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Holographic Algorithms

Jin-Yi Cai

Abstract. Leslie Valiant recently proposed a theory of holo-
graphic algorithms. These novel algorithms achieve exponential
speed-ups for certain computational problems compared to naive
algorithms for the same problems. The methodology uses Pfaffians
and (planar) perfect matchings as basic computational primitives,
and attempts to create exponential cancellations in computation.
In this article we survey this new theory of matchgate computations
and holographic algorithms.

1. Some Historical Background

There have always been two major strands of mathematical thought
since antiquity and across civilizations: Structural Theory and Computa-
tion, as exemplified by Euclid’s Elements and Diophantus’ Arithmetica.
Structural Theory prizes the formulation and proof of structural the-
orems, while Computation seeks efficient algorithmic methods to solve
problems. Of course, these strands of mathematical thought are not
in opposition to each other, but rather they are highly intertwined and
mutually complementary. For example, from Euclid’s Elements we learn
the Euclidean algorithm to find the greatest common divisor of two pos-
itive integers. This algorithm can serve as the first logical step in the
structural derivation of elementary number theory. At the same time,
the correctness and efficiency of this and similar algorithms demand
proofs in a purely structural sense, and use quite a bit more structural
results from number theory [4]. As another example, the computational
difficulty of recognizing primes and the related (but separate) problem
of integer factorization already fascinated Gauss, and are closely tied to
the structural theory of the distribution of primes [21, 1, 2].

The precise formulation of the concept of computation can be traced
to the work of Gödel, Turing, and other logicians in the 1930s, who
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were particularly concerned with foundational questions in mathemat-
ics: What is true, what is a proof, and what is ultimately provable. Out
of such foundational investigations, we arrive at the rigorous concept
of computation and what is, and is not, ultimately computable. This
is considered well established now and is encapsulated by the model of
Turing machines, or by Gödel’s general recursive functions [48].

An important harbinger which motivated much of this development
is Hilbert’s 10th problem, which asks for an algorithmic procedure to
decide whether a general Diophantine equation (a polynomial in several
variables with integer coefficients) has an integer solution. This prob-
lem was finally shown by Matiyasevich in 1970 to admit no algorithm
which can always answer correctly in a finite number of steps [43, 44].
Thus, starting with the work by Gödel, Turing, and others, in answering
Hilbert’s Entscheidungsproblem, computability theory was born.

However, in computability theory, we focus on ultimate computabil-
ity in a logical sense, regardless of how long the computation may last,
as long as it is finite. Starting in the 1960s, a new focus was given for
efficient computations [14, 16, 25]. To capture this notion, complexity
classes were defined; the most prominent among them were the classes
P and NP. Loosely speaking, P denotes the class of all problems which
can be solved by an algorithm whose running time is bounded by a fixed
polynomial in the size of the input. The class P is called deterministic
polynomial time, and is identified with the notion of what is efficiently
computable. The class NP denotes all problems which have the prop-
erty that whenever the answer is Yes for an instance of the problem,
there is a short proof which can be efficiently verified. Here being short
means that the size of the proof is bounded by a polynomial, and be-
ing efficient means that this verification is computable in deterministic
polynomial time.

For example, most computations one does in linear algebra are in
P, such as computing the determinant of an integer matrix, or solving
a linear system of equations with rational coefficients. An archetypical
problem in NP is the Boolean Satisfiability Problem (SAT): Given a
propositional formula Φ in Conjunctive Normal Form (CNF), decide
whether Φ has a satisfying assignment. Here the formula Φ takes the
form Φ =

∧
j Cj , where each Cj is a disjunction of literals x̂j1 ∨ . . .∨ x̂jd

(where a literal x̂j is either the Boolean variable xj or its negation xj),
and a satisfying assignment is a mapping σ : {x1, . . . , xn} → {0, 1},
which assigns a truth value to each variable xi, such that every Cj

evaluates to true.

Many problems from NP have been shown to be NP-complete. This
is a notion borrowed from computability theory. We will not formally
define it, but it means that every problem in NP can be reduced by
a computation in P to any NP-complete problem. It implies that if



HOLOGRAPHIC ALGORITHMS 113

any NP-complete problem is solvable in P, then every problem in NP
is solvable in P. Examples of NP-complete problems include the above
mentioned SAT, Graph 3-Coloring (given a graph, is it 3-colorable),
Hamiltonicity (given a graph, does it contain a Hamiltonian circuit),
and thousands more [19]. Typically, to solve an NP-complete problem
it seems to require the examination of exponentially many possibili-
ties. Whether this is intrinsically the case, is a major open problem
in Theoretical Computer Science and in Mathematics, and is known as
the P vs. NP problem [13]. Cook [15] was the first to introduce NP-
completeness and proved that the problem SAT is NP-complete. He also
proved that some restricted versions of SAT, called 3SAT, where each
clause Cj contains 3 literals, are also NP-complete. (Note, however, the
2SAT problem where each clause has 2 literals is in P.) Soon afterwards,
Karp [29] proved a host of other problems to be NP-complete, mak-
ing NP-completeness a ubiquitous tool to prove (relative) intractability.
Levin [34] in the former Soviet Union independently discovered NP-
completeness.

There are many other complexity classes, e.g., the polynomial time
hierarchy PH (the 0th level and the first level of PH are P and NP respec-
tively), PSPACE, which denotes all problems computable in polynomial
bounded space complexity, and a class introduced by Valiant called #P.
A function is in #P if it counts the number of solutions to an instance
of a problem in NP. A typical function in #P is to count the number of
satisfying assignments to a Boolean formula, or the number of Traveling
Salesman tours under a certain threshold for a given graph, etc. It is
known that the trivial containment P ⊆ NP ⊆ PH ⊆ PSPACE holds.
Also trivially #P can compute NP and can be computed in PSPACE.
A well known theorem by Toda [50] says that the class #P is at least
as hard as PH. Thus #P-completeness is harder than NP-completeness,
assuming the standard complexity theory hypothesis that the polyno-
mial time hierarchy does not collapse. From P to PSPACE none of
the above containments is known to be proper, although they are all
conjectured to be.

All these classes at or above NP seem to require exponential time
computation. However, the apparent need to examine exponentially
many possibilities could be misleading for certain problems. There are
some problems which may appear to require this exponential blow-up,
but in fact do not, i.e., there are ingenious and sometimes complicated
algorithms, which provably solve a problem in polynomial time. An
example is the Perfect Matching problem: Given any undirected graph,
decide whether there is a perfect matching, i.e., a subset M of edges such
that every vertex is incident to exactly one edge in M . Edmonds [16]
proved that the Perfect Matching problem is solvable in P (and in fact
this motivated the concept of P initially.)
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Another surprisingly good algorithm is the Fisher-Kestelyan-Tem-
perley method, which can count the number of perfect matchings in a
planar graph in polynomial time [30, 31, 49]. For weighted graphs, this
method can find the sum of all weights of perfect matchings M , where
the weight of a perfect matching M is the product of all the weights
of the matching edges in M . The counting version corresponds to the
special case where all edge weights are one. Roughly speaking, this al-
gorithm works as follows. First it assigns a suitable factor of ±1 to each
weighted edge of the planar graph, and then it computes the Pfaffian
of (the skew-symmetric adjacency matrix of) the modified graph. As
the computation of a Pfaffian is essentially of the same complexity as
the determinant, this algorithm is in polynomial time. Valiant’s new
holographic algorithms will use this remarkable algorithm as a basic
component in its operations.

In this article, we will survey the new algorithm design method
called holographic algorithms. This method uses perfect matching as
a basic coding technique to encode computations, and then the FKT-
algorithm to carry out the final computation. A particularly innovative
idea is to choose a set of linear basis vectors to express and interpret
a desired computation. In effect, the algorithm is designed to manip-
ulate sums of perfect matchings in superpositions, while the speed up
is achieved by cancellations among such “holographic mixes”. These
holographic algorithms are quite unlike anything before, except perhaps
quantum algorithms. At the heart of the computation is a process of
introducing and then cancelling exponentially many computational frag-
ments. But unlike quantum algorithms, these holographic algorithms
produce classical polynomial time algorithms. So far this method has
produced some exotic algorithms for problems which were not known
to be in P previously, and minor variations of which are known to be
NP-complete or NP-hard.

The most intriguing question is whether this new theory can lead
to any collapse of complexity classes. We contend that our belief of NP
6= P is based on the sense and experience that the usual algorithmic
paradigms are insufficient for NP-hard problems (we don’t have strong
lower bounds for general models of computation). But does our erst-
while experience apply to these new exotic algorithms? If the answer
is no, then it is conceivable that the new methodology may lead to a
radically revised conception of P vs. NP. Of course it is quite possi-
ble that the theory of holographic algorithms does not in the end lead
to any collapse of complexity classes. But even in this eventuality, as
Valiant suggested in [54], “any proof of P 6= NP may need to explain,
and not only to imply, the unsolvability” of NP-hard problems using
this approach.

In Section 2 we will start with some basic definitions on holographic
algorithms. In Section 3 we describe some specific problems for which
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there are holographic algorithms showing that the problems belong to P.
In Section 4 we discuss symmetric signatures. In Section 5 we consider
admissibility and realizability of signatures. In Section 6 we consider a
class of general unsymmetric signatures.

2. Preliminaries

In this section we give some basic definitions. Terminologies from
the theory of holographic algorithms have been mostly introduced by
Valiant [52, 54, 53], but we also include some modifications from [7, 8].

Let G = (V, E, W ) be a weighted undirected graph, where V is the
set of vertices represented by integers k1 < k2 < . . . < kn, E is the set of
edges, and W denotes the weights of the edges. We represent the graph
by a skew-symmetric matrix M , called the (skew-symmetric adjacency)
matrix of G, where M(i, j) = w(ki, kj) if i < j, M(i, j) = −w(kj , ki) if
i > j, and M(i, i) = 0.

The Pfaffian of an n× n skew-symmetric matrix M is defined to be
0 if n is odd, 1 if n is 0, and if n = 2k where k > 0 then it is defined as

Pf(M) =
∑

π

ǫπw(i1, i2)w(i3, i4) . . . w(i2k−1, i2k),

where

• π =

(
1 2 . . . n
i1 i2 . . . in

)
is a permutation,

• summation is over all permutations π where i1 < i2, i3 <
i4, . . . , i2k−1 < i2k and i1 < i3 < . . . < i2k−1, and

• ǫπ ∈ {−1, 1} is the sign of the permutation π, i.e., +1 for even
permutations and −1 for odd permutations. Another equiva-
lent definition of ǫπ is that it is the sign or parity of the number
of overlapping pairs where a pair of edges (i2r−1, i2r), (i2s−1, i2s)
is overlapping iff i2r−1 < i2s−1 < i2r < i2s or i2s−1 < i2r−1 <
i2s < i2r.

