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1. Introduction

In this paper, I will mention some applications of minimal surfaces
to the geometry and topology of three-manifolds that I discussed in my
lecture at the Current Developments in Mathematics Conference for
2004.

The first important application of minimal surfaces to the geometry
of three-manifolds was given by Schoen and Yau [22] in their study
of Riemannian three-manifolds of positive scalar curvature and their
related proof of the positive mass conjecture in general relativity. The
techniques that they developed in their proof of this conjecture continue
to be useful in studying relationships between stable minimal surfaces
and the topology of Riemannian manifolds.

Around 1978, Meeks and Yau gave geometric versions of three clas-
sical theorems in three-dimensional topology. These classical theorems
concern the existence of certain embedded surfaces. In the geomet-
ric versions of these theorems, Meeks and Yau proved the existence of
essentially cononical solutions, which are given by area minimizing sur-
faces. They referred to these theorems as the Geometric Dehn’s Lemma,
Geometric Loop Theorem and the Geometric Sphere Theorem.

As an application of these special geometric minimal surface solu-
tions to these classical topological theorems, Meeks and Yau gave new
equivariant versions of these theorems in the presence of a differential
finite group action. Their Equivariant Loop Theorem turned out to be
the final missing step in the solution of the Smith Conjecture concern-
ing the standardness of the smooth action of finite cyclic groups on the
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three-sphere S3. These and related results will be discussed in Section
2.

Recently, Colding and Minicozzi [1] gave an application of minimal
surfaces to study the Ricci flow on a closed Riemannian three-manifold
that is a homotopy sphere. They proved that on such a manifold the
Ricci flow has finite extinction time, which means that a one-parameter
family g(t) of metrics evolving by Ricci flow becomes singular in finite
time. A sketch of their proof of this result appears in Section 3.

2. Embedded least-area surfaces in three-manifolds

In this section, I will review some of the results and background ma-
terial for the minimal surface analogues of the classical Dehn’s Lemma,
Loop Theorem and the Sphere Theorem in three-manifold topology. We
begin this discussion with the statement of the minimal surface version
of Dehn’s Lemma by Meeks and Yau. We recall that the least-energy
map referred to in the statement of the theorem below has least-area
and is conformal on the interior of D, where D is the unit disk in C.

Theorem 2.1 (Geometric Dehn’s Lemma [13]). Let M be a compact
three-manifold with convex boundary. If Γ is a simple closed curve in
∂M which is homotopically trivial in M , then:

(1) There exists a map f : D → M of least-energy such that f |∂D

is a parametrization of Γ.
(2) Any map f : D → M given in (1) is injective and a smooth

immersion of the interior of D.
(3) Such an f is as regular as Γ along ∂D and if Γ is of class C2,

then f is an immersion.
(4) If f1 and f2 are two such solutions and f1(Int(D))

⋂
f2(Int(D))

6= Ø, then f2 = f1 ◦ ϕ, where ϕ is a conformal diffeomorphism
of D.

The proof of the existence of a least-energy f : D → M follows from
Morrey’s solution of Plateau’s problem in a homogeneously regular n-
manifold (without boundary). We now sketch how this result follows.
In the case ∂M is smooth and strictly convex, we proved that M embeds

as a subdomain of a homogeneously regular three-manifold M̃ such that

any compact minimal surface Σ in M̃ , with ∂Σ ⊂ M ⊂ M̃ , is contained
in M . Hence, the Morrey least-energy solution to Plateau’s problem for

a Γ ⊂ M ⊂ M̃ in M̃ , actually is contained in M . For the general case
where ∂M is geodesically convex and perhaps just continuous, then one
uses an approximation procedure to obtain a Morrey solution to the
classical Plateau problem for Γ ⊂ ∂M , which has finite least-energy.

