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The Fundamental Lemma: What is it and what

do we know?

Stephen DeBacker

1. Introduction

The Fundamental Lemma (FL) was first proposed about twenty
years ago by Langlands and Shelstad [29] as part of the trace-theoretic
approach to the Langlands program. The FL is a rather delicate state-
ment, which, to judge by its name, was thought to be both important
and not particularly deep. The technical nature of the FL makes it
rather difficult to understand and appreciate. Thus, rather than give
a technical presentation full of correct definitions, we will instead at-
tempt in this discussion to convey the flavor of the subject. As such,
lies will occur1; the interested reader may consult the original papers
for complete details.

Our discussion is divided into two parts. In the first part, we shall
try to motivate the statement of the FL by looking at the (conjectural)
Local Langlands Correspondence (LLC).

There are at least two interesting classes of distributions on a p-adic
group: orbital integrals and characters. Although the FL is concerned
with the former, most people are more comfortable with the latter.
Thus, in the first part of our discussion, we will use characters and
the framework of the (conjectural) LLC to introduce most of the for-
malism required to state the FL. The LLC, the existence of which has
been proven for general linear groups by Harris–Taylor and Henniart,
is a finite-to-one correspondence from the set of (equivalence classes of)
irreducible smooth representations of a p-adic group to the set of (equiv-
alence classes of) maps from the Weil–Deligne group into the Langlands
dual group of the p-adic group. Verifying the existence of the LLC is
the fundamental open problem in local harmonic analysis for p-adic
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groups. In some sense, the FL is the analogue, for orbital integrals, of
the expected behavior of the fibers of the LLC.

In the second part, we shall discuss various recent works which have
approached or achieved a proof of the FL. We shall discuss the geometric
approach as carried out by Laumon and Ngô, and Waldspurger’s more
classical, though so far not complete, approach through asymptotic ex-
pansions.

Note that there are many versions of the FL beyond the one we
shall discuss. For example, there is the so-called weighted Fundamental
Lemma. Except for Sp4 and general linear groups, I do not think these
other versions have been established.

I am deeply indebted to Robert Kottwitz and Paul Sally, Jr. who
taught me nearly all I know about harmonic analysis. I thank Loren
Spice for his meticulous reading of earlier drafts of this paper; Brian
Conrad for patiently explaining to me a small part of the algebraic
geometry behind the geometric approach to the FL; Bao Châo Ngô for
explaining his methods from a point of view that I could understand;
and the referees for their corrections and suggestions. All mistakes are
mine.

2. The statement of the Fundamental Lemma

In this part of our discussion, we attempt to present the statement of
the FL in a way which will convince the reader that it is both important
and natural. As a side benefit, nearly all of the words required to state
the FL will appear during our discussion.

Suppose k is a p-adic field of characteristic zero and G a connected
semisimple k-group. Further assume that G is unramified2. So, for
example, k could be Qp, the p-adic completion of Q, and G could be,
among other things, a special linear group, a special unitary group split-
ting over an unramified extension of k, a symplectic group, or the ex-
ceptional group G2. Being a p-adic group, G has a neighborhood basis
at the identity consisting of compact open subgroups.

2.1. The (conjectural) Local Langlands Correspondence.
As usually presented, the LLC is a partition of the set of (equivalence
classes of) irreducible smooth representations of G(k), the group of k-
rational points of G, into finite disjoint subsets, called L-packets, in such
a way that the collection of L-packets is parametrized by equivalence
classes of certain maps, called L-parameters, from the Weil–Deligne
group of k into the Langlands dual group of G (see §2.1.3 for a more
nearly precise statement). To simplify matters, we will discuss a ver-
sion of the LLC that, conjecturally, parameterizes those L-packets which

2That is, G is k-quasi-split and contains a maximal k-torus which splits over an
unramified extension of k.
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contain at least one square-integrable representation in terms of ellip-
tic Langlands parameters. For more details about the LLC, see the
wonderful expository paper [10] of Gross and Reeder.

2.1.1. Square-integrable representations. Suppose (π, V ) is a repre-
sentation of G(k). That is, V is a complex vector space on which G(k)
acts through π. For H a subgroup of G(k), we denote by V H the sub-
space of V consisting of H-fixed vectors. We define

V ∞ := {v ∈ V : ∃ compact open subgroup K ≤ G(k) s.t. v ∈ V K},

the space of smooth vectors in V . We say that (π, V ) is smooth provided
that V = V ∞; in other words, (π, V ) is smooth if π(g) is continuous for
the discrete topology on V , for all g ∈ G(k).

Example 2.1.1. Let C(G(k)) denote the space of complex-valued
functions on G(k). Then G(k) acts on C(G(k)) though the right-regular

action R, given by (R(g)f)(x) = f(xg) for f ∈ C(G(k)) and g, x ∈ G(k).
Note that (R, C(G(k))) is a representation of G(k), but not a smooth one
(for example, characteristic functions of singletons are not fixed by any
compact open subgroup of G(k)). The subspace C(G(k))∞ of smooth
vectors in C(G(k)) is usually denoted by C∞

u (G(k)), and its elements
are called uniformly locally constant functions on G(k). So C∞

u (G(k))
consists of those complex-valued functions f on G(k) for which there
exists a compact open subgroup K = K(f) in G so that f(gκ) = f(g)
for all g ∈ G(k) and κ ∈ K.

Example 2.1.2. We define L2(G(k)) to be the subspace of C∞
u (G(k))

consisting of functions which are square integrable with respect to a
Haar measure on G(k). The group G(k) acts on L2(G(k)) through the
right-regular action.

A representation (π, V ) of G(k) is called irreducible provided that
it is nonzero and simple as a G(k)-module. For example, the trivial
representation (1, C) is an irreducible representation of G(k). In fact,
(1, C) is the only finite-dimensional representation of G(k) that is both
irreducible and smooth.

Suppose (π, V ) is a smooth representation of G(k). For v ∈ V and
λ ∈ (V ∗)∞, we define the matrix coefficient mv,λ ∈ C∞

u (G(k)) by

mv,λ(g) = λ(π(g)v)

for g ∈ G(k). If (π, V ) is also irreducible, then every matrix coefficient
of (π, V ) belongs to L2(G(k)) if and only if one nonzero one does.