The Pfaffian is computable in polynomial time. In particular, (Pf(M))2

= det(M).
In the notation for the Pfaffian Pf(i1, . . . , ir) of a submatrix con-

sisting of rows and columns i1, . . . , ir, we implicitly assume the indices
are in increasing order i1 < . . . < ir. If i1, . . . , ir are not in increasing
order, the sign will vary according to the parity of the permutation, e.g.,
Pf(i2, i1, . . . , ir) = −Pf(i1, i2, . . . , ir) and so on.

A matching is a subset of edges such that no two edges share a
common vertex. A perfect matching is a matching which matches all
vertices.

There is a graph-theoretic interpretation of the Pfaffian. If M is the
matrix of a graph G, then there is a one-to-one correspondence between
monomials in the Pfaffian and perfect matchings in G. The monomial
w(i1, i2) . . . w(i2k−1, i2k) in Pf(M) corresponds to the perfect matching
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{(i1, i2), . . . , (i2k−1, i2k)} in G. The condition on the permutation im-
plies that every perfect matching corresponds to exactly one monomial.
The coefficient ǫπ of this monomial is the parity of the number of over-
lapping pairs of edges, in the sense defined earlier.

The following theorem states the Grassmann-Plücker identities.

Theorem 2.1 ([46]). For any n×n skew-symmetric matrix M , and
for any I = {i1, . . . , iK} ⊆ [n] and J = {j1, . . . , jL} ⊆ [n], the following
are called the Grassmann-Plücker identities,

(1)
L∑

l=1

(−1)lPf(jl, i1, . . . , iK)Pf(j1, . . . , ĵl, . . . , jL)

+
K∑

k=1

(−1)kPf(i1, . . . , îk, . . . , iK)Pf(ik, j1, . . . , jL) = 0

where the notation ĵ denotes that this entry j is deleted.

Now we will restrict to planar graphs. A (planar) matchgate is a
planar graph with some external nodes labeled as input and/or output
nodes. We will only define matchgates with only input or only output
nodes. Let G = (V, E, W ), G′ = (V ′, E′, W ′) be weighted undirected
planar graphs. A generator matchgate Γ is a tuple (G, X) where X ⊂ V
is a set of external output nodes. A recognizer matchgate Γ′ is a tuple
(G′, Y ) where Y ⊂ V ′ is a set of external input nodes. The external
nodes are ordered counter-clock wise on the external face. Γ is called
an odd (resp. even) matchgate if it has an odd (resp. even) number
of nodes. As combinatorial objects, a generator matchgate and a rec-
ognizer matchgate have no difference. It is the way they are used and
how their assigned signature tensors are transformed which distinguish
them.

Let b = [b0,b1] =

[(
1
0

)
,

(
0
1

)]
denote the standard basis of a

vector space V . Define PerfMatch(G) =
∑

M

∏
(i,j)∈M wij to be the

sum over all perfect matchings M in G. Each matchgate is assigned
a signature tensor. A generator Γ with m output nodes is assigned
a contravariant tensor G ∈ V m

0 of type
(
m
0

)
. This tensor under the

standard basis b has the form
∑

Gi1i2...imbi1 ⊗ bi2 ⊗ · · · ⊗ bim ,

where

Gi1i2...im = PerfMatch(G − Z),

and where Z is the subset of the output nodes having the characteristic
sequence χZ = i1i2 . . . im. Similarly, a recognizer Γ′ with m input nodes
is assigned a covariant tensor R ∈ V 0

m of type
(

0
m

)
. This tensor under
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the standard (dual) basis b∗ has the form
∑

Ri1i2...imbi1 ⊗ bi2 ⊗ · · · ⊗ bim ,

where

Ri1i2...im = PerfMatch(G′ − Z),

where Z is the subset of the input nodes having χZ = i1i2 . . . im.
In particular, G transforms as a contravariant tensor under a basis

transformation βj =
∑

i bit
i
j ,

(G′)i′1i′2...i′m =
∑

Gi1i2...im t̃
i′1
i1

t̃
i′2
i2

. . . t̃
i′m
im

,

where (t̃ij) is the inverse matrix of (tij). Similarly, R transforms as a
covariant tensor, namely

(R′)i′1i′2...i′m
=
∑

Ri1i2...imti1
i′1

ti2
i′2

. . . timi′m
.

A signature is symmetric, if each entry only depends on the Ham-
ming weight of the index. This notion is invariant under basis transfor-
mations. A symmetric signature is denoted by [σ0, σ1, . . . , σm].

A matchgrid Ω = (A, B, C) is a weighted planar graph consisting
of a disjoint union of: a set of g generators A = (A1, . . . , Ag), a set
of r recognizers B = (B1, . . . , Br), and a set of f connecting edges
C = (C1, . . . , Cf ), where each Ci edge has weight 1 and joins an output
node of a generator with a input node of a recognizer, so that every
input and output node in every constituent matchgate has exactly one
such incident connecting edge.

Let G =
⊗g

i=1 G(Ai) be the tensor product of all the generator
signatures, and let R =

⊗r
j=1 R(Bj) be the tensor product of all the

recognizer signatures. Then Holant(Ω) is defined to be the contraction
of the two product tensors, under some basis β, where the corresponding
indices match up according to the f connecting edges Ck.

Valiant’s Holant Theorem is

Theorem 2.2 (Valiant). For any matchgrid Ω over any basis β, let
G be its underlying weighted graph; then

Holant(Ω) = PerfMatch(G).

The FKT algorithm can compute the perfect matching polynomial
PerfMatch(G) for a planar graph in polynomial time. The complexity
of this algorithm is essentially the evaluation of a Pfaffian of a (modifed)
skew-symmetric matrix of the graph.

3. Some Holographic Algorithms

In this section, we list some problems which can be solved in poly-
nomial time using holographic algorithms. The first several problems
are all taken from the initial paper by Valiant [54].
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We start with an “ice” problem motivated by statistical physics. An
orientation of an undirected graph G is an assignment of a direction to
each of its edges. An ice problem involves counting the number of ori-
entations such that certain local constraints are satisfied. Pauling [47]
initially proposed such a model for planar square lattices, where the
constraint was that an orientation had to have incoming and outgoing
degree two at every node. The question of determining how the num-
ber of such orientations grows for various planar repeating structures
has been analyzed [38, 39, 40, 41, 5, 58]. However, more generally
the range of natural counting problems for graph-theoretic problems for
which there are polynomial time algorithms is very limited, including
for “ice” problems.

#PL-3-NAE-ICE

Input: A planar graph G = (V, E) of maximum degree 3.
Output: The number of orientations such that no node has all the
edges directed towards it or all the edges directed away from it.

To solve this problem by a holographic algorithm, we design a
matchgrid as follows: We represent each node of degree three in V by a
recognizer matchgate with signature (0, 1, 1, 1, 1, 1, 1, 0). This represents
a NOT-ALL-EQUAL or NAE gate. For any degree two node we use a
recognizer matchgate with the binary NAE (i.e. NOT-EQUAL) gate
signature (0, 1, 1, 0). For each edge in E we use a generator matchgate
with signature (0, 1, 1, 0), which stands for an orientation from either
of the two nodes to the other one (i.e., either β0 ⊗ β1 or β1 ⊗ β0, but
not β0 ⊗β0 nor β1 ⊗β1). Then we connect the external nodes of these
matchgates by an edge of weight 1, in a one-to-one fashion according to
the given planar graph G. Now consider the exponential sum evaluated
in the definition of the Holant under this basis β. Each term in the sum
is a product of 0’s and 1’s which come from the appropriate entries of
the signatures of the matchgates in the matchgrid. Each term is indexed
by an assignment on every connecting edge between external nodes of
these matchgates, which can be either β0 or β1. Then it is not hard
to see, when this exponential sum is evaluated over the basis β, each
term is 0 or 1, and it is 1 iff it corresponds to an orientation of every
edge such that at each vertex the local NOT-ALL-EQUAL constraint
is satisfied. Thus, it follows that the Holant is precisely the number of
valid orientations required by #PL-3-NAE-ICE. While we express the
solution by the Holant under the basis β, algorithmically we evaluate
the Holant by the FKT algorithm.

In the next section we will discuss the question of realizability of
these signatures. We will see that these signatures are all realizable in

the Hadamard basis

[(
1
1

)
,

(
1
−1

)]
(this is called b2 in [54]).
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The next problem is a Satisfiability problem.

#PL-3-NAE-SAT

Input: A planar formula Φ consisting of a conjunction of NOT-ALL-
EQUAL clauses each of size 3.
Output: The number satisfying assignments of Φ.

This is a constrained satisfiability problem, where we are given a
planar formula which is a Boolean conjunction of NOT-ALL-EQUAL
clauses. Lichtenstein [37] defined the notion of planar formulae. A
Boolean formula is planar if it can be represented by a planar graph
where vertices represent variables and clauses, and there is an edge
iff the variable or literal appears in that clause. The SAT problem
is where the gate for each clause is the Boolean OR. When SAT is
restricted to planar formulae it is still NP-complete. Moreover, for many
connectives other than NOT-ALL-EQUAL (e.g., EXACTLY-ONE), the
unrestricted or the planar decision problems are still NP-complete, and
the corresponding counting problems are #P-complete [27].

To solve this problem by a holographic algorithm, we represent each
NOT-ALL-EQUAL gate with the recognizer signature (0, 1, 1, 1, 1, 1,
1, 0), and represent a Boolean variable having fan-out k with the gener-
ator signature for EQUALITY, namely β0 ⊗β0 ⊗ · · · ⊗β0 + β1 ⊗β1 ⊗
· · · ⊗ β1 = (1, 0, . . . , 0, 1) (there are 2k − 2 zeroes). Again we will see in
the next section these signatures are realizable in the Hadamard basis.

The next problem is essentially a decision problem, rather than a count-
ing problem.

PL-NODE-BIPARTITION

Input: A planar graph G = (V, E) of maximum degree 3.
Output: The cardinality of a smallest subset V ′ ⊂ V such that the
deletion of V ′ and its incident edges results in a bipartite graph.

