d)0 = M1(Y, d) ×M1(Pn,d) M̃1(Pn, d)0.

If Y is a Calabi-Yau threefold, the reduced genus one GW-invariants of Y
should be the degree of the virtual cycle of M1(Y, d)0; this degree should
be the same as the degree of M̃1(Y, d)0, since the blowup construction is
modular.

To define the virtual cycle we need a perfect obstruction theory. For
M1(Y, d)0 and M̃1(Y, d)0, we shall use the standard relative obstruction
theories of

M1(Y, d)0/M1(Pn, d)0 and M̃1(Y, d)0/M̃1(Pn, d)0.

This time, since M1(Pn, d)0 is singular, the relative obstruction theory in
the first case is not perfect. It is perfect in the second case.

4.10. Let Y ⊂ Pn a smooth hypersurface cut out by s ∈ Γ(OPn(r)) and
let s̃ be the induced section of the sheaf:

π̃0∗f̃
∗
0 O(r) −→ M̃1(Pn, d)0.

Theorem. The relative obstruction theory of

M̃1(Y, d)0/M̃1(Pn, d)0

induced from that of M1(Y, d)0/M1(Pn, d)0 is perfect; this obstruction
theory is identical to the one induced by the defining equation

M̃1(Y, d)0 = (s̃ = 0) ⊂ M̃1(Pn, d)0.

This theorem implies the hyperplane property (4.5). Thus, in the case
Y ⊂ P4 is a quintic threefold, it immediately specializes to (4.7).

4.11. To generalize the construction of the reduced GW-invariants to
higher genus via this approach, one needs to find a modular desingulariza-
tion of the primary component of Mg(Pn, d) so that the lift of the relative
obstruction theory of

Mg(Y, d)/Mg(Pn, d)



RECENT PROGRESS IN GW-INVARIANTS OF CALABI-YAU THREEFOLDS 93

is perfect. Since the relative obstruction theories with respect to the Artin
stack of genus g weighted nodal curves

Mg(Y, d)/M
w
g and Mg(Pn, d)/M

w
g

are well-understood, a modular desingularization obtained by blowing up
Mw

g is most desirable.
For g = 1, this is the approach taken in [22, 36]. For g = 2, the

algebraic approach adopted in [12] can be generalized to obtain a modular
desingularization of M2(Pn, d). It remains to be seen how much higher one
can push this approach.

Conjecture. There is a modular desingularzation of the primary com-
ponent Mg(Pn, d)0 of Mg(Pn, d), M̃g(Pn, d)0 → Mg(Pn, d)0, with the fol-
lowing properties:

(i) if f̃0 : X0 → Pn and π̃0 : X0 → M̃g(Pn, d)0 is the pull-back of the
universal family,

(4.8) π̃0∗f̃
∗
0 OPn(r) −→ M̃g(Pn, d)0

is locally free sheaf.

(ii) if Y ⊂ Pn is a smooth hypersurface cut out by s ∈ Γ(OPn(r)),

M̃g(Y, d)0 = Mg(Y, d) ×Mg(Pn,d) M̃g(Pn, d)0 ⊂ M̃g(Pn, d)0

is defined by the vanishing of the induced section s̃ = π̃0∗f̃∗
0 (s) of

(4.8) and the induced relative obstruction theory of

M̃g(Y, d)0/M̃g(Pn, d)0

coincides with the obstuction theory of the defining equation s̃ = 0.

Such a desingularization of Mg(Pn, d)0 would immediately give rise to
reduced genus g GW-invariants satisfying the hyperplane property

ι∗[M̃g(Y, d)0]vir = e(π0∗f
∗O(r)) ∩ [M̃g(Pn, d)0],

where ι : M̃g(Y, d)0 −→ M̃g(Pn, d)0 is the inclusion. In the case of a quintic
therefold Y5 ⊂ P4, this would reduce to

Nd,red
g = deg[M̃g(Y5, d)0]vir =

∫
[M̃g(P4,d)0]vir

c∗(p0∗f
∗
0 O(5)).