A representation (π, V ) of G(k) is said to be square integrable pro-
vided that (π, V ) is irreducible and smooth, and each of its matrix co-
efficients belongs to L2(G(k)). In particular, if (π, V ) is supercuspidal3,
then it is square integrable. The Steinberg representation [6, §8] (see

3A representation (π, V ) is said to be supercuspidal provided that it is smooth
and irreducible, and each of its matrix coefficients has compact support.
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also [39]) is an example of a square-integrable representation which is
not supercuspidal.

The set of (equivalence classes of) square-integrable representations
of G(k) is denoted by R2(G(k)).

2.1.2. Elliptic Langlands parameters. An elliptic Langlands param-
eter is a homomorphism from Wk × SL2(C), the Weil–Deligne group of
k, to LG, the Langlands dual group, which satisfies many properties4.

This paper does not require an understanding of the Weil–Deligne
group, or of the term “elliptic Langlands parameter”; in fact, only the
boxed property (1) below is important in what follows. However, this
paper does require a passing familiarity with LG (see, for example, [3,
§2] for a fuller discussion).

Let Ĝ denote the dual group of G. For example, Ĝ is SLn(C) for
G = PGLn, is SO2n+1(C) for G = Sp2n, and is G2(C) for G = G2.

The group Ĝ carries a natural action of Γ, the absolute Galois group
of k, and the L-group LG is the semi-direct product of Ĝ and Γ. We
remark that the dual group of a nontrivial k-torus T (which is never

semisimple) is T̂ := X∗(T ) ⊗ C×. If T is a maximal k-torus in G, then

T̂ ≤ Ĝ.
The only property of an elliptic Langlands parameter ϕ required in

the sequel is:

(1) Sϕ := CĜ(ϕ) is finite.

2.1.3. The (conjectural ) Local Langlands Correspondence. The LLC
is a (conjectural) finite-to-one correspondence between R2(G(k)) and

the set of Ĝ-conjugacy classes of elliptic Langlands parameters. Since a
bijective correspondence between countable sets is not, in and of itself,
very interesting, the LLC is required to satisfy additional properties,
some of which we will eventually discuss.

The elements of the partition of R2(G(k)) induced by the LLC are
called (discrete series) L-packets. If ϕ is an elliptic Langlands parame-
ter, then we denote the associated L-packet by Π(ϕ). It is conjectured
that the elements of Π(ϕ) are parameterized by the set

Irr′(Sϕ) := {ρ ∈ Irr(Sϕ) | resẐΓ ρ is isotrivial }.

Here, Irr(Sϕ) denotes the set (of equivalence classes) of irreducible rep-
resentations of the finite group Sϕ of (1); resẐΓ ρ denotes the restriction

of ρ to ẐΓ, the group of Galois fixed points in the center of Ĝ; and
isotriviality of resẐΓ ρ means that it is a direct sum of (a finite number

of) copies of the trivial representation of ẐΓ. The use of Irr′(Sϕ) rather

4See, for example, [7, §3.4] for precise definitions.
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than Irr(Sϕ) arises from the fact that the group LG cannot distinguish5

among the inner forms of G.
Suppose that Π(ϕ) may be so parametrized. If ρ ∈ Irr′(Sϕ), then

we denote by π(ϕ, ρ) the corresponding element of Π(ϕ). For later
purposes, it is important to discuss how one may, conjecturally, fix a
base point in Π(ϕ) (that is, a distinguished element π(ϕ, 1) of Π(ϕ)
corresponding to the trivial representation 1 ∈ Irr′(Sϕ).).

2.2. Fixing a base point. We need a bit of preparation.
2.2.1. Strongly regular semisimple elements. An element6 of G is

called semisimple provided that it belongs to a torus in G. An element
of G is said to be strongly regular semisimple provided that CG(γ) is a
torus. For example, the element

(

x 0
0 x−1

)

in SL2 is strongly regular semisimple for x 6∈ {1,−1}. On the other
hand, the class in PGL2 represented by the matrix

(

1 0
0 −1

)

is not strongly regular semisimple, even though the connected compo-
nent of its centralizer in PGL2 is a torus.

The k-variety of strongly regular semisimple elements in G is de-
noted by Gr. The set Gr(k) is dense in G(k) (see, for example, [16,
§2.5]).

2.2.2. Characters. Suppose (π, V ) ∈ R2(G(k)). For f in C∞
c (G(k)),

the space of locally constant, compactly supported functions on G(k),
we define the operator π(f) ∈ End(V ) by

π(f)v :=

∫

G(k)
f(g)π(g)v dg

for v ∈ V . Here dg is a fixed Haar measure on G(k).
Since (π, V ) is smooth and irreducible, it is admissible [17]; that

is, for every compact open subgroup K of G(k), the space V K of K-
fixed vectors is finite dimensional. It follows that the operator π(f)

5The Langlands dual groups for both U(2) and U(1, 1) (which are not semisim-
ple) may be identified with GL2(C) ⋊ Z2, where the nontrivial element of Z2 acts
on GL2(C) by x 7→ J(tx)−1J−1, with J any off-diagonal matrix in GL2(C) of order
two. Thus, a proper formulation of the LLC would have L-packets that consisted
not of (equivalence classes of) representations of G(k), but of (equivalence classes of)
pairs (G′, π′) where G′ is an inner form of G and π′ is an irreducible representation
of G′(k). From the Kottwitz isomorphism [23, 22], requiring that the restriction of

ρ to (the component group of) ẐΓ be isotrivial should, conjecturally, force G′ = G

(as “pure” inner forms). See [10] for a fuller exposition.
6We sometimes identify G with its group of k̄-points where k̄ denotes a fixed

algebraic closure of k.
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has finite rank. We can therefore define the character distribution
Θπ : C∞

c (G(k)) → C by

Θπ(f) := tr(π(f))

for f ∈ C∞
c (G(k)). Thanks to Harish-Chandra [15], we know that there

is a locally constant function, also called Θπ, on Gr(k) such that

Θπ(f) =

∫

G(k)
Θπ(g)f(g) dg

for all f ∈ C∞
c (G(k)). The function Θπ is independent of the choice of

the Haar measure dg.
The function Θπ is called the character of π. This terminology may

be justified by the equality

Θπ(γ) = lim
K→{1}

Θπ(fγ,K) = lim
K→{1}

tr(π(fγ,K)).