This problem is known to be NP-complete for maximum degree
6 [33]. See [35] for a general approach to such “node deletion” prob-
lems. Note that numerous other planar NP-complete problems, such
as Hamiltonian cycles and minimum vertex covers, are NP-complete
already for degree 3 (e.g., [20], and [19]).

For this problem, Valiant introduced another idea of applying the
general machinery of the Holant. We will see that with an arbitrary
real value x, the recognizer signature (x, 1, 1, 1, 1, 1, 1, x) and (x, 1, 1, x)
are both realizable, and moreover it is simultaneously realizable with
the generator signature (0, 1, 1, 0), all over the Hadamard basis. The
signature (0, 1, 1, 0) can be used to effect an ORIENTATION gate. Now
if we use the ORIENTATION gate for an edge, and the above recognizer
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signatures for a node of degree 3 or 2 respectively, then a node that has
its incident edges either all oriented away from it or all oriented toward
it will contribute a factor x. In the other cases, namely when some
edges are oriented away from it and some are oriented toward it, the
node will contribute a factor 1. These terms are then summed up in the
exponential sum in the Holant, which we evaluate over the Hadamard
basis where the signatures are realized. Thus, in the final outcome,
the Holant is a polynomial in x, where the largest i for which xi has
a non-zero coefficient is exactly the maximum number of nodes that a
bipartite graph can have that is obtained by deleting nodes and incident
edges from G.

Now this polynomial can have maximum possible degree at most
|V |. Thus by evaluating the Holant at |V | + 1 distinct values of x, we
can interpolate the polynomial and reconstruct it. Consequently, we
can find its actual degree d, which gives |V | − d as the answer to the
instance of PL-NODE-BIPARTITION.

We also note that if instead of considering node deletion we con-
sider edge deletion, this is just another way of defining the well known
problem of MAX-CUT, which is NP-hard (and even NP-hard to ap-
proximate [22, 3, 26]). The holographic algorithm by Valiant above is
the first polynomial time algorithm for PL-NODE-BIPARTITION [54].
On the other hand, planar MAX-CUT is known to be in P [24]. In [6]
a joint generalization was shown to be also solvable in polynomial time
by holographic algorithms.

PL-NODE-EDGE-BIPARTITION

Input: A planar graph G = (V, E) of maximum degree 3. A non-
negative integer k ≤ |V |.
Output: The minimal l such that deletion of at most k nodes (including
all of their incident edges) and l more edges results in a bipartite graph.

The holographic algorithm for this problem is slightly more com-
plicated, but follows generally the same methodology as Valiant’s algo-
rithm for PL-NODE-BIPARTITION. The interpolation method is again
crucial.

We now consider a matching problem. We note that Jerrum [28] showed
that counting the number of (not necessarily perfect) matchings in a
planar graph is #P-complete, and Vadhan [51] subsequently proved
that it remains #P-complete even for planar bipartite graphs of degree
six. For degree two the problem can be solved easily, and one might have
conjectured that all other nontrivial cases are #P-complete. However,
Valiant showed that the following problem can be solved in polynomial
time.
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#X-MATCHINGS

Input: A planar weighted bipartite graph G = (V, E, W ) where V has
bipartition V1, V2 and the nodes in V1 have degree 2.
Output: The sum of the masses of all matchings of all sizes where
the mass of a matching is the product of (i) the weights of all the edges
present in the matching, as well as of the quantity, (ii) “−(w1+. . .+wk)”
for all the V2 nodes that are not matched, where w1, . . . , wk are the
weights of the edges incident to that (unmatched) node.

Note that if every V2 node has degree 4 and every edge has weight
one, then computing #X-MATCHINGS gives the number of matchings,
but each weighted by (−4)k, where k is the number of unmatched V2

nodes. Computing this mod 5 gives the number of matchings mod 5.
At this point we may want to pause and reflect a bit. While the

factor −(w1+ . . .+wk) may appear contrived, there is nothing contrived
about mod 5. In fact, one will be hard pressed to think of any other
polynomial time algorithm computing this problem mod 5. One may
have conjectured that it is complete for Mod5P, a complexity class which
is hard for NP under randomized reductions.

To solve this problem, we use a different basis β =

[(
1
−1

)
,

(
1
0

)]
.

Valiant showed that suitable signatures can be realized under this basis
with appropriate matchgates [54].

This problem is motivated by its proximity to counting the number
of (not necessarily perfect) matchings in a planar graph, which is #P-
complete [28]. Still, the quantity −(w1+. . .+wk) seems a little artificial.
If one were to be able to replace −(w1 + . . . + wk) by 1, then one would
be able to count all (not necessarily perfect) matchings in such planar
bipartite graphs. In [6] we proved that a direct adaptation with suitable
signatures by dropping the −(w1 + . . . + wk) factor cannot be done by
a holographic algorithm. In that paper we defined a restricted class
of holographic algorithms called holographic templates. Without going
into the formal definitions of holographic templates, we quote

Theorem 3.1. There is no holographic template using any basis of
two linearly independent vectors to solve the counting problem for all
(not necessarily perfect) matchings for these graphs, which is the same
as the above problem with −(w1 + . . . + wk) replaced by 1.

Now we consider a curious Satisfiability counting problem.

#7Pl-Rtw-Mon-3CNF

Input: A planar 3CNF Boolean formula where each variable appears
positively and in exactly two clauses (Planar, Read-Twice, Monotone,
3CNF.)
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Output: Count the number of satisfying assignments modulo 7.

Let us first consider simply the counting problem for this restricted
class of Boolean formulae, which is denoted as #Pl-Rtw-Mon-3CNF.
This problem is known to be #P-complete. For a given planar, read-
twice, monotone formula Φ, we can express its number of satisfying
assignments as an exponential sum in the form of a Holant as fol-
lows: For each clause C in Φ with 3 variables we would like the sig-
nature RC = (0, 1, 1, 1, 1, 1, 1, 1), where the entries are indexed by 3 bits
b1b2b3 ∈ {0, 1}3. Here b1b2b3 corresponds to a truth assignment to the
3 variables. Therefore, RC corresponds to a Boolean OR gate. Sup-
pose in the formula Φ a Boolean variable x appears in two clauses C
and C ′. Then we would like to have the signature Gx = (1, 0, 0, 1)T,
indexed by b1b2 ∈ {0, 1}2, to indicate that the fan-out value from x
to C and C ′ must be consistent, i.e., they must be either 00 or 11.
Then we form the tensor products as in the construction of a Holant,
R =

⊗
C RC and G =

⊗
x Gx. Suppose in the planar formula Φ there

are exactly e edges connecting various x’s to various C’s; then both
R and G have e indices, each taking values in {0, 1}, and both tensors
have 2e entries. The indices of R = (Ri1i2...ie) and G = (Gi1i2...ie) match
up one-to-one according to which x appears in which C. Then the ex-
ponential sum 〈R,G〉 =

∑
i1,i2,...,ie∈{0,1} Ri1i2...ieG

i1i2...ie counts exactly

the number of satisfying assignments to Φ. This is because each tuple
(i1, i2, . . . , ie) ∈ {0, 1}e assigns a value 0 or 1 to each connecting edge,
and the product Ri1i2...ieG

i1i2...ie is 1 when this is a consistent assign-
ment of truth values to each variable and the truth assignment satisfies
each clause; the product value is 0 otherwise.

Now the question is whether one can find all the needed signatures.
(If one could, then P = NP = #P.) It turns out that these signatures are
not realizable over the field C of characteristic 0, but they are realizable
over a field of characteristic 7. This gives the polynomial time algorithm
for the problem #7Pl-Rtw-Mon-3CNF.

We note that in addition to the #P-completeness of the counting
problem itself, it is also known that counting mod 2, i.e., #2Pl-Rtw-
Mon-3CNF is NP-hard by a randomized reduction. Put in this context,
this success with counting mod 7 is rather extraordinary. One might
not have guessed that solving the problem modulo 7 is any easier than
solving it mod 2 (or is it?). Finding the signatures and matchgates
in the mod 7 case comes about by algebraic means, and is not intu-
itively obvious. Likewise, to show that suitable signatures exist only in
characteristic 7 is also obtained algebraically, and not combinatorially
obvious.
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This brings us to the central interest of this subject, at least to this
author. Our generally accepted conjecture of NP 6= P is just a con-
jecture. We think it has been supported by our experience with the
usual algorithmic paradigms which seem not to be applicable to NP-
hard problems. But we don’t have strong provable lower bounds for
general models of computation. In the meanwhile, holographic algo-
rithms produce exotic algorithms for which we have little experience.
Our current conception of what a polynomial time algorithm can do
may be inadequate. It is even conceivable that they lead to a collapse
of complexity classes. So the attraction is from a complexity theoretic
perspective. It is not so much about the particular problems that can
be solved by this approach, but what it says to us about the limitations
and unfamiliar ways of doing polynomial time computation, and our
inadequate understanding of the ultimate reach of all polynomial time
algorithms. For NP 6= P and other standard conjectures in complexity
theory to remain credible, we feel that they should all be re-examined
against this new algorithm design paradigm.

We think the first step to develop the theory of holographic algo-
rithms is to develop a coherent theory of realizable signatures. The
search for a holographic algorithm for a particular combinatorial prob-
lem typically boils down to the existence of suitable signatures in a
suitable tensor space. In general, realizability is specified by a family
of algebraic equations called Matchgate Identities (MGI). This will be
discussed in Section 5. These families of equations are non-linear, expo-
nential in size, and difficult to handle. But whenever we find a suitable
solution, we get an exotic polynomial time algorithm. Searching for
these signatures is what Valiant called the “enumerative” form in [57].
Quoting Valiant [57]: “The objects enumerated are sets of polynomial
systems such that the solvability of any one member would give a poly-
nomial time algorithm for a specific problem . . . the situation with the
P = NP question is not dissimilar to that of other unresolved enumera-
tive conjectures in mathematics. The possibility that accidental or freak
objects in the enumeration exist cannot be discounted, if the objects in
the enumeration have not been systematically studied previously.”

We now return to the problem #7Pl-Rtw-Mon-3CNF. There is an-
other aspect that is remarkable about Valiant’s solution of this prob-
lem [57]. In holographic algorithms, since the underlying computation
is ultimately reduced to perfect matchings, the linear basis vectors which
express the computation are necessarily of dimension 2k, for some inte-
ger k. This k is called the size of the basis. Most holographic algorithms
so far [54, 7, 6, 57] use bases of size 1. (In this survey we have restricted
the discussion to bases of size 1.) Surprisingly, Valiant’s algorithm for
#7Pl-Rtw-Mon-3CNF used a basis of size 2. Utilizing bases of a higher
dimension has always been a theoretical possibility, which may further
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extend the reach of holographic algorithms. Valiant’s algorithm makes
it realistic, and this freedom would have given us an infinite set of pos-
sibilities in which an exotic or “freak” object may materialize, leading
to the collapse of complexity classes.