By Osserman [19] and Gulliver [4], one obtains that f |Int(D) is an
immersion. Statement 3 that the immersion f is as regular as ∂D follows
from results of Lewy [9] in the case Γ is analytic, and when Γ is of
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class C2 from results of Hildebrandt [7]. The nonexistence of boundary
branch points for f : D → M , when Γ is of class C2, easily follows from
the C2-regularity of f and the convexity of ∂M .

The proof of statement 2 in the case Γ and M are analytic is given by
a topological argument, called the tower construction, used to prove the
classical Dehn’s Lemma in three-manifold topology. We give the proof
of this analytic case at the end of this section. The proof of injectivity
in the case of a general Γ and a general M with convex boundary is
accomplished by approximation arguments.

The proof of statement 4 in the analytic case is a straightforward
modification of an argument similar to the one used in the proof of
statement 2 in the analytic case. This argument is based on a cut and
paste argument, which we now explain. Suppose that D1, D2 are two
least-area embedded disks in M with ∂D1 = ∂D2 = Γ, which intersect
transversely at some interior point of the disks. Then, there is a simple

closed curve γ in the intersection which bounds subdisks D̃1 ⊂ D1 and

D̃2 ⊂ D2. Without loss of generality, we may assume that Area(D̃1) ≤

Area(D̃2). Then cut D̃2 out of D2 and replace it by D̃1, to obtain a

piecewise smooth disk D̃2 = (D2 − D̃2) ∪ D̃1 with D̂2 = Γ which is not

smooth, but has at most the same area as D2. But, the area of D̂2 can

be decreased along γ, and so, a small perturbation of D̂2 has less area
than D2, contradicting our least-area assumption for D2.

Since every compact three-manifold has a smooth metric that is a
product metric in a small ε-product neighborhood of its boundary, every
compact three-manifold admits a metric with convex boundary. Thus,
statement 2 yields the classical topological result.

Corollary 2.2 (Dehn’s Lemma). A smooth simple closed curve on
the boundary of a three-manifold, which is homotopically trivial in the
three-manifold, is the boundary of a smooth embedded disk.

One of our original motivations for proving our Geometric Dehn’s
Lemma was to prove the following now classical result.

Corollary 2.3 ([13]). Let Γ be a simple closed curve in R
3 that is

extremal (it lies on the boundary of its convex hull ). Then, Γ bounds a
disk of finite area and any classical Douglas solution to Plateau’s prob-
lem for Γ is an embedded minimal disk.

We now discuss the free boundary value problem that arises in our
proof of the Geometric Loop Theorem. For this, we first consider a
special easier to visualize case. Consider a three-manifold M which
is a smooth solid torus (possibly knotted) in R

3 whose boundary has
nonnegative mean curvature. Courant [3] considered the classical free
boundary valued problem for M and proved that there exists a branched
minimal disk f : D → M of least-area such that f(∂D) represents a ho-
motopically nontrivial curve in the boundary torus ∂M . The following
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theorem shows that such an f is a smooth embedding with f(D) or-
thogonal to ∂M along ∂D.

Theorem 2.4 ([14] and [12]). Let M be a compact three-manifold,
whose boundary has nonnegative mean curvature. Let S be the disjoint
union of some components of ∂M . Let K be the kernel of the map
i∗ : π1(S) → π1(M), where i is the inclusion map. Then:

(1) There are a finite number of smooth conformal maps f1, . . . , fk

from the unit disk D into M , so that,
(a) f1 has least-area among all maps from D into M whose

boundary σ1 represents a nontrivial element in K.
(b) For each i, fi has minimal area among all maps from D

into M whose boundary σ1 does not belong to the smallest
normal subgroup of π1(S) containing [σ1], . . . , [σi−1].

(c) The disks fi(D) are orthogonal to ∂M along their bound-
ary σi.

(d) K is the smallest normal subgroup of π1(S) containing
[σ1], . . . , [σk].

(2) Any set of conformal mappings f1, . . . , fk satisfying properties
(a) and (b) are embeddings and have mutually disjoint images.