Here, γ ∈ Gr(k), the limit is over compact open subgroups K which
“shrink” to the identity, and fγ,K denotes the characteristic function of
the set γK scaled by measdg(K)−1, the inverse of the measure of K.

2.2.3. Nilpotent elements. Let g denote the Lie algebra of G and
let g(k) denote the k-points of g. An element X ∈ g(k) is said to be

nilpotent provided that 0 is contained in the p-adic closure of G(k)X, the
G(k)-orbit of X. We let N denote the set of nilpotent elements in g(k).
The group G(k) acts on N , and we let O(0) denote the set of nilpotent
orbits. Since k has characteristic zero, the cardinality of O(0) is finite.

Example 2.2.1. Suppose G = SL2. As θ ranges over representatives
for k/(k×)2, the matrices

(

0 θ
0 0

)

range over a complete set of representatives for the orbits in O(0). If
p 6= 2, then the cardinality of O(0) is 5.

Recall that G is k-quasi-split. The regular nilpotent orbits are the
elements of maximal dimension in O(0). Naively, one might think that
there was only one regular nilpotent orbit. However, already in the
example of SL2 above, we see that the number of regular nilpotent
orbits is greater than one.

Fix, once and for all, a regular nilpotent orbit Om.
2.2.4. Base point. According to the Harish–Chandra–Howe local

character expansion (see, for example, [15]), the character Θπ of an irre-
ducible smooth representation (π, V ) of G(k) has, in some neighborhood
of zero, an asymptotic expansion of the form

Θπ ◦ exp =
∑

O∈O(0)

cO(π) · µ̂O,

where the cO(π)’s are complex numbers and the µ̂O’s are class functions
on g(k) which are independent of π. Thanks to a result of Rodier [38]
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(see also [33]), a conjecture of Shahidi [41] may be recast to assert
that the bijective correspondence ρ 7→ π(ϕ, ρ) can be chosen so that
cOm(π(ϕ, 1)) 6= 0, and cOm(π(ϕ, ρ)) = 0 for ρ 6= 1 We assume that
this conjecture of Shahidi is true, and choose the base point in Π(ϕ)
accordingly.

2.3. Endoscopy. Having fixed the base point, it is natural to ask:
How canonical is the correspondence ρ 7→ π(ϕ, ρ)? This question also
has a conjectural answer, which we now discuss. Recall that we have
placed various assumptions on G and ϕ.

2.3.1. Endoscopic groups. For a precise discussion of endoscopic
groups (and their associated technicalities) see, for example, [26, Chap-
ter 2] or [45, §2].

Suppose s ∈ Sϕ ≤ Ĝ. We want to associate to the pair (ϕ, s) an

(unramified) endoscopic group. Let Ĥ denote the connected component

of the centralizer of s in Ĝ. This will be a connected reductive C-
group. The goal is to produce an unramified k-group H and an elliptic
Langlands parameter ϕH from the Weil–Deligne group into LH such
that the connected component of LH is Ĥ, and there is a map η : LH →
LG extending the injection of Ĥ into Ĝ so that η ◦ ϕH = ϕ.

This is a bit technical (for example, H need not be semisimple,
or even k-split), and the technicalities are irrelevant for the present
discussion. The group H is an example of an endoscopic group of G.
If G is PGL2, then H is either GL1 or PGL2. If G is SL2, then H is
SL2, GL1, or U1

E , where U1
E is a one-dimensional non-split torus which

is split by a quadratic unramified extension E of k (in particular, U1
E(k)

is compact). If G is G2, then H is SO4, G2, PGL3, or GL1 ×GL1.
We now want to “compare” the L-packets Π(ϕH) in R2(H(k)) and

Π(ϕ) in R2(G(k)). In order to do this, we need some way to compare
H(k)-conjugacy classes in H(k) and G(k)-conjugacy classes in G(k).

2.3.2. Stable conjugacy: Definition. We begin with a warning. Two
elements γ, γ′∈Gr(k) can be G-conjugate without being G(k)-conjugate.
This is perhaps easiest to see at the level of the Lie algebra.

Example 2.3.1. Suppose R ⊂ k is the ring of integers and ̟ is a
uniformizer in R; that is, ̟R is the prime ideal in R. We assume p 6= 2
and fix ε ∈ R× \ (R×)2. The elements

(

0 1
ε 0

)

and
(

0 ̟
̟−1ε 0

)

in sl2(k) are SL2-conjugate, but not SL2(k)-conjugate.

For γ ∈ Gr(k), we denote by Gγ the full geometric orbit of γ in G.
We call (Gγ)(k) = Gγ ∩ G(k) the stable conjugacy class of γ. See [21]
for a fuller discussion of the notion of stable conjugacy.
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2.3.3. Stable conjugacy: H versus G. See [29, §1.3] for a fuller dis-
cussion of the material in this section.

Fix a maximal k-torus TH in H. Let T̂H denote the corresponding
dual torus in Ĥ.

If Hss denotes the set of semisimple elements in H, then there is a
natural isomorphism of k-varieties

Hss/H := Hss/H-conjugacy ∼= TH/WH ,

where WH is the Weyl group NH(TH)/TH , and TH/WH denotes the
quotient of TH by the action of WH . One may think of Hss/H as the
set of semisimple conjugacy classes in H.

Since s ∈ T̂H ≤ Ĥ, we can, by, for example, [36], find a maximal

k-torus TG in G so that TH is k-isomorphic to TG, T̂G = T̂H , etc. We
then have a (canonical) Γ-map

∆G
H : Hss/H ∼= TH/WH → TG/WG

∼= Gss/G.