However, it has been shown that a universal bases collapse theo-
rem [12] holds for holographic algorithms: Any holographic algorithm
using two basis vectors of arbitrary size k can be simulated by a holo-
graphic algorithm using another basis of size 1. This cuts off a poten-
tially infinite family of possible ways to achieve a collapse of complexity
classes. However, holographic algorithms may use more than two bases
vectors as well as in higher dimensions. In that case, whether there is
a universal bases collapse is still open. Interested readers are referred
to [11, 12] for more details.

Finally, we consider a geometric problem.

2-COLOR-COUNTING

Input: Given a set S of n points on a plane, where no three points are
colinear. Also given a set of straight line segments between some pairs
of points in S. We assume no 3 line segments intersect at a point ( 6∈ S).
Every point of S is incident to either 2 or 3 line segments.
Output: The number of 2-colorings for the line segments which satisfy
the following conditions: (1) for every point in S, the incident line
segments are not monochromatic; (2) when two line segments cross over
each other, they have different colors.

For most holographic algorithms, the signatures needed are typi-
cally symmetric signatures which will be discussed in more detail in
Section 4. For this problem 2-COLOR-COUNTING we will use un-
symmetric signatures in our holographic algorithm. The theory of un-
symmetric signatures have not been fully developed. The existence of
the unsymmetric signatures for 2-COLOR-COUNTING follows from a
difficult classification theorem in Section 6.

Another notable feature about 2-COLOR-COUNTING is that the
problem is not a priori stated for a planar graph. It is in the process of
forming the matchgrid that we obtain a planar graph.

There are several more problems that have been solved using holo-
graphic algorithms [54, 57, 7, 6, 10]. Interested readers are referred
to these papers for more details.

4. Symmetric Signatures

As seen from the examples, the general outline of the design of a
holographic algorithm consists of two parts as follows: (1) some suitable
linear basis vectors and (2) some suitable matchgates. Typically a lin-
ear basis consists of two linearly independent vectors β = [β0, β1]. The
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matchgates are used in two dual roles, as generators and recognizers.
Before the basis transformation there is no real difference between gener-
ators and recognizers; they both define standard signatures Gi1i2...im =
PerfMatch(G−Z) ( and similarly Ri1i2...im), where Z is the subset of the
output nodes having the characteristic sequence χZ = i1i2 . . . im. How-
ever, the idea is to transform these standard signatures under the basis

transformation βj =
∑

i bit
i
j , where b =

[(
1
0

)
,

(
0
1

)]
is the standard

basis, to produce the signatures

(G′)i′1i′2...i′m =
∑

Gi1i2...im t̃
i′1
i1

t̃
i′2
i2

. . . t̃
i′m
im

, and (R′)i′1i′2...i′m

=
∑

Ri1i2...imti1
i′1

ti2
i′2

. . . timi′m
,

which are the entities that have some intended meanings.
For example, to express the meaning of Boolean OR of three bits,

we want a recognizer signature which has dimension 8, and indexed by
three bits b1b2b3 ∈ {0, 1}3, namely (0, 1, 1, 1, 1, 1, 1, 1). This indicates
that for the input bit pattern 000, this signature assigns the multiplier
0 and thus does not “recognize” it, but for all other “satisfiable” input
bit patterns this signature assigns the multiplier 1, and thus “accepts”
them. Clearly this signature is suitable for the problem of 3SAT for
Boolean Satisfiability on the clause side. Note that this 8-dimensional
tensor is not realizable by a matchgate as a standard signature. In this
case we can give a simple reason for it. Standard signatures must satisfy
the parity constraint, namely either all entries indexed by bit patterns
with odd Hamming weights are zero or all entries indexed by bit patterns
with even Hammming weights are zero. This parity constraint is a
simple consequence of being a perfect matching. Later we will discuss
more subtle constraints, called Matchgate Identities.

However, while (0, 1, 1, 1, 1, 1, 1, 1) cannot be realized as a standard
signature, under a suitable basis transformation, it can be realized as a
signature. More concretely, if we take the basis

[(
1 + ω
1 − ω

)
,

(
1
1

)]
,

where ω3 = 1 is a primitive third root of unity, then there in fact exists
a matchgate with three external nodes with the standard signature

(Ri1i2i3) = (0, 1, 1, 1, 1, 1, 1, 1)

((
1 + ω 1
1 − ω 1

)−1
)⊗3

.
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Indeed, we can calculate, up to a scalar multiple of 1/8,

((
1+ω 1
1−ω 1

)−1
)⊗3

is



1 −1 −1 1 −1 1 1 −1
−1 + ω 1 + ω 1 − ω −1 − ω 1 − ω −1 − ω −1 + ω 1 + ω
−1 + ω 1 − ω 1 + ω −1 − ω 1 − ω −1 + ω −1 − ω 1 + ω
−3ω −2 − ω −2 − ω ω 3ω 2 + ω 2 + ω −ω

−1 + ω 1 − ω 1 − ω −1 + ω 1 + ω −1 − ω −1 − ω 1 + ω
−3ω −2 − ω 3ω 2 + ω −2 − ω ω 2 + ω −ω
−3ω 3ω −2 − ω 2 + ω −2 − ω 2 + ω ω −ω

3 + 6ω 3 3 −1 − 2ω 3 −1 − 2ω −1 − 2ω −1




and by adding the last 7 rows we get

(Ri1i2i3) =
1

4
(0, 1, 1, 0, 1, 0, 0, 1).

This is realizable as the standard signature of a planar matchgate with
three external nodes; for example, we can take a disjoint union of an
edge with weight 1/4, together with a triangle. The 3 edges of the
triangle all have weight 1 and the 3 vertices are the external nodes.

The signature (0, 1, 1, 1, 1, 1, 1, 1) is a symmetric signature, i.e., the
value of each entry only depends on the Hamming weight of the index.
This notion is invariant under a basis transformation. A symmetric
signature of arity m is denoted by a more compact notation with m+1
entries (instead of 2m entries), [z0, z1, . . . , zm], where zi denotes the
signature value at an entry of index of weight i. Thus the Boolean OR
signature above on 3 bits is denoted as [0, 1, 1, 1].

Symmetric signatures are often convenient for the design of holo-
graphic algorithms, as they have easily interpretable combinatorial
meanings. For symmetric signatures Cai and Lu [9] have achieved a
complete characterization of their realizability. These tell us exactly
what signatures can be realized over some bases.

Theorem 4.1. A symmetric signature [x0, x1, . . . , xm] for a recog-

nizer is realizable under the basis β = [n, p] =

[(
n0

n1

)
,

(
p0

p1

)]
iff it takes

one of the following forms:

• Form 1: there exist (arbitrary) constants λ, s, t and ǫ where
ǫ = ±1, such that for all i, 0 ≤ i ≤ m,

(2) xi = λ[(sn0 + tn1)
m−i(sp0 + tp1)

i + ǫ(sn0 − tn1)
m−i(sp0 − tp1)

i].

• Form 2: there exist (arbitrary) constants λ, such that for all
i, 0 ≤ i ≤ m,

(3) xi = λ[(m − i)n0(p1)
i(n1)

m−1−i + ip0(p1)
i−1(n1)

m−i].
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• Form 3: there exist (arbitrary) constants λ, such that for all
i, 0 ≤ i ≤ m,

(4) xi = λ[(m − i)n1(p0)
i(n0)

m−1−i + ip1(p0)
i−1(n0)

m−i].

A similar theorem holds for generators. These theorems are proved
by applying the Matchgate Identities. See Section 5.

There is another characterization theorem, assuming the character-
istic of the field p 6= 2 and p 6 | m.

Theorem 4.2. A symmetric signature [x0, x1, . . . , xm] is realizable
on some basis of size 1 iff there exist three constants a, b, c (not all zero),
such that ∀k, 0 ≤ k ≤ m − 2,

(5) axk + bxk+1 + cxk+2 = 0.

These characterization theorems are very informative, but they do
not tell the whole story. To construct a holographic algorithm, one
needs to realize some generators and recognizers simultaneously.

To discuss this simultaneous realizability, we first need the following
simple lemma:

Lemma 4.1 (Valiant, [54]). If there is a generator (recognizer)

with a certain signature for size one basis

[(
n0

n1

)
,

(
p0

p1

)]
then there

is a generator (recognizer) with the same signature for size one basis[(
xn0

yn1

)
,

(
xp0

yp1

)]
or

[(
xn1

yn0

)
,

(
xp1

yp0

)]
for any x, y ∈ F and xy 6= 0.

This leads to the following definition of an equivalence relation:

Definition 4.1. Two bases β = [n, p] =

[(
n0

n1

)
,

(
p0

p1

)]
and β′ =

[n′, p′] =

[(
n′

0

n′
1

)
,

(
p′0
p′1

)]
are equivalent, denoted by β ∼ β′, iff there

exist x, y ∈ F∗ such that

n′
0 = xn0, p

′
0 = xp0, n

′
1 = yn1, p

′
1 = yp1,

or

n′
0 = xn1, p

′
0 = xp1, n

′
1 = yn0, p

′
1 = yp0.

Lemma 4.2. GL2(F)/ ∼ is a two dimensional manifold (for F = C
or R). For F = R, M is topologically a Möbius strip.

We call this the basis manifold M. From now on we identify a basis
β with its equivalence class containing it. When it is permissible, we

use the dehomogenized coordinates

(
1 x
1 y

)
to represent a point (i.e., a

basis class) in M. We will assume char.F 6= 2.
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In terms of M, a given generator (recognizer) defines a (possibly
empty) subvariety which consists of all the bases over which it is re-
alizable. The simultaneous realizability is equivalent to a non-empty
intersection of these subvarieties. Thus, we have to go beyond Theo-
rem 4.1 and Theorem 4.2. For every signature which is realizable ac-
cording to these theorems, we need to determine the subvariety where
it is realizable.

Definition 4.2.
Let Brec([x0, x1, . . . , xn]) (resp. Bgen([x0, x1, . . . , xn])) be the set of

all possible bases in M for which a symmetric signature [x0, x1, . . . , xn]
for a recognizer (resp. a generator) is realizable. We also use Brec(R)
and Bgen(G) for possibly unsymmetric signatures.