4.12. We now outline an algebraic approach to the splitting
property (4.4).

The failure of the hyperplane property for the ordinary genus one GW-
invariants stems from the fact that the tautological homomorphism between
the relative obstruction sheaves of

M1(Y, d)/M1 and Mg(Pn, d)/M1
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is not surjective. They are connected by the exact sequence

ObM1(Y,d) −→ ObM1(Pn,d)|M1(Y,d) −→ R1π∗f
∗O(r)|M1(Y,d) −→ 0,

if Y ⊂ Pn is a smooth hypersurface of degree r.
The first arrow above is surjective if g = 0 since R1π∗f∗O(r) = 0. For

g = 1, it is surjective over a Zariski open subset of M1(Pn, d)0; its cokernel
is an invertible sheaf elsewhere. The failure of the surjectivity of the first
arrow is accountable for the failure of the triple of the obstruction theory of
M1(Y, d), the obstruction theory of M1(Pn, d), and the relative obstruction
theory of M1(Y, d)/M1(Pn, d) to be a “perfect triangle”.

Our solution is to take the modular desingularizations M̃1(Y, d) ⊂ M̃1
(Pn, d) and construct a proper DM-stack W in between

M̃1(Y, d) ⊂ W ⊂ M̃1(Pn, d)

so that M̃1(Pn, d)0 ∩ W = M̃1(Y, d)0 and the triple of the obstruction the-
ory of M̃1(Y, d), the obstruction theory of W , and the relative obstruction
theory of M̃1(Y, d)/W is a “perfect triangle”.

Once such a W is constructed, then an application of techniques in
rational equivalence of virtual cycles [23, 15] leads to a rational equivalence
between the normal cone CX of X = M̃1(Y, d) and the normal cone to X in
the normal cone CW ,

CX ∼ CX/CW
.

The explicit geometry of W shows that CW has an irreducible component
supported on W0 = M̃1(Y, d)0, while all other irreducible components are
supported on irreducible components of the closure W+ of W − W0. We
write this decomposition as CW = CW0 ∪ CW+ . Let X0 = X ∩ W0 and
X+ = X ∩ W+. Then,

CX/CW
= CX0/CW0

∪ CX+/CW+
.

Applying the Gysin map 0!, which is intersecting with the zero section, to
this identity and the above mentioned rational equivalence, we obtain an
identity of cycle classes

(4.9) [M̃1(Y, d)]vir = 0!(CX0/CW0

)
+ 0!(CX+/CW+

)
.

On the other hand, since M̃1(Y, d) is a modular blowup of M1(Y, d),
the virtual cycle [M̃1(Y, d)]vir is the same as [M1(Y, d)]vir. Of the terms on
the right hand side of (4.9), the first is [M̃1(Y, d)0]vir. If Y is a Calabi-Yau
threefold, the second term is a multiple of the cycle [M0(Y, d)]vir. Taking
the degree, we recover the splitting formula (4.4) for the genus one GW-
invariants of complete intersection Calabi-Yau threefolds.



RECENT PROGRESS IN GW-INVARIANTS OF CALABI-YAU THREEFOLDS 95

4.13. The splitting relation (4.4) should extend to all genera, i.e. the
ordinary GW-invariants should split into reduced ones, each of which sat-
isfies a hyperplane property. In the case Y is a Calabi-Yau threefold, the
reduced invariants should be related to the ordinary ones through a linear
relation as described below.

Conjecture (Li-Zinger [22]). There are reduced GW-invariants in all
genera each of which satisfies a hyperplane property. For a Calabi-Yau three-
fold and any second homology class d, they should satisfy a linear splitting
property with universal constants βj

i :

Nd
g = Nd,red

g + βg
g−1N

d,red
g−1 + · · · + βg

0N0,red
0 .

The ideal case is if one can modular desingularize Mg(Pn, d); then
the reduced invariants should be integrals of Euler classes over the virtual
cycles of the primary component of Mg(Pn, d). This will be the hyperplane
property of the reduced GW-invariants.

5. Toward Gopakumar-Vafa’s invariants

The conjecture of Gopakumar-Vafa [11] on the virtual number of
embedded curves and the recent conjecture of Maulik-Nekrasov-Okunkov-
Pandharipande [28] and of Pandharipande-Thomas [30] on the the relation
of GW-invariants and the Donaldson-Thomas (DT-)invariants shed a new
light to the study of GW-invariants of Calabi-Yau threefolds.