(3) If g1, . . . , gl is another set of conformal mappings satisfying (a)
and (b), then any two mappings in the set {f1, . . ., fk, g1, . . . , gl}
either are equal up to conformal reparametrization or have dis-
joint images.

We just remark that the strategy in the proof of the Geometric
Loop Theorem is similar to the proof of the Geometric Dehn’s Lemma
in most respects. However, in the proof of the Geometric Loop Theorem,
we needed to prove the existence of a least-energy solution f : D → M
to the free boundary value problem; in the previous case, we could refer
more directly to Morrey’s solution to the classical Plateau problem.

The above theorem has the following topological corollary.

Corollary 2.5 (Loop Theorem). If M is a three-manifold and
there exists a homotopically nontrivial curve in ∂M , which is homo-
topically trivial in M . Then, there exists an embedded disk (D, ∂D) ⊂
(M, ∂M) with ∂D homotopically nontrivial in ∂M .

Since minimal surfaces are rather cononical, our geometric meth-
ods have potential applications beyond those obtained by the classical
topological solutions. Indeed, a moment’s thought shows that appli-
cations of geometric solutions to study smooth compact group actions
will be most fruitful because these groups can be considered as groups
of isometries of some Riemannian metric and minimal surfaces must be-
have well under such actions. In this way, we were able to prove Dehn’s
Lemma, Loop Theorem and the Sphere Theorem (to be discussed) in
equivariant form. Combining an observation of Gordan and Literland,
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the following equivariant loop theorem and a theorem of W. Thurston
(which also depends on a theorem of H. Bass), one settled in the affir-
mative the conjecture of P.A. Smith on the unknottedness of the fixed
point set of a finite cyclic group action on S3 (see [15] for details).

Corollary 2.6 (Equivariant Loop Theorem ([12])). If G is a
smooth finite group action on a compact three-manifold M with com-
pressible boundary (some homotopy nontrivial curve in ∂M is homo-
topically trivial in M), then there exists an embedded disk (D, ∂D) ⊂
(M, ∂M) with ∂D homotopically nontrivial in ∂M such that the G orbit
of D is an embedded two-manifold.

We now state the Geometric Sphere Theorem and its corresponding
Equivariant Sphere Theorem as a corollary.

Theorem 2.7 (Geometric Sphere Theorem [12]). Let M be a three-
manifold with convex boundary. Then, there exist conformal maps f1,
. . . , fk from S2 into M such that:

(1) f1 : S2 → M is homotopically nontrivial and minimizes area
among all homotopically nontrivial maps from S2 into M . For
each i, fi does not belong to the π1(M) submodule of π2(M)
generated by {f1, . . . , fi−1} and fi minimizes area among all
such maps.

(2) {f1, . . . , fk} generates π2(M) as a π1(M) module.
(3) For any set of maps {g1, . . . , gl} from S2 into M that satisfy

property (1), then gi is either a conformal embedding or a two-
to-one covering map whose image is an embedded real projective
plane RP 2. Furthermore, if {f1, . . . , fk} and {g1, . . . , gl} are
two sets of mappings satisfying property (1), then, for all i and
j, either the images of fi and gj are disjoint or fi and gj are
equal up to conformal reparametrization.

Theorem 2.8. Suppose M is a compact orientable three-manifold
and

M =




k1

#P1

i = 1


 #




k2

#P2

i = 1


 # . . .#




kn

#Pn

i = 1


 , where # denotes

connected sum and P1, P2, . . . , Pn are distinct prime orientable three-
manifolds such that Pi is not homotopically equivalent to S3 or S2×S1.
Suppose there is a finite group G of diffeomorphisms acting effectively
on M . Then:

(1) There is a natural homomorphism σ : G → Πn
i=1S(ki), where

S(ki) is the permutation group on ki letters.
(2) There is a natural injective homomorphism τ : Ker (σ) →

Πn
i=1 Diff (Pi).
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(3) Let πj : Πn
i=1S(ki) → S(kj) be the projection on the jth co-

ordinate. Then, there is a natural injective homomorphism
α : Ker(πj ◦ σ) → Diff(Pj).