Naively, one would think that, at the level of k-points, the map ∆G
H

would induce a finite-to-one (though not generally surjective) map from
the set of stable conjugacy classes in H(k) into the set of stable conju-
gacy classes in G(k). (Recall that a stable conjugacy class is the set of
rational points of the orbit of a strongly regular semisimple element.)
This is almost true, except that the image of a stable conjugacy class
in H(k) need not be a subset of Gr(k).

To correct this difficulty, we introduce another definition. An ele-
ment γH ∈ Hr(k) is said to be strongly G-regular semisimple if the image
of (Hγ)(k) is a subset of Gr(k). We let HG(k) denote the (dense) subset
of strongly G-regular semisimple elements in Hr(k). For γH ∈ HG(k)
and γ ∈ Gr(k), we write γH 7→ γ provided that the image of (HγH)(k)
is (Gγ)(k).

For s as above, we define

Θϕ,s = ΘG
ϕ,s :=

∑

ρ∈Irr′(Sϕ)

tr(ρ(s)) · Θπ(ϕ,ρ).

It is conjectured that the function Θϕ,1 is stable, that is, that we have
Θϕ,1(γ) = Θϕ,1(γ

′) whenever γ, γ′ ∈ Gr(k) are stably conjugate. We
assume this.

We can now state the conjectural answer to the question: How
canonical is the correspondence ρ 7→ π(ϕ, ρ)? It is conjectured (see,
for example, [28]) that, for each s ∈ Sϕ and each γ ∈ Gr(k), we have

|DG(γ)|1/2
∑

γ′

ΘG
ϕ,s(γ

′)

=
∑

γH 7→γ

|DH(γH)|1/2 · ∆spec(γ, γH) · ΘH
ϕH ,1(γH).

(2)



THE FUNDAMENTAL LEMMA 159

The elements γ′ are representatives for the rational conjugacy classes
in the G-stable conjugacy class of γ. The elements γH are represen-
tatives for the H-stable classes in HG(k) which map to the G-stable
class of γ. Since characters are linearly independent [18, Lemma 7.1],
this conjectural equality would uniquely determine the correspondence
ρ 7→ π(ϕ, ρ). DG and DH are the discriminant functions on G and
H. The function ∆spec(·, ·) on Gr(k) × HG(k) is called a (spectral)
transfer factor ; we will have more to say about such functions later.
For now, we note that ∆spec(γ, γH) is nonzero exactly when γH 7→ γ;
∆spec(γ, γH) depends only on the H-stable conjugacy class of γH and
the G(k)-conjugacy class of γ; and, when both quantities are nonzero,
the quotient of ∆spec(γ, γH) by ∆spec(γ, γ′

H) is a root of unity.

2.4. Orbital integrals and the Fundamental Lemma. As dis-
cussed in the introduction, there is another interesting class of G(k)-
invariant distributions on G(k): the set of orbital integrals. The FL
is an analogue of (2) with the characters replaced by orbital integrals.
Since orbital integrals are not represented by locally integrable func-
tions, the analogue of (2) needs to take a different form: instead of
evaluating at well chosen elements γH and γ′, we will evaluate at well
chosen functions.

2.4.1. Strongly regular orbital integrals. Suppose γ ∈ Gr(k). Let
G(k)γ := {gγg−1 | g ∈ G(k)} denote the G(k)-orbit of γ, and C∞

c (G(k)γ)
denote the set of locally constant, compactly supported functions on
G(k)γ. Since γ is semisimple, we have that G(k)γ is closed in G(k).

Thus, the map f 7→ resG(k)γ f induces a map C∞
c (G(k)) → C∞

c (G(k)γ).

It therefore makes sense to define the (normalized) orbital integral of
f ∈ C∞

c (G(k)) by

µG
γ (f) := |DG(γ)|1/2

∫

G(k)γ
f(x) dµγ(x),

where dµG
γ denotes the unique (up to scaling) G(k)-invariant measure

on G(k)γ ∼= G(k)/CG(k)(γ) = G(k)/(CG(γ))(k) and DG is as above.
2.4.2. A statement of the FL. We can now state the FL: For an

endoscopic group H of G and a strongly G-regular semisimple element
γH ∈ H(k), we have

(3)
∑

γ′∼γH

µH
γ′([KH ]) =

∑

γ∼γH

∆(γ, γH) · µG
γ ([KG]).

Here, the left-hand sum runs over representatives for the H(k)-conjugacy
classes in the H-stable class of γH . On the right-hand side, γ runs over
representatives for the G(k)-conjugacy classes in the image under ∆G

H
of the H-stable class of γH . Since both G and H are unramified, we
may assume that they are defined over R, the ring of integers of k.
We may then take KH (resp., KG) to be the compact open subgroup
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H(R) (resp., G(R)). We let [KH ] (resp., [KG]) denote the characteristic
function of KH (resp., KG).

Finally, a definition of the transfer factor

∆(·, ·) : Gr(k) × HG(k) → C

may be found in [29]. For (γ, γH) ∈ Gr(k)×HG(k), it has the properties:

(1) ∆(γ, γH) is zero unless γH 7→ γ.
(2) If γH and γ′

H are stably conjugate, then ∆(γ, γH) = ∆(γ, γ′
H).

(3) If γ and γ′ are G(k)-conjugate, then ∆(γ, γH) = ∆(γ′, γH).

One of the ingredients in the definition of ∆(·, ·) is Tate–Nakayama
duality. Suppose γ ∈ Gr(k). Let S denote the torus CG(γ). There are
elements γi ∈ G(k) such that

Gγ ∩ G(k) =
∐

i

G(k)γi,

where i runs over ker(H1(k, S) → H1(k, G)). From Tate–Nakayama
duality, we have that

H1(k, S) ∼= Irr(π0(Ŝ
Γ)).

Here Irr(π0(Ŝ
Γ)) denotes the set of irreducible representations of the

component group of the Γ-fixed points in Ŝ. If γH 7→ γ, then we can
assume s ∈ ŜΓ. Thus s defines a character κs on H1(k, S), and ∆(γi, γ

′
H)

is essentially κs(i). Under these conditions, the right-hand side of (3) is
often written as

const ·µκs
γ ([KG])

where const is a constant and µκs
γ is the “kappa” orbital integral

∑

i κs(γi) · µG
γi

.
Warning: we have not worried about a base point in the orbital

integral setting. We will return to this point later.