We will state the results for the recognizers. The results for the
generators are similar. Since the identical zero signature is realizable
in every basis, we will assume the signature is non-zero in the following
discussion.

The following lemmas give a complete and mutually exclusive list of
realizable symmetric signatures for recognizers.

Lemma 4.3.

Brec([a
m, am−1b, . . . , bm]) =

{[(
a
n1

)
,

(
b
p1

)]
∈ M

∣∣∣∣n1, p1 ∈ F

}
.

Remark: Every signature with arity m = 1 is trivially of this form.

Lemma 4.4.

Brec([x0, x1, x2]) =

{[(
n0

n1

)
,

(
p0

p1

)]

∈ M
∣∣∣ x0p

2
1 − 2x1p1n1 + x2n

2
1 = 0, x0p

2
0 − 2x1p0n0 + x2n

2
0 = 0

or x0p0p1 − x1(n0p1 + n1p0) + x2n0n1 = 0

}
.

In the following the matchgate arity m is ≥ 3.

Lemma 4.5. Let λ1 6= 0. Suppose p = char.F 6 |m,

Brec([0, 0, . . . , 0, λ1, λ2]) =

{[(
0

mλ1

)
,

(
1
λ2

)]}
.

For p|m and λ2 = 0,

Brec([0, 0, . . . , 0, λ1, 0]) =

{[(
0
n1

)
,

(
1
p1

)]
∈ M

∣∣∣∣n1, p1 ∈ F

}
.

For p|m and λ2 6= 0, then [0, 0, . . . , 0, λ1, λ2] is not realizable.

Lemma 4.6. For AB 6= 0,

Brec([A, Aα, Aα2, . . . , Aαm + B]) =

{[(
1
1

)
,

(
α + ω
α − ω

)]∣∣∣∣ω
m = ±B

A

}
.
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For example, the EQUALITY gate (1, 0, . . . , 0, 1) (there are 2m − 2
zeroes) that was used for #PL-3-NAE-SAT can be obtained by choosing
A = B = 1 and α = 0.

In terms of the formulation from Theorem 4.2, the other cases of
Theorem 4.2 have the property that the a, b and c (in the theorem
statement) are unique up to a scaling factor and c 6= 0. So we have a
unique characteristic equation cx2 + bx + a = 0, which has two roots α
and β. If α 6= β, we have the following lemma:

Lemma 4.7. For AB 6= 0 and α 6= β,

Brec([Aαi + Bβi|i = 0, 1, . . . , m])

=

{[(
1 + ω
1 − ω

)
,

(
α + βω
α − βω

)]∣∣∣∣ω
m = ±B

A

}
.

Remark: We denote 00 = 1.
For example, the NOT-ALL-EQUAL gates of arity 3 can be obtained

by choosing A = 1, B = −1, and choosing α, β to be the two roots of
x2 − x + 1 = 0. Then we have

Brec([0, 1, 1, 0]) =

{[(
1 + ω
1 − ω

)
,

(
α + βω
α − βω

)]∣∣∣∣ω
3 = ±1

}
.

Notice that α3 = −1 and αβ = 1, let ω = α, we have (using ∼ on M)
[(

1 + ω
1 − ω

)
,

(
α + βω
α − βω

)]
=

[(
1 + α
1 − α

)
,

(
α + 1
α − 1

)]
=

[(
1
1

)
,

(
1
−1

)]
,

arriving at the Hadamard basis.
However, we can only realize the symmetric NAE signatures [0, 1, 0]

and [0, 1, 1, 0] of arity 2 and 3. For m > 3 the symmetric signature
[0, 1, 1, . . . , 1, 0] (there are m − 1 1’s) is not realizable. (This was first
proved in [6] by a complicated proof; but it follows from these char-
acterization theorems as an easy consequence.) This explains why for
many problems solved by holographic algorithms there is a restriction
of “maximum degree 3”.

If α = β, we have the following lemma:

Lemma 4.8. Let p = char.F and let A 6= 0.
Case 1: p = 0 or p 6 |m.

Brec([Aiαi−1 + Bαi|i = 0, 1, . . . , m]) =

{[(
1
B

)
,

(
α

mA + Bα

)]}
.

Case 2: p|m and x0 = 0; in this case, the signature is of the form
Aiαi−1.

Brec([Aiαi−1|i = 0, 1, . . . , m]) =

{[(
1
n1

)
,

(
α
p1

)]
∈ M

∣∣∣∣n1, p1 ∈ F

}
.

Case 3: p|m and x0 6= 0. Then it’s not realizable.
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Remark: If α = 0, and i = 0, we still denote iαi−1 = 0, and also
αi = 1.

Definition 4.3. The Simultaneous Realizability Problem (SRP):
Input: A set of symmetric signatures for generators and/or recognizers.
Output: A common basis of these signatures if any basis exists; “NO”
if they are not simultaneously realizable.

Algorithm:
For every signature [x0, x1, . . . , xm], check if it satisfies Theorem 4.2.
If not, output “NO” and halt.
Otherwise find Bgen([x0, x1, . . . , xm]) or Brec([x0, x1, . . . , xm]) ac-

cording to one of the Lemmas.
Check if these subvarieties have a non-empty intersection.
Theorem 4.3. This is a polynomial time algorithm for SRP.

With the help of these characterization theorems, we can have a
better understanding of, for example, why mod 7 is the only modulus
that works for #7Pl-Rtw-Mon-3CNF. Moreover, we can obtain non-
trivial generalizations to all Mersenne numbers of the form 2k − 1.

#2k−1Pl-Rtw-Mon-kCNF

Input: A planar kCNF Boolean formula which is monotone and read-
twice.
Output: Count the number of satisfying assignments modulo 2k − 1.

We can also find some other exotic holographic algorithms.

#k+12/k-X-MATCHINGS

Input: A planar bipartite graph G = (V1, V2, E). Nodes in V1 and V2

have degrees 2 and k respectively.
Output: The number mod (k+1) of all (not necessarily perfect) match-
ings.

5. Admissibility and Realizability

The theory of symmetric signatures has been satisfactorily devel-
oped. Symmetric signatures are particularly useful because they have
clear combinatorial meanings. However, general (i.e., unsymmetric) sig-
natures can also be useful. To understand completely the power of
holographic algorithms, we must also study unsymmetric signatures as
well. (In the following, we discuss generators only; the situation for
recognizers is similar.)

We will denote the contravariant tensor for a generator in the
form implicitly under a basis, G = (GS) where S ⊂ [m], and GS =

GχS(1)χS(2)...χS(m). A generator signature G is realizable on a basis β
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iff the standard signature G = β⊗mG can be realized by some planar
matchgate.

There are two conditions for a standard signature to be realizable:

Parity Constraint: Either GS = 0 for all |S| even, or GS = 0 for all
|S| odd.
Matchgate Identities: G satisfies all the useful Grassmann-Plücker
identities.

The Parity Constraint is a consequence of the properties of being a
perfect matching. Namely, if a matchgate realizing the signature has an
even number of nodes (these are called even matchgates), then GS = 0
for all |S| odd; similarly for matchgates with an odd number of nodes
(odd matchgates), GS = 0 for all |S| even.

The Matchgate Identities are derived from the Grassmann-Plücker
identities (1), and can be stated as follows:

A pattern α is an m-bit string, i.e., α ∈ {0, 1}m. A position vector
P = {pi}, i ∈ [l], is a subsequence of {1, 2, . . . , m}, i.e., pi ∈ [m] and
p1 < p2 < · · · < pl. We also use p to denote the m-bit string, whose
(p1, p2, . . . , pl)-th bits are 1 and others are 0. Let ei ∈ {0, 1}m be the
pattern with 1 in the i-th bit and 0 elsewhere. Let α+β be the pattern
obtained from bitwise XOR the patterns α and β. Then for any pattern
α ∈ {0, 1}m and any position vector P = {pi}, i ∈ [l], we have the
following identity:

(6)
l∑

i=1

(−1)iGα+epi Gα+p+epi = 0.

Theorem 5.1 ([6, 8]). A tensor G = (Gi1,...,im) is realizable as the
standard signature of some planar matchgate iff it satisfies all the Parity
Constraint and (6) for all α and P .

Prior to introducing holographic algorithms, Valiant had written a
highly influential paper [52] in which he introduced (not necessarily pla-
nar) matchgates, and the theory of matchcircuits and characters associ-
ated with these (general, non-planar) matchgates. Valiant showed that
a non-trivial fragment of quantum circuit computation can be simulated
by these matchcircuits in polynomial time. In this matchcircuit theory,
each matchgate Γ is assigned a character χ(Γ), somewhat similar to a
signature. They are defined in terms of Pfaffians, together with a care-
fully defined factor called the “modifier”, which is designed to produce
the right sign factors when a composition theorem for the matchcircuit
is proved. We do not intend to discuss this theory in much detail in
this survey, but the proof of Theorem 5.1 is ultimately connected to
this Pfaffian based character theory. It is achieved in two steps. We
first achieve a complete algebraic characterization of realizable charac-
ter tensors: A necessary and sufficient condition for a tensor to be the
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character tensor of some (general, not necessarily planar) matchgate.
This characterization is in terms of a set of useful Grassmann-Plücker
identities [8].

The second step is to prove a unification between the match-
circuit/character theory and the matchgrid/signature theory [6, 8].
Roughly speaking, this unification is proved as follows. Given a pla-
nar matchgate with a standard signature G, defined by the perfect
matching polynomial PerfMatch, one can use the FKT algorithm to
show that each entry of G is equal to the Pfaffian of a submatrix of a
single skew-symmetric matrix with a corresponding set of appropriate
rows and columns deleted. This becomes an entry of the character of
a matchgate. The FKT algorithm is applied simultaneously to the ex-
ponentially many induced subgraphs of the original planar matchgate
with various external nodes removed. Due to a property of the FKT al-
gorithm, it gives a single consistent orientation to produce the modified
weighted graph, which is good for all entries of the signature to char-
acter identification. The reverse direction is more interesting. We take
a general (not necessarily planar) matchgate Γ with a character χ(Γ),
and realize it as the signature of a planar matchgate. This is done by an
embedding of all the vertices of Γ on a convex curve in the given order
as in Γ, and then replacing each physical crossing of a pair of edges by
a planar crossover gadget. This produces a planar matchgate Γ′. One
then argues that the PerfMatch value for each signature entry of Γ′ is
the same as the corresponding Pfaffian value of the character χ(Γ).