(4) If k1 = k2 = . . . kn = 1, then G act effectively on S2 and
effectively on each Pj as a finite group of diffeomorphisms with
some fixed point. In particular, in this case G is isomorphic to
a finite subgroup of the orthogonal group O(3).

Our equivariant sphere theorem also shows that for a finite group
acting smoothly on the connected sum of compact nonsimply connected
prime orientable manifolds with fundamental group nonisomorphic to
the integers, the action must split equivariantly up to the permutations
of the factors. Hence, basically when we study finite group actions
on a three-manifold, we can assume the manifold is prime. The sphere
theorem also enables us to deal with finite groups acting on noncompact
manifolds. For example, combining the above mentioned affirmative
answer to the Smith conjecture and the sphere theorem, we prove in [15]
that finite cyclic groups acting smoothly on R

3 must be conjugate to the
linear action and that every finite subgroup of Diff(R3) is isomorphic to
a subgroup of O(3). In fact, these results and further work by Thurston
show that every finite subgroup of Diff(R3) is conjugate to a subgroup
of O(3) ⊂ Diff(R3). In [11], we generalized Theorem 2.8 to the case
where Pi is not S3 but may be a homotopy three-sphere.

2.1. The proof of the embedding of the analytic case of the

Geometric Dehn’s Lemma. In this section, we give a simplified proof
of the basic topological construction used in the proof of the geometric
Dehn’s Lemma in [13]. We give the proof only in the analytic setting.

Theorem 2.9. Suppose M is a compact analytic Riemannian three-
manifold. Suppose that D is the closed unit disk in the plane and γ is
an analytic curve on ∂M and that f : D → M is a least-area (energy)
map with f(∂D) = f(D) ∩ ∂N = γ. Then f is injective.

The proof of the theorem will depend on the following sequence of
lemmas.

Lemma 2.10. f : D → M is an analytic immersion.

Proof. By the regularity theorems of Gulliver [4] and Osserman
[19], f is an immersion on the interior of the D. The function f is
analytic on Int(D) by Morrey’s interior regularity theorem [18]. The
map f is analytic on D by the boundary regularity theorems by Lewy
[9] and by Hildebrandt [7]. By a theorem of Gulliver-Lesley [5], f is an
immersion on D. ¤

Lemma 2.11. f : D → M is simplicial with respect to fixed triangu-
lations of D and M .
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Proof. By Lemma 2.10, f is analytic and it follows that f(D) is
a semi-analytic subset of M . Also, it follows from the triangulation
theorems in [10] that the semi-analytic subset f(D) of M is a two-
dimensional subcomplex of some triangulation of M . Since f is an
immersion, the triangulation of f(D) induces a triangulation of D such
that f : D → M is simplicial. ¤

Lemma 2.12. Suppose D1 and D2 are distinct analytic embedded
disks in an open Riemannian three-manifold N and that D1 and D2

have least-area with respect to their boundary curves. If D1 ∩ D2 ⊂
Int(D1) ∩ Int(D2), then D1 ∩ D2 = Ø.

Proof. Suppose first that D1 and D2 are in general position, which
is the generic case. If D1 ∩D2 is nonempty, then D1 ∩D2 is a compact
one-dimensional submanifold of Int(D1) and of Int(D2). By the classi-
fication of one-dimensional submanifolds, D1 ∩ D2 is a finite collection
of simple closed curves. Let γ be a component in D1 ∩ D2. Then the

Jordan curve theorem implies that γ is the boundary of a subdisk D̃1

of D1 and a subdisk D̃2 of D2.
Without loss of generality, suppose that the area of D̃1 is less than

or equal to the area of D̃2. Then consider the new piecewise smooth
disk:

D3 = (D2 − D̃2) ∪ D̃1.