3. What we know

We now turn our attention to the current state of knowledge about
the validity of the FL. Via global arguments, the exponential map,
and results of Langlands and Shelstad [30], Waldspurger [44, 45] (see
also [12]) has shown that, if (for all unramified groups and almost all p)
the FL for the Lie algebra (see below for statement) holds, then the FL
is true (see [24] for a terrific discussion of this and of transfer factors
on the Lie algebra). Consequently, nearly all recent work in the area
has concentrated on verifying the FL for the Lie algebra. The most
general (published) result obtained so far is due to Waldspurger [45]. It
says that the FL holds for any reductive k-group G′ which splits over an
unramified extension of k when the endoscopic group H under consider-
ation is the k-quasi-split inner form of G′. Ngô has recently announced
a general proof of the FL for the Lie algebra [35].
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3.1. Reduction to the Lie algebra. In this section, we outline
how to reduce the proof of the FL to that of the FL for the Lie algebra,
which is stated in Section 3.1.3.

3.1.1. Reduction to topologically unipotent elements. Let q denote
the order of f, the residue field of k. An element7 g ∈ G(k) for which
gqn

→ 1 is called topologically unipotent. We denote by G(k)0+ the set
of topologically unipotent elements in G(k).

Suppose γ ∈ Gr(k). If µG
γ ([KG]) 6= 0, then G(k)γ ∩KG is nonempty.

So, when considering the FL, for purposes of computing orbital integrals
we may, without loss of generality, assume γ ∈ KG.

Choose m so that every semisimple element of G(f), the reductive
quotient of KG, has order dividing qm − 1. Since γ lies in KG, it has
a topological Jordan decomposition; that is, we may write γ = γsγu =
γuγs, where

γs = lim
n→∞

γqmn

and

γu = γγ−1
s

are the topologically semisimple and topologically unipotent (not semi-
simple and unipotent) parts of γ (see, for example, [43]). The element γu

belongs to G(k)0+ . It is also true that γu is a strongly regular semisimple
element of CG(γs)

◦(k), the group of k-rational points of the identity
component of the centralizer of γs in G.

If g ∈ G (k) and g γ ∈ KG, then g ∈ KG · CG(k) (γs) (see,

for example, [19, 23]); so it is believable that µG
γ ([KG]) is related to

µ
CG(γs)◦

γu ([KCG(γs)◦ ]). Indeed, by keeping track of transfer factors, one
can reduce the problem of checking the FL to that of checking it on the
set of topologically unipotent elements [11, 30] in G(k) and H(k).

3.1.2. Exponentiation. From our discussion of topologically unipo-
tent elements in Section 3.1.1, we see that it is enough to verify the FL
for strongly G-regular semisimple γH ∈ H(k)0+ .

We shall use the exponential map to transfer the problem to the Lie
algebra. Let g(k)0+ denote the set of topologically nilpotent elements8

in g(k). For example, if g = sln, then X ∈ g(k)0+ if and only if each of
the eigenvalues of X has positive valuation.

Under suitable conditions on q, the exponential map defines a bijec-
tive, G(k)-equivariant map from g(k)0+ to G(k)0+ (see, for example, [7,
Appendix B]).

7We also require g to lie in some parahoric subgroup of G(k).
8In the notation of [34],

g(k)0+ =
[

x∈B(G)

g(k)x,0+ .
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3.1.3. Statement of the FL for the Lie algebra. An element of g(k)
is called regular semisimple provided that its centralizer in G is a torus9.
We let gr(k) denote the set of regular semisimple elements in g(k).

The discussion in Section 2.3.3 showing how to relate stable orbits
in H and G carries over to the Lie algebras h and g. In particular,
we denote by hG(k) the set of G-regular elements in hr(k) and, for
XH ∈ hG(k) and X ∈ gr(k), write XH 7→ X whenever the stable orbit
of X is the image of the stable orbit of XH .

Just as we defined orbital integrals on G(k), we may, for X ∈ gr(k),
define the normalized orbital integral µG

X , a distribution on g(k). The
FL for the Lie algebra states that

∑

X′
H
∼XH

µH
X′

H
([h(R)]) =

∑

X∼XH

∆(X, XH) · µG
X([g(R)]).

Here, X ′
H ranges over a set of representatives for H(k)-conjugacy classes

in the stable orbit of XH , and X ranges over a set of representatives for
the G(k)-conjugacy classes in the image of the stable orbit of XH . The
lattice h(R) in h(k) is the Lie algebra analogue of KH (and similarly for
g(R)).

From [12, 45], the FL holds for fields of arbitrary residual charac-
teristic if and only if it holds when the residual characteristic is suffi-
ciently large (here, we think of G as being defined over a number field
of which k is a completion). Thus, from the discussion in Sections 3.1.1
and 3.1.2 about topologically unipotent and nilpotent elements and the
exponential map, it is not hard to imagine that the validity of the FL
is equivalent to the validity of the FL on the Lie algebra. In fact, this
is true.

3.1.4. Fixing a base point. In our discussion of the LLC, we (conjec-
turally) chose the base point π(ϕ, 1) in Π(ϕ) by fixing a regular nilpotent
orbit Om. Before discussing the analogous choice on the Lie algebra,
we must consider the question: What is the Lie algebra analogue of an
L-packet?

If X ∈ gr(k), then we can associate two distributions to X: the
orbital integral µG

X and its Fourier transform µ̂G
X . The Fourier trans-

form10 of µG
X is defined by µ̂G

X(f) := µG
X(f̂) for f ∈ C∞

c (g(k)), where f̂
denotes the Fourier transform of f . According to Harish-Chandra [14]
(see [24] for an excellent summary), for harmonic analysis on g(k), the
distributions µ̂G

X should be thought of as analogues of characters. The
stable orbit of X breaks up into a finite number of G(k)-conjugacy
classes. Suppose {X1 = X, X2, . . . , Xℓ} is a set of representatives for

9In characteristic zero, the centralizer of a semisimple element of the Lie algebra
is always connected, so we drop the word “strongly” from our discussion.