It follows that the set of useful Grassmann-Plücker identities also
applies to signatures of planar matchgates, as necessary and sufficient
conditions. Theorem 5.1 follows from that.

If we apply this to the class of symmetric signatures, we have

Lemma 5.1. Suppose Γ is an even matchgate with symmetric stan-
dard signature [z0, . . . , zm]. Then for all odd i, zi = 0, and there exist
r1 and r2 not both zero, such that for every even 2 ≤ k ≤ m,

r1zk−2 = r2zk.

A similar statement holds for odd matchgates.
For m ≤ 3 the condition r1zk−2 = r2zk is always satisfiable for some

r1 and r2 not both zero.
Let m ≥ 4, we use matchgate identities (6). Consider the pattern

1000α where α has Hamming weight 2i, and 0 ≤ 2i ≤ m − 4. Let the
position vector be 11110 . . . 0. Then (6) gives

G0000αG1111α − G1100αG0011α + G1010αG0101α − G1001αG0110α = 0.

It follows from symmetry that the last two terms cancel, and we get
z2iz2i+4 = (z2i+2)

2.
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Also, if m is even, then consider the pattern 1000α and the position
vector 1111β, where α = 0m−4 and β = 1m−4. Then we have

G0000αG1111β −G1100αG0011β + G1010αG0101β − G1001αG0110β ± . . . = 0.

The terms cancel except the first two, from which we get z0zm = z2zm−2.
Similarly, if m is odd, we consider the pattern 1000 . . . 0 and the position
vector 1111 . . . 10 and we can get z0zm−1 = z2zm−3.

The lemma follows from this.
Combining even and odd matchgates we have

Theorem 5.2. A symmetric signature [z0, . . . , zm] is realizable as
the standard signature of a planar matchgate with even cardinality iff
for all odd i, zi = 0, and there exist constants r1, r2 and λ, such that
z2i = λ · (r1)

⌊m/2⌋−i · (r2)
i, for 0 ≤ i ≤ ⌊m

2 ⌋.
A symmetric signature [z0, . . . , zm] is realizable as the standard sig-

nature of a planar matchgate with odd cardinality iff for all even i,
zi = 0, and there exist constants r1, r2 and λ, such that z2i−1 =
λ · (r1)

⌈m/2⌉−i · (r2)
i−1, for 1 ≤ i ≤ ⌈m

2 ⌉.
Theorem 5.2 is the first step in the proof of the characterization

theorems of Section 4.

To isolate the requirements for signature tensors, we introduce a
new concept called admissibility.

Definition 5.1. A tensor G of arity n is admissible as a generator
on a basis β iff G = β⊗nG satisfies the Parity Constraint. Let Bp

gen(G)
denote the subset of M for which G is admissible as a generator.

By definition we have Bgen(G) ⊆ Bp
gen(G) for all G.

Definition 5.2. A generator G is called d-realizable (resp. d-
admissible) for an integer d ≥ 0 iff Bgen(G) ⊂ M (resp. Bp

gen(G) ⊂ M)
is a (non-empty) algebraic subset of dimension at least d.

By definition, if a generator G is d-realizable, then it is d-admissible.

Remark: Since M has dimension two, 2-realizability is universal real-
izability, which means that G is realizable on any basis. This is because
the conditions defining realizability are polynomial equations (with co-
efficients from (GS), and variables on M). If there is at least one poly-
nomial which is not identically 0, the algebraic set has dimension ≤ 1.
Using any 2-realizable signature is a freebie in the design of holographic
algorithms; it places no restriction on the rest of the design. Therefore,
they are particularly desirable.

The following theorem is a complete characterization of 2-admissibil-
ity over fields of characteristic 0. It uses rank estimates related to the
Kneser Graph KG2k+1,k [32, 42, 45, 17, 18, 23, 36].
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Theorem 5.3. Let G be a tensor of arity n. G is 2-admissible iff

(1) n = 2k is even;
(2) all GS = 0 except for |S| = k; and
(3) for all T ⊂ [n] with |T | = k + 1,

(7)
∑

S⊂T,|S|=k

GS = 0.

The solution space is a linear subspace of dimension the Catalan number
1

k+1

(
2k
k

)
.

Consider all subsets of [n] of a certain cardinality. Let 0 ≤ k ≤
ℓ ≤ n, and let Ak,ℓ,n denote the

(
n
k

)
×
(
n
ℓ

)
Boolean matrix indexed

by (A, B), where A, B ⊂ [n] and |A| = k, |B| = ℓ, and the entry
at (A, B) is χ[A⊂B]. It is known that over the rationals Q, the rank

rk(Ak,ℓ,n) = min{
(
n
k

)
,
(
n
ℓ

)
} [17, 18, 23, 36]. The situation with finite

characteristic p is interesting and is more involved. For example, Linial
and Rothschild [36] prove exact rank formula for characteristic 2 and
3. The rank “defect” compared to the characteristic 0 case provides
more admissible signatures. For the rest of this article, we will focus on
characteristic 0.

We restate the definition of d-admissibility in more detail.

Definition 5.3. G = (GS)S⊂[n] is called d-admissible if the follow-
ing algebraic variety V has dimension at least d, where V = V0∪V1 ⊂ M,
and V0 (resp. V1) is defined by the set of all parity requirements for the
generator signature of an odd (resp. even) matchgate.

More precisely, consider V0. We take a point (in dehomogenized

coordinates)

(
1 x
1 y

)
∈ M. We also denote x0 = x, x1 = y. Let T ⊂ [n]

with |T | even. Then we require
〈

n⊗

σ=1

[1, x[σ∈T ]], G

〉
= 0.

Similarly we define V1, where we require that all |T | be odd.
We note that

(8)

〈
n⊗

σ=1

[1, x[σ∈T ]], G

〉
=

∑

0≤i≤n−|T |

0 ≤ j ≤ |T |

xiyj
∑

A ⊂ T c, |A| = i
B ⊂ T, |B| = j

GA∪B.

If dim(V ) = 2, then either dim(V0) = 2 or dim(V1) = 2. For
dim(V0) = 2, we have the following: For all T ⊂ [n] with |T | even,
and for all 0 ≤ i ≤ n − |T | and 0 ≤ j ≤ |T |,
(9)

∑

A⊂T c,B⊂T,|A|=i,|B|=j

GA∪B = 0.
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(If there is one equation not satisfied, then there is at least one
non-trivial polynomial among the parity requirements, which implies
dim(V0) ≤ 1.) For dim(V1) = 2, the above holds for all |T | odd. Con-
tinuing with dim(V0) = 2, by taking i = 0, we get for all T ⊂ [n] with
|T | even, and j ≤ |T |,

(10)
∑

S⊂T,|S|=j

GS = 0.

Also by taking j = 0, we get for all i ≤ n − |T |,
∑

S⊂T c,|S|=i

GS = 0.

If S ⊂ [n] with |S| even, then we may take T = S and j = |T |, and
it follows that

GS = 0.

If n is odd, then T is even and T c is odd, and together they range
over all possible subsets of [n]. It follows that

GS = 0,

for all S ⊂ [n]. That is, G is trivial.
An identical argument also shows that for dim(V1) = 2 and n odd,

the trivial G ≡ 0 is the only possibility.
Now we assume n = 2k is even, and continue with dim(V0) = 2.

Both T and T c are even. Pick any T even and i = n − |T |, and we get
∑

A⊂T c,B⊂T,|A|=i,|B|=j

GA∪B =
∑

S⊃T c,|S|=i+j

GS = 0,

i.e., for all even T ′ ⊂ [n] and all i ≥ |T ′|,

(11)
∑

S⊃T ′,|S|=i

GS = 0.

If |S| = i < k, we form the following system of equations from (10),
∑

S⊂T,|S|=i

GS = 0,

where T ranges over all subsets of [n] with |T | = t, and t = i or i + 1,
whichever is even. This linear system has rank

(
n
i

)
. It follows that

GS = 0 for all |S| < k.
Similarly, if |S| = i > k, we can use (11) with |T | = i or i − 1,

whichever is even, and sum over all subsets S containing T . This linear
system also has rank

(
n
i

)
. It follows that GS = 0 for all |S| > k.

Therefore the only non-zero entries of G are among GS with half
weight |S| = k. Also with dim(V0) = 2, we may assume k is odd.
Otherwise, we already know GS = 0 for all |S| even.
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A similar argument for V1 shows that, in order for dim(V1) = 2, we
must have n = 2k even, all GS = 0 except for |S| = k and k is even.

Summarizing, we have

Lemma 5.2. If G is 2-admissible, then n = 2k is even, all GS = 0
except for |S| = k. If k is odd (resp. even) then the only possibility
is dim(V0) = 2 (resp. dim(V1) = 2). Moreover, for all T ⊂ [n] with
|T | = k + 1,

(12)
∑

S⊂T,|S|=k

GS = 0.

Next we prove that the conditions in Lemma 5.2 are also sufficient
for G being 2-admissible, i.e., we prove (9), and thus all the polynomials
in (8) are identically zero.

Suppose k odd. We prove dim(V0) = 2. A similar argument does
for k even and dim(V1) = 2. We only need to verify (9) for all i+ j = k,
namely for all T ⊂ [n] with |T | even, and for all 0 ≤ i ≤ n − |T |, and
0 ≤ j = k − i ≤ |T |,

(13)
∑

A⊂T c,B⊂T,|A|=i,|B|=k−i

GA∪B = 0.

Denote by t = |T | and s = n − |T |. By symmetry of T and T c (both
being even subsets of [n]) we may assume s ≤ t. Since k is odd, we have
the strict s < t, for otherwise s = t = k would be odd.

We prove (13) by induction on i ≥ 0. For the base case i = 0, j = k,
we consider all U ⊂ T with |U | = k + 1. Note that as t ≥ k + 1, this is
not vacuous. By (12) we have

∑

S⊂U,|S|=k

GS = 0.

Summing over all such U , and considering how many times each S ⊂ [n]
with |S| = k appears in the sum, we get
(14) ∑

A ⊂ T c, |A| = 0

B ⊂ T, |B| = k

GA∪B =
∑

S⊂T,|S|=k

GS =
1(

t−k
1

)
∑

U ⊂ T
|U | = k + 1

∑

S⊂U,|S|=k

GS = 0.