The area of D3 is less than or equal to the area D2. The area of D3 can
now be decreased along γ, which contradicts the hypothesis that D2 has
least-area with respect to its boundary curve.

If D1 and D2 are not in general position, then there are two ways to
reduce to the general position case. The first way is by approximation.
The second is by way of the following assertion:

Assertion 2.13. If D1∩D2 ⊂ Int(D1)∩ Int(D2) is nonempty, then
D1 ∩ D2 contains a simple closed curve.

Proof of Assertion 2.13. Since D1 and D2 are analytic, Γ =
D1 ∩D2 is a compact triangulable analytic subset of Int(D1). We first
note that Γ has no isolated vertices. If Γ had an isolated vertex p, then p
would correspond to a point on D1 where D1 is locally on one side of D2.
By the maximum principal for minimal surfaces, D1 and D2 intersect in
an open set near p, and so, the vertex p is not isolated. Also, Γ cannot
contain a 2-simplex, because by the uniqueness of analytic continuation,
D1 and D2 must agree on an open set that goes to the boundary of D1

or D2. However, this is impossible, since the intersection of D1 and D2

does not, by hypothesis, include points on the boundaries.
The argument used above shows that Γ is a one-dimensional sub-

complex of some triangulation of D1 and Γ contains no isolated vertices.
Analytic one-dimensional subsets of a disk have an even number of edges
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at every vertex. This implies that Γ represents a one-cycle in the sim-
plicial one-chains of D1 using Z2-coefficients. Since the first homology
group with Z2 coefficients of D1 is zero, geometric intersection theory
implies that Γ must disconnect D1. A boundary curve of an inner-most
component of D1−Γ is the required simple closed curve in the assertion,
and so, the assertion is proved. ¤

We now return to the proof of Lemma 2.12. The existence of a simple
closed curve in D1 ∩ D2 together with the disk replacement argument
used in the general position case gives a contradiction. Hence, D1 ∩D2

must be empty, which proves the lemma. ¤

Lemma 2.14. Suppose N is a triangulated three-dimensional man-
ifold and f : D → N is a simplicial immersion of a disk with respect
to some triangulation T of D. Then there exists a subdivision of the
triangulation of N , so that f : D → N is still simplicial with respect
to T and such that the simplicial neighborhood of f(D) is a simplicial
regular neighborhood of f(D). The simplicial neighborhood of f(D) is
the union of the simplices which intersect f(D).

Proof. This elementary result follows after subdividing two times
the triangulation of N . Each time the subdivision includes the bari-
centers of the simplices which are not contained in f(D). This proves
Lemma 2.14. ¤

We now carry out the construction of a tower for f : D → M in
order to simplify the self-intersection or singular set for f : D → M ,
which by Lemma 2.11 is simplicial. First, let N1 be a simplicial regular
neighborhood of f(D) given in Lemma 2.14. After restricting the range
space of f to N1, there is a new map f1 : D → N1. If N1 is not simply

connected, then let P1 : Ñ1 → N1 be the universal covering space of

N1 and let f̃1 : D → Ñ1 be a lift of f1 to this covering space. Then

restricting the range space of f̃1 to a regular neighborhood N2 of f̃1(D),
we get another map f2 : D → N2.

If N2 is not simply connected, then we can repeat the construction

in the previous paragraph to get a lift f̃2 : D → Ñ2 to the universal

covering space P2 : Ñ2 → N2 of N2. After restricting the lift f̃2 to the

regular neighborhood N3 of f̃(D), we get f3 : D → N3.
Repeating k-times, the construction outlined above yields a tower

Pk ◦ Pk−1 ◦ . . . ◦ P1 : Nk → N1,

where Pi : Ni+1 → Ni is the restriction of Pi : Ñi → Ni to Ni+1.
Each Ni in the above tower is a Riemannian manifold with respect

to the pulled back metric. Each of the lifts fi : D → Ni is a solution
to Plateau’s problem for the simple closed curve fi(∂D) with respect to
this metric. Otherwise, there is an immersion g : D → Ni with g(∂D) =
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fi(∂D) and with respect to the pulled back metric on D, Area(g) <
Area (fi) = Area (f), which is impossible.