10To define the Fourier transform in the present setting, one must fix a nontrivial
additive character on k and a nondegenerate, bilinear, G(k)-invariant form on g(k).
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these classes. To each Xi, we can associate the distribution µ̂G
Xi

. Then

the set {µ̂G
Xi

| 1 ≤ i ≤ ℓ} is the analogue of an L-packet.
We can now consider how to fix a base point. Recall that Om is our

fixed regular nilpotent orbit in g(k). Thanks to Shelstad [42], the Lie
algebra analogue of the statement that cOm(π) is nonzero for exactly one
element π of a tempered L-packet is known to be true for the “L-packet”
{µ̂G

Xi
| 1 ≤ i ≤ ℓ}.

This result of Shelstad translates into a very elegant solution to
the problem of fixing a base point for the orbital integrals. Choose
Xm ∈ Om. From the Jacobson–Morozov theorem (see, for example, [5,
§5.3]), there exists a k-injection δ : sl2 → g so that

(

0 1
0 0

)

7→ Xm.

Set

Ym = δ(
(

0 0
1 0

)

),

and consider the Kostant section V = Xm + Cg(k)(Ym). For example,
for g = sl3,

Xm =

(

0 1 0
0 0 1
0 0 0

)

,

and the appropriate choice of Ym, we have that V is the set of matrices
of the form

(

0 1 0
a 0 1
b a 0

)

with a, b ∈ k.
Suppose XH is a G-regular semisimple element of h(k) and X ∈

gr(k) is an image of XH , that is, XH 7→ X. It is a fact (see, for
example, [25, §2]) that the stable orbit of X in g(k) intersects V (k) at
exactly one point, say X ′. We let µG

X′ be the base point for the set of
orbital integrals occurring in the right-hand side of the statement of the
FL for the Lie algebra.

3.1.5. Ellipticity. There is one further reduction which may be
made. An element γ ∈ Gr(k) is called elliptic provided that CG(γ)(k)
is compact. For example, if we suppose p 6= 2 and fix ε ∈ R× \ (R×)2,
then the element

(

̟ 0
0 ̟−1

)

is not elliptic in SL2(k), while the element

exp
(

0 ̟
̟ε 0

)

is. A k-torus is said to be elliptic provided that its group of k-points is
compact.

As a warning to the reader, we comment that, unlike in the real or
finite field situation, the number of G(k)-conjugacy classes of elliptic
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tori is, in general, enormous. For example, under suitable conditions on
k, SL2(k) has six, Sp34(k) has

3, 329, 926, 392

and Sp78(k) has

728, 432, 069, 525, 569, 284

G(k)-conjugacy classes of elliptic tori [1].
An endoscopic group H is said to be elliptic provided that there

exist γH ∈ Hr(k) and elliptic γ ∈ Gr(k) so that γH 7→ γ. For example,
the elliptic endoscopic group of PGL2 is PGL2. On the other hand, the
elliptic endoscopic groups of SL2 are SL2 and U1

E , while those of G2 are
G2, PGL3, and SO4.

It follows from standard facts about parabolic induction that it is
sufficient to verify the FL (on the Lie algebra) for the Lie algebras of
elliptic endoscopic groups.

3.2. Asymptotic approach to the FL. In the early 1970s,
Harish-Chandra and R. Howe studied the local behavior of the charac-
ter of an irreducible smooth representation of G(k). In particular, they
established the Harish-Chandra–Howe local character expansion (intro-
duced in Section 2.2.4). At the heart of their proofs was a remarkable
finiteness statement, referred to as “Howe’s conjecture”, about J(g(k)),
the space of G(k)-invariant distributions on g(k).

It is natural to wonder how these finiteness results may be gener-
alized and used in our context. In the 1990s, Waldspurger proved a
very precise version, called a homogeneity result, of Howe’s conjecture
for “unramified classical groups”. We need to introduce some notation
before we can describe it.

3.2.1. Homogeneity results. One version of Howe’s conjecture (which
is a theorem) states that, given a compactly generated, closed, invariant
subset ω of g(k), there exists a lattice L in g(k) so that

resCc(g(k)/L) J(ω) = resCc(g(k)/L) J(N ).

Here, J(N ) denotes the span of the nilpotent orbital integrals (see [37]),
J(ω) denotes the subspace of distributions in J(g(k)) with support in ω,
and, if T ∈ J(g(k)), then resCc(g(k)/L) T denotes the restriction of T to
the space of functions in C∞

c (g(k)) which are invariant under translation
by L.

The homogeneity result Waldspurger obtained can be described as
follows. Let g(k)0 denote the set of compact elements in g(k). (For ex-
ample, an element of sln(k) is compact provided that each of its eigen-
values has nonnegative valuation.) We shall also need a Lie algebra
version of the Iwahori-Hecke algebra. To a facet F in the Bruhat–Tits
building of G(k), we can associate a parahoric subgroup G(k)F and its
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“Lie algebra” g(k)F . For example, g(R) = g(k)F for some facet F . If F
is an (affine) chamber, then G(k)F is an Iwahori subgroup. Define

H :=
∑

C

Cc(g(k)/g(k)C).

Here, the sum is over all chambers C in the Bruhat-Tits building of G.
We then have the following homogeneity result:

resH J(g(k)0) = resH J(N ).

Note that the characteristic function of g(R) is an element of H,
and µG

X([g(R)]) is nonzero only if X ∈ g(k)0. Thus, from the homogene-
ity result, the FL can be viewed as a statement about the finite set of
nilpotent orbital integrals. This divides the problem of verifying the FL
into two subproblems: (1) Describe the stable distributions11 supported
on the nilpotent cone of h(k); and (2) For each such distribution, de-
scribe the corresponding12 distribution supported on the nilpotent cone
of g(k). Unfortunately, this approach has (at least) two problems (be-
yond the difficulty of doing (1) and (2)). First, in order to complete part
(2), one needs to assume a version of the Matching Conjecture (see, for
example, [24]). Second, for X ∈ gr(k) ∩ g(k)0, it is known that

resH µG
X =

∑

O

ΓO(X) · resH µO,

where the sum runs over the nilpotent orbits in g(k), µO is the nilpotent
orbital integral corresponding to O, and ΓO is the Shalika germ attached
to O; but computing Shalika germs is not an easy task.