Inductively we assume (13) has been proved for i−1, for some i ≥ 1.
Consider i and j = k− i. We may assume i ≤ s; otherwise we are done.
Also k − i + 1 ≤ t. Consider all subsets U = U1 ∪ U2 ⊂ [n], where
U1 ⊂ T c, U2 ⊂ T , with |U1| = i and |U2| = k − i + 1. Note that
|U | = k + 1. We have

0 =
∑

S⊂U,|S|=k

GS =
∑

A⊂U1,|A|=i−1

GA∪U2 +
∑

B⊂U2,|B|=k−i

GU1∪B,
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as all sets S ⊂ U with |S| = k are classified into two classes according
to whether |S ∩ U1| = i − 1 or i. Then summing over all such U ,

0 =
∑

U

∑

S⊂U,|S|=k

GS =

(
s − (i − 1)

1

) ∑

A ⊂ T c, |A| = i − 1

B ⊂ T, |B| = k − i + 1

GA∪B

+

(
t − (k − i)

1

) ∑

A ⊂ T c, |A| = i
B ⊂ T, |B| = k − i

GA∪B,

by considering how many times each S of the two classes appears in
the sum

∑
U

∑
S . Since the first sum is 0 by inductive hypothesis, and

t − k + i ≥ 1, the second sum is also zero. Thus
∑

A⊂T c,B⊂T,|A|=i,|B|=k−i

GA∪B = 0.

This proves Theorem 5.3.
The next theorem shows that any basis transformation on a 2-

admissible G is just a scaling.

Theorem 5.4.

If G is 2-admissible with arity 2k, then ∀β =

(
n0 p0

n1 p1

)
∈ M,

β⊗2kG = (n0p1 − n1p0)
kG.

Corollary 5.1. If G is 2-admissible and realizable on some basis
(e.g., on the standard basis), then it is 2-realizable.

6. A Class of General Signatures

The basis b2 =

[(
1
1

)
,

(
1
−1

)]
is probably the most successful basis

in the design of holographical algorithms.
Consider the following extension of b2

B2 =

{[(
n0

n1

)
,

(
p0

p1

)]
∈ GL2(C)

∣∣∣∣n0p1 + n1p0 = 0

}
.

Note that b2 ∈ B2.

We will use dehomogenized coordinates

(
1 x
1 −x

)
for notational

simplicity.
We will discuss a complete characterization theorem of all the sig-

natures of arity n which are realizable on B2. The plan is to first give a
characterization of all the signatures which are admissible on B2. Then
we apply the set of all MGIs to them to get the characterization theo-
rem.

For the parity constraint, we assume they are admissible as odd
matchgate signatures (the case of even matchgates is similar). Consider
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an arbitrary

(
1 x
1 −x

)
∈ B2, where non-singularity implies that x 6= 0.

Under a basis transformation G =

(
1 x
1 −x

)⊗n

G, the entry

(15)

GT =

〈
n⊗

σ=1

[1, (−1)χ[σ∈T ]x], G

〉
=

∑

0≤i≤n−|T |

0 ≤ j ≤ |T |

xi(−x)j
∑

A ⊂ T c, |A| = i
B ⊂ T, |B| = j

GA∪B.

The polynomials should be identically zero when |T | is even. This
is the necessary and sufficient condition for G to be admissible on B2.
Thus, for any T with |T | even, the coefficient of xi in the polynomial of
(15) is

(16)
∑

|S|=i

(−1)|S∩T |GS = 0.

When T ranges over all even subsets, we have a linear system for GS .
Thus we get n + 1 linear equation systems according to the weight of
S; the i-th linear system, 0 ≤ i ≤ n, is over the set of variables GS

with |S| = i, where the equations are indexed by subsets T with even
cardinality. We define the coefficient matrix of the system as M , which
is indexed by T and S. Then we have the following calculation of MTM :
(17)

(MTM)S1,S2 =
∑

|T | is even

(−1)|S1∩T |(−1)|S2∩T | =
∑

|T | is even

(−1)|(S1⊕S2)∩T |.

There are three cases: If S1 ⊕ S2 = ∅, or if S1 ⊕ S2 = [n], we have∑
|T | is even(−1)|(S1⊕S2)∩T | = 2n−1.

The third case is S1 ⊕ S2 6= ∅ and S1 ⊕ S2 6= [n]. We can take two
elements a and b such that a ∈ S1 ⊕ S2 and b 6∈ S1 ⊕ S2. Then we can
give a perfect matching of all the even subsets T by matching T and
T ⊕ {a, b} together. For each pair of T and T ⊕ {a, b}, one contributes
a +1 and the other contributes a −1 in (17). They cancel out by each

other, so overall we have
∑

|T | is even(−1)|(S1⊕S2)∩T | = 0.

Now for the i-th system, for i = |S| 6= n/2, the case S1 ⊕ S2 = [n]
does not occur. So the matrix MTM is 2n−1I, which means that GS = 0,
for all |S| 6= n/2. (In particular, only trivial G ≡ 0 exists for n odd.)

If |S| = n/2, the n/2-th linear system gives GS = −GSc

. For the
even matchgate case (|T | is odd), it gives GS = GSc

. This is also
sufficient. So we have the following theorem, which completely solves
the problem of admissibility for B2:

Theorem 6.1. For a signature G with arity n, G is admissible on
B2 iff there exists ǫ = ±1 such that GS = 0 for all |S| 6= n/2 and
GS = ǫGSc

for all |S| = n/2.
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Now we move on to the more difficult question of realizability. Re-
alizability is more difficult than admissibility because it is controlled
by the set of Matchgate Identities (MGI). These MGI are not only ex-
ponential in size, but also non-linear. We will apply all the MGIs to
the signatures in the above theorem to get our characterization theorem
over B2.

For a β =

(
1 x
1 −x

)
∈ B2, let G = β⊗nG. The problem is to

characterize when G is realizable by an even matchgate as a standard
signature. (The case for odd matchgate is similar.) From Theorem 6.1,
we know that GS = 0 for all |S| 6= n/2, and GS = GSc

for all |S| = n/2.
(For odd matchgates it would be GS = −GSc

; we omit it here.) By the
basis transformation G = β⊗nG, we have (T is even):

GT = xn/2
∑

|S|=n/2

(−1)|T∩S|GS .

In the above equation, when substituted in any MGI, xn/2 is just a
global scaling factor. So we can just let x = 1, without changing its
realizability.

We consider an arbitrary MGI of G: for a pattern set A (|A| is odd),
position set P (|P | is even), we have

0 =

|P |∑

i=1

(−1)iGA⊕{pi}GA⊕P⊕{pi}

=

|P |∑

i=1

(−1)i
∑

|S1|=n/2

(−1)|(A⊕{pi})∩S1|GS1
∑

|S2|=n/2

(−1)|(A⊕P⊕{pi})∩S2|GS2

=
∑

|S1|=|S2|=n/2

GS1GS2

|P |∑

i=1

(−1)i(−1)|(A⊕{pi})∩S1|(−1)|(A⊕P⊕{pi})∩S2|.

Over all odd A and even P these are also sufficient conditions. Note
that for even matchgates, both A and A ⊕ P must be odd (so that the
single bit flips A ⊕ {pi} and A ⊕ P ⊕ {pi} are even).

Because the sets A ⊕ {pi} and A ⊕ P ⊕ {pi} are both even, the
coefficients of the four terms GS1GS2 , GS1GSc

2 , GSc
1GS2 and GSc

1GSc
2 are

all equal. Therefore we can combine these four terms (and divide by 4)
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and have

0 =
∑

|S1|=|S2|=n/2, 1∈S1∩S2

GS1GS2

·
|P |∑

i=1

(−1)i(−1)|(A⊕{pi})∩S1|(−1)|(A⊕P⊕{pi})∩S2|

=
∑

|S1|=|S2|=n/2, 1∈S1∩S2

GS1GS2(−1)|A∩(S1⊕S2)|(−1)|P∩S2|

·
|P |∑

i=1

(−1)i(−1)|{pi}∩(S1⊕S2)|.

Here we identify a set X ⊂ [n] with its characteristic vector in our
notations. We call an X a single run iff it is ∅, or [n], or it consists of a
contiguous segment of 0’s and then 1’s, in a circular fashion. We have
the following theorem.

Theorem 6.2. For a signature G with arity n, G is realizable on
B2 iff there exists ǫ = ±1 such that

(1) GS = 0 for all |S| 6= n/2;
(2) GS = ǫGSc

for all |S| = n/2; and
(3) for any pair (S1, S2), if GS1GS2 6= 0, then S1 ⊕ S2 is a single

run.

Proof. First we denote X = S1 ⊕ S2 and use S instead of S2 in
the above MGI (we note that X is an even set and 1 6∈ X):

(18)
∑

|X| is even, 16∈X

(−1)|A∩X|

·
∑

|S|=|S⊕X|=n/2, 1∈S

GSGS⊕X(−1)|P∩S|

|P |∑

i=1

(−1)i(−1)|{pi}∩X| = 0.

The above equation is valid for all odd sets A and even sets P . We
define a set of valuables Y (X, P ) as

Y (X, P ) =
∑

|S|=|S⊕X|=n/2, 1∈S

GSGS⊕X(−1)|P∩S|

|P |∑

i=1

(−1)i(−1)|{pi}∩X|.

We fix an arbitrary even P . Then letting A go through all the odd sets,
we have a linear system for the valuables Y (X, P ) from (18), where the
variables are indexed by even X not containing 1, and the equations are
indexed by odd A. The coefficient matrix of this system is ((−1)|A∩X|).
This matrix has full rank, which can be proved similarly as in the two
out of three cases for (17). Note that for two X1 and X2, we have
X1 ⊕ X2 6= [n], because 1 6∈ X1 ⊕ X2.
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Therefore, we have for any even P and any even X with 1 6∈ X,

(19)
∑

|S|=|S⊕X|=n/2, 1∈S

GSGS⊕X(−1)|P∩S|

|P |∑

i=1

(−1)i(−1)|{pi}∩X| = 0.

Now we will fix an even X with 1 6∈ X, and view (19) as a linear
system on the variables GSGS⊕X , where the equations are indexed by
all even P .

First we show that if X is a single run, then (19) always holds. If
P ∩ X is even, since X is a single run and is even, and P is even, it
follows that there are an even number of elements in both P ∩ X and
P ∩ Xc. A moment reflection shows that

∑|P |
i=1(−1)i(−1)|{pi}∩X| = 0.

If P ∩ X is odd, then by symmetry of S to S ⊕ X, the combined
coefficient of GSGS⊕X = GS⊕XGS is (−1)|P∩S| + (−1)|P∩(S⊕X)| =

(−1)|P∩S|[1 + (−1)|P∩X|]. When P ∩ X is odd, this is 0. So we proved
the “if” part of this theorem.