By Lemmas 2.11 and 2.14, we may assume that each map fi : D →
Ni in the tower is simplicial with respect to a fixed triangulation T
for which fi : D → N1 is simplicial. Note that the triangulation on

Ni is induced from the triangulation on Ni−1 pulled back to Ñi by

Pi : Ñi → Ni. We now use this fact to prove that the tower construction
terminates, after some finite number n of steps, with Nk being simply
connected, where n is at most equal to the number of simplices in T ×T .
We will consider T to be a collection of open simplices and vertices.

Lemma 2.15. If S(fi) = {(σ, τ) ∈ T × T | σ 6= τ and f(σ) = f(τ)},
then S(fi+1) is a proper subset of S(fi). Hence, the tower construction
terminates at some k with Nk simply connected.

Proof. Since fi = Pi ◦ fi+1 where Pi is a simplicial map, then
S(fi+1) ⊂ S(fi). If S(fi+1) = S(fi), then h = Pi|fi+1(D) induces a
homeomorphism between fi+1(D) and fi(D). Using h we can define

a lift of the inclusion map i : fi(D) → Ni to Ñi by ĩ : fi(D) → Ñi,

where ĩ = h−1 ◦ i. Since Ni is a regular neighborhood of fi(D), then

i∗ : π1(fi(D)) → π1(Ni) is an isomorphism. Since Ñi is simply con-
nected, the lifting criterion for maps in covering space theory implies
that Ni is simply connected. Thus, we may assume that S(fi+1) <
S(fi), which proves the lemma. ¤

Lemma 2.16. The lift fk : D → Nk is one-to-one.

We first show:

Assertion 2.17. The boundary of Nk consists of spheres.

Proof. Since Nk is simply connected, H1(Nk, Z2) = 0. Since the
pairing between homology and cohomology with coefficients in a field
is non-degenerate, H1(Nk, Z2) = 0. Poincare duality then shows that
H2(Nk, ∂Nk, Z2) = 0. From the following part of the long exact sequence
in homology for the pair (Nk, ∂Nk),

→ H2(Nk, ∂Nk, Z2) → H1(∂Nk, Z2) → H1(Nk, Z2) →,

one computes that H1(∂Nk, Z2) = 0. This shows that the first homology
group with Z2 coefficients is zero for each boundary component of Nk.
By the classification theorem for compact surfaces, each component of
the boundary of Nk is a sphere, which proves the assertion. ¤

Proof. We now prove Lemma 2.16. We shall now use the fact that
the boundary of Nk consists entirely of spheres to show that fk : D →
Nk is an embedding. First note that since Nk is a simplicial regu-
lar neighborhood, there is, after a subdivision, a simplicial retraction
S : Nk → fk(D) whose restriction R = S|∂Nk

→ fk(D) has the following
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property: R covers each open two simplex of fk(D) exactly two times
and R restricted to ∂Nk − fk(∂D) is locally one-to-one. The existence
of such a retraction follows directly from the definition of a simplicial
regular neighborhood and the collapsing properties of such a neighbor-
hood onto an immersed codimension-one simplicial submanifold whose
boundary is the intersection of the submanifold with the boundary of
the ambient manifold. For a proof of the existence, we refer the reader
to [16].

By Assertion 2.17, the curve γk = fk(∂D) is contained in a sphere S
in ∂Nk. The Jordan curve theorem implies that the simple closed curve
γk disconnects the sphere S into two disks D1 and D2. Now consider
the following inequalities:

Area (R|D1
) + Area (R|D2

) ≤ Area (R|∂Nk
) ≤ 2 Area (fk).