3.2.2. A brief description. Here is a brief description of how Wald-
spurger proceeds. He shows that, if T ∈ J(g(k)) is stable and D is a
linear combination of nilpotent orbital integrals satisfying

resH T = resH D,

then D is stable. (Moreover, the sum of the summands in D correspond-
ing to orbits of a given fixed dimension is also a stable distribution.) This
result is particularly useful because we have a very good understanding
of where to find a basis for the dual of resH J(g(k)0). Namely, fix an
alcove C in the Bruhat-Tits building of G. Define

H0 =
∑

x≤C

C(g(k){x}/g(k)C).

11A distribution T on g(k) is said to be stable provided that, for f ∈ C∞
c (g(k)),

we have T (f) = 0 if SµG
X(f) = 0 for all X ∈ gr(k). Here SµG

X =
P

i µG
Xi

, where the
sum is over representatives Xi for the G(k)-conjugacy classes in the stable orbit of
X. The measures are chosen to be compatible.

12Since we are no longer dealing with G-regular semisimple elements and their
images in gr(k), we have to work to define the (conjectural) image (in the set of
distributions on g(k)) of a stable distribution on the nilpotent cone of h(k).
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Here the sum is over the vertices x contained in the closure of C, and
C(g(k){x}/g(k)C) denotes the subspace of H of functions with sup-
port in g(k){x}. Waldspurger proves that H0 contains a dual basis for
resH J(g(k)0) – by looking at reductive quotients, this result naturally
leads to questions about finite groups of Lie type.

Because Lusztig’s generalized Green functions (see, for example,
[32]) separate nilpotent orbits in the Lie algebra of a finite group of
Lie type, they naturally arise in the present context. Indeed, a basis for
the dual of resH J(g(k)0) may be obtained by taking the Fourier trans-
form of the inflation of each generalized Green function which occurs on
the Lie algebra of the reductive quotient of a parahoric. Waldspurger
associates to each such generalized Green function G a combination TG

of regular semisimple orbital integrals on g(k). This is good because
the definition of stability for distributions is phrased in terms of regular
semisimple orbital integrals. He is then able to form stable combinations
of the TG , and thus obtains the stable distributions in J(N ).

To calculate the image in J(N ) of a stable distribution in J(Nh), the
set of nilpotent elements in the Lie algebra of an (elliptic) endoscopic
group H, Waldspurger first explicitly calculates the transfer factors.
From the previous paragraph, we have explicit combinations of stable
(regular semisimple) orbital integrals on h(k) which have nice properties
with respect to a basis for the stable distributions supported on Nh. Pick
one such basis element, say T , and consider the associated combination
of stable orbital integrals on h(k). Waldspurger explicitly calculates
the (conjectural) image of this combination of stable orbital integrals,
and then relates this image to a combination of more familiar objects
with which it agrees when restricted to H. He then invokes the above
homogeneity result to identify the (conjectural) image of T in J(N ).

3.3. Geometric results. We discuss some results obtained in the
positive-characteristic setting using geometry. It has recently been an-
nounced that these techniques have been used to prove the FL [35]. I
believe that most of these approaches have their origins in the work of
Kazhdan and Lusztig [20]. Since Waldspurger [46] has shown that the
validity of the FL in positive characteristic implies its validity in char-
acteristic zero (and vice versa), this approach is relevant for the FL in
our setting.

Drop all previous notation.
Let f denote a finite field, and suppose G is a connected reductive

f-group with Lie algebra g. Choose a prime ℓ different from the char-
acteristic of f. Let X denote a smooth projective curve defined over f

and F = f(X) the field of rational functions on X. For each place ν
of F , let Oν denote the completion of OX,ν and Fν the corresponding
completion of F . Let AF denote the adèle ring of F and G(AF ) the
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corresponding group of adèlic points of G. We set G(Ô) :=
∏

ν G(Oν).
We fix an effective divisor D =

∑

ν dνν (of large degree).
The idea of the geometric approach is to use the Grothendieck dic-

tionary relating Q̄ℓ-valued functions on X to sheaves on X by taking the
trace of Frobenius on stalks. Thus, we look for a proof of the FL which
finds an equality between two (perverse) sheaves for which the corre-
sponding functions are the two sides of the FL. Initially, this approach
to the problem produced a solution in two cases: by Kottwitz, Goresky,
and MacPherson in the equi-valued case [8, 9], and by Laumon and
Ngô for unitary groups [31]. The main obstruction to this approach
concerns the “purity” of the objects under consideration. For Laumon
and Ngô, this difficulty was avoided by first proving a global result, and
then deducing the local result from it.

Our goal in what follows is to give some fairly vague idea of how
the approach of Ngô and Laumon proceeds. To do this, we need to
understand the object

M = {(E, ϕ) |E → X is a G-torsor, ϕ ∈ H0(X, ad(E) ⊗OX(D))},

and “count” the number of rational elements in M. (Terminology is
defined below.)

3.3.1. G-torsors. In this section, we allow f to be any field.
A G-torsor, to be denoted E → X, is a smooth f-variety E endowed

with an action G × E → E and an f-morphism E → X so that

(1) the map E → X is flat and surjective, and
(2) the action map G × E → E ×X E is an isomorphism.

The second condition may be thought of as saying that G acts simply
transitively on each fiber of the map E → X.

Example 3.3.1. Take E = G × X. Then projection on the second
factor gives us the G-torsor G × X → X.

Two G-torsors E → X and E′ → X are isomorphic provided that
there exists a G-equivariant X-morphism ϕ : E → E′.

A G-torsor E → X is said to be trivial provided that it is isomorphic
to the G-torsor G×X → X of Example 3.3.1. Equivalently, it is trivial
if there is a section s : X → E.