As was mentioned earlier in this note, based on investigating string
duality between type IIA and M-Theory, Gopakumar-Vafa conjectured that

Conjecture (Gopakumar-Vafa [11]). There are integers nh(β) such
that the generating function of the GW-invariants of X is of the form

FX(q, λ) =
∑

h≥0,k>0,β∈H2(X,Z)

nh(β)
1
k

(
2 sin

kλ

2

)2h−2

qkβ .

Indeed, they argued that the collection nh(β) can be defined geomet-
rically using the space of “D-branes”. As suggested by many, the mathe-
matical counter-part of D-branes should be stable sheaves of pure dimension
one. Following this suggestion, to each class β one can substitute the space of
“D-branes” by the moduli M(β, 1) of pure dimension one stable sheaves E on
X with second Chern classes c2(E) = −β and Euler number χ(E) = 1. Then
according to Gopakumar-Vafa, the number n0(β), which is the expected
number of rational curves in X of class β, should be the signed Euler number
of M(β, 1) when it is smooth.

In case the moduli space is singular, since it has perfect obstruction
theory [35], it has a dimension zero virtual cycle. The Gopakumar-Vafa
conjecture suggests that the degree of the virtual cycle [M(β, 1)]vir should
be the number n0(β).
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Conjecture (Katz [14]). The number n0(β) is the degree of
[M(β, 1)]vir.

Part of this conjecture states that the degree of [M(β, 1)]vir is inde-
pendent of the choice of ample line bundle H in defining the moduli space
M(β, 1). The invariance of such number will follow if a wall-crossing formula
for such moduli space is developed.

A different geometric definition of the numbers nh(β) is via the DT-
invariants of ideal sheaves of Maulik-Nekrasov-Okounkov-Pandharipande
[28] and of pairs of Pandharipande-Thomas [30].

Following [28], we let In(X, β) be the Hilbert scheme of ideal sheaves
IZ of 1-dimensional subscheme Z ⊂ X such that [Z] = β and χ(OZ) = n.
Viewing IZ as a rank one torsion free sheaf, it is stable automatically.
Following Thomas [35], In(X, β) has perfect obstruction theory. We define
In,β = deg[In(X, β)]vir, define their partition function be

ZDT,β(q) =
∑

n

In,βqn

and their reduced partition function

Z ′
DT,β(q) = ZDT,β(q)/ZDT,0(q).

The reduced DT-invariants Z ′
DT,β is conjectural equivalent to the invari-

ants of stable pairs. Following Thomas-Pandharipande [30], we consider the
moduli Pn(X, β) of pairs OX → E , where E is a pure dimension one sheaf
of c2(F ) = −β and χ(F ) = n, and OX → F is stable in that the cokernel
is a zero-dimensional sheaf. The moduli space of such pairs with fixed pair
(β, n) is a projective variety, proved by Le Potier [17].

By viewing the pair [OX → E ] as an element in the derived category
of the coherent sheaves of X, Pandharipande-Thomas [30] proved that the
deformation of the pair in Db(X) will remain of the form OX → E ′. This
proves that the deformation of OX → E is perfect (indeed symmetric).
Therefore, the moduli space Pn(X, β) has virtual cycle in dimension zero.
Their degrees Pb,β = deg[Pn(X, β)]vir form a partition function

ZP,β(q) =
∑

n

Pn,βqn.

In [30], Pandharipande-Thomas conjectured that

Conjecture. The partition functions ZP,β(q) and Z ′
DT,β(q) coincide,

and after the transformation −q = eiu is equal to the partition function
ZGW,β(u) of the disconnected GW-invariants X. Further, these series are
rational function invariant under the transformation q → q−1.

Here the disconnected GW-invariants of X for nonzero curve classes
β are

ZGW,β(u) =
∑

g

N•
g,βu2g−2
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for N•
g,β = deg[M•

g(X, β)]vir, where M•
g(X, β) is the moduli space of sta-

ble maps with possibly disconnected domains and no contracted connected
components.

We remark that the conjecture is proved for β a primitive class of X [30],
and for toric Calabi-yau threefold [29]. In general, the conjecture implies
that the Gopakumar-Vafa numbers ng(β) can be defined using the series
ZP,β and will be integral since the degree Pn,β are integral.

This is a fast progressing subject. A lot of questions remain open in this
subject. For more details, please consult [30].
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