The last inequality follows from the fact that area is carried by two-
simplices and F |∂Nk

covers each two-simplex of fk(D) twice.
Since fk is a solution to Plateau’s problem for γk, the above area

inequality implies that R|D1
and R|D2

are also disks of least-area with
γk for boundary. However, if fk is not an embedding, then the area of
R|D1

and R|D2
can be decreased along a self-intersection curve of fk(D).

Since this contradicts the least-area property of fk, the map fk must be
an embedding, which proves the lemma. ¤

We now complete the proof of Theorem 2.9. If f : D → M is not
an embedding, then we may assume by the previous lemma that k is
greater than one and fk−1 : D → Nk−1 is not one-to-one. Let E be the

embedded disk i ◦ fk(D) ⊂ Ñk−1, where i : Nk → Ñk−1 is the inclusion

map. Since fk−1 is not one-to-one and Nk−1 = Ñk−1/G where G is the
group of covering transformations, then there exists a nontrivial covering

transformation τ : Ñk−1 → Ñk−1 such that τ(E)∩E is nonempty. Since

the covering transformation τ is an isometry of Ñk−1, the disk τ(E)
has least-area with respect to its boundary curve. The hypothesis in
the theorem that f(∂D) = f(D) ∩ ∂M = γ implies that E ∩ τ(E) ⊂
Int(E) ∩ τ(Int(E)). Lemma 2.12 shows this containment is impossible,
which implies that f : D → M must in fact be an embedding. This
completes the proof of Theorem 2.9.

3. Application of minimal surfaces to the problem of finite

extinction time for the Ricci flow

In this section, we review some results on minimal surfaces by Cold-
ing and Minicozzi that have an application to the question of finite ex-
tinction time for the Ricci flow on certain Riemannian three-manifolds.
These results and related discussion are taken from the papers in [1]
and [2].



APPLICATIONS OF MINIMAL SURFACES 105

Let M be a smooth closed orientable three-manifold and let g(t) be
a one-parameter family of metrics on M evolving by the Ricci flow, so

∂tg = −2RicMt
.

For the remainder of this section, we will assume that M is a prime
three-manifold, which is nonaspherical, which just means that some
homotopy group πk(M) is nonzero for some k > 1. Recall that a closed
orientable three-manifold is irreducible if every embedded two-sphere in
the manifold is the boundary of a ball. Note that S2 × S1 is the only
compact orientable three-manifold which is prime but not irreducible.
If M is irreducible, then the sphere theorem in the previous section
implies π2(M) = 0, and the Hurewicz isomorphism theorem implies in
this case that π3(M) 6= 0. Since π3(S

2 × S1) = π3(S
2) = Z, we see that

for the manifold in the case we are considering, π3(M) 6= 0.
Consider the space of continuous maps from S2 to M . This space is

naturally a fiber bundle over M . Using this fact and suspension on the
long exact sequence of related homotopy groups, Micallif and Moore, in
Lemma 3 in [17], proved that this space is not simply connected.

Fix a continuous map

β : [0, 1] → C0 ∩ L2
1(S

2, M),

where β(0) and β(1) are constant maps and so that β is in the nontrivial
homotopy class [β]. We define the width W = W (g, [β]) by

W (g) = minγ∈[β] maxs∈[0,1]Energy(γ(s)).

The next theorem, Theorem 0.3 in [1], gives an upper bound for
the derivative of W (g(t)) under the Ricci flow, which forces the solution
g(t) to become extinct in finite time. We remark that Perelmann [20]
has also found a proof that g(t) becomes extinct in finite time in this
situation.