Now we prove that the conditions in Theorem 6.2 are also necessary.
We will show that in order to satisfy all the MGI, for any even X with
1 6∈ X, if X is not a single run, then for all S, GSGS⊕X = 0. This is more
difficult. The crux of the proof is to show that a certain exponential
sized matrix has mutually orthogonal columns, a matrix which we don’t
even give an explicit formula for its dimension.

Fix an even X with 1 6∈ X. We assume X is not a single run. Then
we can pick a particular P with 4 elements, such that p1 < p2 < p3 < p4,
and p2, p4 ∈ X and p1, p3 6∈ X. This can be done greedily, e.g., pick
p1 = 1 (we know that 1 6∈ X). Then run from 1, 2, 3, . . . till the first
i ∈ X. That is our p2. Since X is not a single run, by our definition
X 6= ∅ in particular. So p2 exists. Then the first one after that which is
not in X is p3. Being not a single run, such a p3 must exist. Then there
must be another one after p3, which belongs to X, again by X being
not a single run. This is our p4 ∈ X. Now for this particular P , we can

see that
∑|P |

i=1(−1)i(−1)|{pi}∩X| 6= 0 .
For a fixed even X with 1 6∈ X, and X is not a single run, consider

the linear equation system:

For all even P such that
∑|P |

i=1(−1)i(−1)|{pi}∩X| 6= 0, and P ∩ X is
also even,

(20)
∑

|S|=|S⊕X|=n/2, 1∈S

(−1)|P∩S|GSGS⊕X = 0.

Here the variables are all “GSGS⊕X”, where |S| = |S⊕X| = n/2, 1 ∈ S.
Note that, as shown above, if P ∩ X is odd, then the combined coeffi-
cients of GSGS⊕X = GS⊕XGS are zero in (19). (That proof does not de-
pend on X being a single run or not.) For P ∩X is even, the coefficients
of GSGS⊕X = GS⊕XGS are the same, which can be combined. Con-
sequently in (20) we combine the coefficients of GSGS⊕X = GS⊕XGS ,
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but only consider for P ∩X even. After this identification, the equation
system in (20) (for a fixed X satisfying the conditions) has equations
indexed by the P ’s satisfying its stated conditions, and has variables
GSGS⊕X after the identification S with S ⊕ X. They range over un-
ordered pairs {S, S ⊕ X} obtained by taking 1, and exactly half the

elements of X and exactly n
2 − |X|

2 − 1 elements of [n] − {1} − X. We
will not give a closed-form formula for the number of equations indexed
by the P ’s; nevertheless, we will show that columns of the matrix of the
linear system (20) are mutually orthogonal!

In the following, when we say, consider two “distinct” S and S′ in
this equation system, we have the following property: S ⊕S′ is not any
of the four sets: ∅, [n], X, Xc. (Not equal to ∅ because they are distinct;
not equal to [n] because both contain 1; not equal to X because of the
above identification; and finally not equal to Xc because 1 6∈ S⊕S′ and
yet 1 ∈ Xc.)

Our goal is to show, for the linear equation system (20), the columns
of “distinct” S and S′ are orthogonal. First some comments. We will
not use explicitly below the fact that X is not a single run to show
orthogonality. Not being a single run was used to show that the column
coefficient vectors in (19) are non-zero (for these vectors the entries are
indexed by P as P runs through all the appropriate sets, the set of
vectors is indexed by various S). In going from (19) to (20), we have
already taken that into account.

We had proved earlier that for X not a single run, there exists some

position vector P which makes the sum
∑|P |

i=1(−1)i(−1)|{pi}∩X| 6= 0.
For a fixed X, in the linear equation system (19) the above quantity∑|P |

i=1(−1)i(−1)|{pi}∩X| does not depend on variables GSGS⊕X indexed
by S. We can collect those equations (a non-empty subset of equations
indexed by P ) in (19) where the above quantity is non-zero, and factor
out this sum from each such equation. This gives us (20). Of course in
(19) those equations (indexed by P ) where the above sum is zero are
trivially satisfied. This means that the orthogonality of the coefficient
vectors in (20) implies that all GSGS⊕X = 0 in (20) and therefore in
(19).

(For notational simplicity, we may consider the equality GSGS⊕X =
0 above really for all S, and not worry about S being half weight or S⊕X
being half weight. As otherwise they are obvious.)

Now we wish to prove any two “distinct” column vectors for S and S′

are orthogonal. Let’s consider the condition
∑|P |

i=1(−1)i(−1)|{pi}∩X| 6=
0 more carefully. Lay out the elements 1, 2, 3, . . . , n, and lay out the
elements of X in that order from left to right. It breaks [n] into runs.
Say 1, 2, . . . , a 6∈ X, a + 1, a + 2, . . . , b ∈ X, b + 1, b + 2, . . . , c 6∈ X, etc.
We call [1, 2, . . . , a] an “out” segment for X, [a + 1, a + 2, . . . , b] an “in”
segment for X, etc. Now consider going through elements of P , also



HOLOGRAPHIC ALGORITHMS 143

from 1 to n. Put down − and + alternately under each such element
of P , from p1 to the last P -element. These record the factor (−1)i in
the sum. In each “in” and “out” segment of X, P will have either an
even or an odd number of elements. Since |P | is even, there must be an
even number of segments (“in” or “out”) which have an odd number of
P -elements. A moment’s reflection will convince us that whenever we
have a segment which contains an even number of P -elements, we can
ignore that segment. It does not affect the subsequent ± labelling. And
for either an “in” segment or an “out” segment of X, the contribution of

these even number of P -elements to the sum
∑|P |

i=1(−1)i(−1)|{pi}∩X| is
0. So we can imagine a sequence of “even-segment removal” operations
as follows: Whenever we see an “even segment” (either an “in” or an
“out” segment of X which contains an even number of elements of P ),
we can remove it, and then merge the neighboring segments. This keeps
the segments to be alternately “in” and “out” for X, and P is still even
and therefore there remains an even number of segments with an odd
number of P -elements. We can continue this process until no more “even
segment” is left. When this process ends, we have an even number of
“odd segments” left. They will still be alternately “in” and “out” for
X. Now the key observation is this: There is nothing left (that even

number = 0) iff that original sum
∑|P |

i=1(−1)i(−1)|{pi}∩X| = 0. This is
because every “odd segment” that is left at the end contributes exactly
the same ±1 to the sum. If the even number of “odd segments” left
starts with an “in” segment for X, then each segment contributes a +1;
if it starts with an “out” segment for X, then each segment contributes
a −1.

Now consider two “distinct” S and S′, and consider the inner prod-
uct of their column vectors. Denote by D = S ⊕ S′. Then D 6=
∅, [n], X, Xc. The inner product is

∑

P

(−1)|P∩S|(−1)|P∩S′| =
∑

P

(−1)|P∩D|,

where P runs over all even subsets of [n] with |P∩X| even, and satisfying∑|P |
i=1(−1)i(−1)|{pi}∩X| 6= 0.
Now we design an involution (order 2 permutation) with no fixed

point on the set of all such P ’s: Since D 6= ∅, [n], X, Xc, as we examine
all elements from 1 to n, there must be two elements next to each other,
both in X or both out of X, and one is in D and the other one is
out of D. (This is because: as D 6= ∅, [n], there must be “changes” in
membership of D as we go from 1 to n. And if all such changes coincide
with boundaries of “segments” (these are the change boundaries) of X,
then either D = X or D = Xc, but both are ruled out.) Thus there are
i and i + 1 which are in the same segment of X (either “in” segment or
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“out” segment) such that |D ∩ {i, i + 1}| = 1. We use this {i, i + 1} to
define our involution on the set of P ’s: P 7→ P ′ = P ⊕ {i, i + 1}.

Note that P is even iff P ′ is even, and also, P ∩X is even iff P ′∩X is
even. Moreover, in the “eliminating the even segment” process described
above, both P and P ′ will yield the same answer as to 0 or non-zero.
Thus the involution is an involution on the set of even P , with P ∩ X

even, and such that
∑|P |

i=1(−1)i(−1)|{pi}∩X| 6= 0.

Finally, in the sum
∑

P (−1)|P∩D|, the term (−1)|P∩D| and (−1)|P
′∩D|

cancel, since

(−1)|P
′∩D| = (−1)|P∩D|(−1)|{i,i+1}∩D| = −(−1)|P∩D|.

This completes the proof. �

This theorem is quite powerful, and we believe that the full extent
of its usefulness has not been explored.

When n = 4, there is a special case.

Theorem 6.3. For any a, b ∈ C, the following generator

(21) Gα =






a, α ∈ {0101, 1010},
b, α ∈ {0011, 1100},
0, otherwise.

is realizable on bases

(
1 x
1 −x

)
for all x 6= 0.

This family of signatures is used in the design of the holographic
algorithm for the problem 2-COLOR-COUNTING in Section 3. In fact,
for that particular problem we only need the case of a = 1 and b = 0 in
Theorem 6.3. But other cases of a and b have also been used.

Acknowledgement. The author thanks Les Valiant for his com-
ments on this article.
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Figure 1. Under the basis b2, this generator matchgate
has the signature (0, 1, 1, 0)T .
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Figure 2. Under basis b2, this generator matchgate
has the signature (0, 1, 1, 1, 1, 1, 1, 0)T .
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Figure 3. This planar matchgate has standard signa-
ture (2a+2b, 0, 0,−2a+2b, 0, 2a−2b,−2a−2b, 0, 0,−2a−
2b, 2a−2b, 0,−2a+2b, 0, 0, 2a+2b)T . Here i =

√
−1, and

we assume 2a + 2b 6= 0. (In case 2a + 2b = 0, a similar
matchgate will work.) This is an explicit construction for
the matchgate promised in Theorem 6.3, which follows
from the general Theorem 6.2.



150 JIN-YI CAI

1

4

32

1

1 1

1 1

1

1

1

i

i

i

i
i

i

i

i
2

1

2

1

2

1
2

1

2

1 1

1

1

Figure 4. This is a special case of Figure 3. Under the
basis b2, this generator matchgate has the signature G,
where G0101 = G1010 = 1 and Gα = 0 for other α. This
matchgate together with Figure 1, 2 and 5 are used for
the problem 2-COLOR-COUNTING.
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Figure 5. Under the basis b2, this recognizer match-
gate has the signature (1, 0, 0, 1).