From a slight modification of the material in [40, III, §1.3], the set of
isomorphism classes of G-torsors of the form E → spec(f) is isomorphic
to H1(f, G).

3.3.2. Application to our setting. We again assume that f is a finite
field.

Suppose E → X is a G-torsor. For a place ν of F , we consider
the G-torsor E ⊗ OX,ν → spec(OX,ν). Using Lang’s “trick” [27] (see
also, [4, §16]), we see that the special fiber Eν → {ν} is a trivial G-
torsor. Since E → X is a smooth morphism and Oν is Henselian, it
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follows that the G-torsor E ⊗ Oν → spec(Oν) admits a section. Thus,
the G-torsor EFν → spec(Fν) is trivial.

Consider the natural map

H1(F, G) →
∏

ν

H1(Fν , G).

From the discussion above, the generic fiber EF → spec(F ) associated
to a G-torsor E → X lies in the group ker1(F, G) := ker(H1(F, G) →
∏

ν H1(Fν , G)).
If E → X is a G-torsor with trivial generic fiber (i.e., EF → spec(F )

is trivial), then, from the above discussion, there is an element s ∈
EF (F ), and, for each place ν, an element eν ∈ E(Oν) ⊂ E(Fν). Since
E(F ) ⊂ E(Fν) for all ν, we can try to compare s and eν at all places.
That is, we can try to measure how far E → X is from being trivial. For
every ν there is a unique gν ∈ G(Fν) such that s = gνeν in E(Fν); and,
for almost all ν, we have gν ∈ G(Oν) (since s, eν ∈ E(Oν) for almost all

ν). Thus, (gν)ν ∈ G(AF ). Its projection into G(F )\G(AF )/G(Ô) is in-
dependent of all choices. Moreover, the map (E → X) 7→ (gν)ν induces
a bijective correspondence between the set of (isomorphism classes of)
G-torsors over X with trivial generic fiber and the double coset space

G(F )\G(AF )/G(Ô).

3.3.3. Completing the definition of M. From the G-torsor E → X
we may construct the GL(g)-torsor Ad(E) → X by setting Ad(E) :=
(E ×X GL(g))/G. (Here G acts so that, in the quotient, “(ge, h) =
(e,Ad(g−1)h)”.) By the equivalence between GLn-torsors and vector
bundles, the GL(g)-torsor Ad(E) → X is trivial Zariski-locally over X
(and not merely étale-locally on X, as is the case for torsors under most
smooth algebraic groups). We denote by ad(E) the Zariski g-bundle
over X which corresponds to the GL(g)-torsor Ad(E) → X.

Recall that OX(D) is the sheaf which associates to a Zariski-open
subset U of X the set of f ∈ F = f(X) for which ordν(f) ≥ −dν for all
ν ∈ U . We then have that

H0(X, ad(E) ⊗OX(D))

is the (finite-dimensional) vector space of sections of ad(E)⊗OX(D) →
X. A calculation with the definitions show that H0(X, ad(E)⊗OX(D))
may be characterized as

{Y ∈ g(F ) : Ad g−1
ν Y ∈ ̟−dν

ν g(Oν) for all ν}

(recall that we have associated (gν)ν ∈ G(AF ) to E).
3.3.4. The end. We let JD denote the principal ideal in AF gener-

ated by an idèle having the local orders prescribed by D. We let [LD]

denote the characteristic function of the subset LD = JD(Ô ⊗f g) of
AF ⊗f g.
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Recall that we wish to “compute” the number of elements in M(f).
This set does not, in general, have finite cardinality. However, ignoring
this, one can make formal calculations which rather convincingly suggest
this is a reasonable direction to look for a proof of the FL on the Lie
algebra. All of the equalities below should be taken with a grain of
salt. Also, at the end of the heuristic, I have swept all of the very
detailed analysis which goes into stabilizing the elliptic part of the trace
formula [23] under the rug.

In each integral below, the measure dg∗ is the appropriate quotient
measure. From our discussions above, one obtains

|M(f)| =
∣

∣ker1(F, G)
∣

∣

∑

Y ∈g(F )

∫

G(F )\G(AF )
[LD](Ad(g−1)Y ) dg∗

Recalling that we are ignoring convergence issues, one may formally
rewrite the above as

|M(f)|

=
∣

∣ker1(F,G)
∣

∣

∑

Y ∈g(F )/G(F )

∑

h∈CG(Y )(F )\G(F )

∫

G(F )\G(AF )

[LD](Ad(g−1h−1)Y )dg∗

=
∣

∣ker1(F,G)
∣

∣

∑

Y ∈g(F )/G(F )

∫

CG(Y )(F )\G(AF )

[LD](Ad(g−1)Y )dg∗

=
∣

∣ker1(F,G)
∣

∣

∑

Y ∈g(F )/G(F )

vol(CG(Y )(F )\CG(Y )(AF ))µY ([LD]),

where

µY ([LD]) =

∫

CG(Y )(AF )\G(AF )
[LD](Ad(g−1)Y ) dg∗.

This is reminiscent of the geometric side of the invariant trace formula.
If we could somehow modify M so that the sum above ran over only
elliptic regular semisimple Y (that is, those Y ∈ G(F ) for which CG(Y )
is an F -anisotropic torus), then we’d be looking at the Lie algebra ver-
sion of the regular elliptic part of the invariant trace formula (see, for
example, [2, §27] or [23]). So, after some tweaking to isolate the regular
elliptic part, one hopes that |M(f)| would be given by a formula like

const
∑

Y ∈gell(F )/G(F )

∑

κ∈π0(ĈG(Y )
Γ
)

µκ
Y ([LD])

where const is a constant, gell(F ) is the set of regular elliptic elements
in g(F ), and

µκ
Y ([LD]) =

∏

ν

∑

Y ′∼Y

κ(Y ′) · µG
Y ′([̟dν

ν g(Oν)])

is a product of κ-orbital integrals (see Section 2.4.2). So, counting the
points on M(f) has brought us back to the FL.
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