Theorem 3.1 ([1] and [20]). Let M be a closed orientable prime
nonaspherical three-manifold equipped with a Riemannian metric g =
g(0). Under the Ricci flow, the width W (g(t)) satisfies

d

dt
W (g(t)) ≤ −4π +

3

4(t + C)
W (g(t)),

in the sense of the limsup of forward difference quotients. Hence, g(t)
must become extinct in finite time.

Suppose that Σ ⊂ M is a closed immersed surface (not necessarily
minimal); then results of Hamilton [6] give

d

dt
|t=0 Areag(t)(Σ) = −

∫

Σ
[R − RicM (n,n)].
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If Σ is also minimal, then

d

dt
|t=0 Areag(t)(Σ) = −2

∫

Σ
KΣ −

∫

Σ
[|A|2 + RicM (n,n)]

= −

∫

Σ
KΣ −

1

2

∫

Σ
[|A|2 + R].

Here, KΣ is the Gaussian curvature of Σ, and n is a unit normal for
Σ. A is the second fundamental form of Σ, so that |A|2 is the sum of
the squares of the principal curvatures, RicM is the Ricci curvature of
M , and R is the scalar curvature of M . (The curvature is normalized
so that on the unit S3 the Ricci curvature is 2 and the scalar curvature
is 6.) To get the above equation, one uses that by the Gauss equations
and minimality of Σ

KΣ = KM −
1

2
|A|2,

where KM is the sectional curvature of M on the two-plane tangent to
Σ.

The first lemma in [1] gives an upper bound for the rate of change
of area of minimal two-spheres, and we give their proof of it.

Lemma 3.2. If Σ ⊂ M is a branched minimal immersion of the
two-sphere, then

d

dt
|t=0 Areag(t)(Σ) ≤ −4π −

Areag(0)(Σ)

2
minMR(0).

Proof. Let {pi} be the set of branch points of Σ and bi > 0 the
order of branching at pi. From above, we have

d

dt
|t=0 Areag(t)(Σ) ≤ −

∫

Σ
KΣ −

1

2

∫

Σ
R = −4π − 2π

∑
bi −

1

2

∫

Σ
R,

where the equality used the Gauss-Bonnet theorem with branch points.
¤

The evolution equation for the scalar curvature R = R(t) of Mt

under Ricci flow (see [6]) is given by the following equation and gives
rise to a related inequality:

∂tR = ∆R + 2|Ric|2 ≥ ∆R +
2

3
R2.

A maximum principle argument then gives for some constant C,

R(t) ≥ −
3

2(t + C)
.

Plugging this estimate for R(t) into Lemma 3.2 then yields:

d

dt
|t=0Areag(0)(Σ) ≤ −4π +

3Area(Σ)

4(t + C)
.

What Colding and Minicozzi do next is derive a related forward dif-
ference quotient for W (g(t)). Namely, they show that there is a constant
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C̃, so that, given ε > 0, there exists an h > 0 such that for 0 < h < h,
then

W (g(τ + h)) − W (g(τ))

h
≤ −4π + C̃ε +

3

4(τ + C)
W (g(τ)) + C̃h.

Taking ε → 0 gives the differential inequality in Theorem 3.1.
Colding and Minicozzi derive the above related forward difference

quotient inequality by applying the previous estimate for the derivative
of the areas of minimal two-spheres Σ which arise in the next proposi-
tion. This proposition asserts the existence of a special sequence γi of

sweep-outs, where for some sj , sj ∈ [0, 1], the spheres γj
sj converge to

a collection of branched minimal spheres with total energy W (g). This
proposition is Theorem 4.2.1 by Jost in [8]. This result depends on the
theory of minimal spheres using the concept of α-energy and the fact
that α-energy functional is a Morse function on the appropriate spaces.
This theory was first developed by Sachs and Uhlenbeck [21] with im-
provements by Meeks and Yau [12] and Siu and Yau (see Chapter VIII
in [23] to prove that there was no loss of energy in the limit as α → 0).
The index-one bound for the minimal spheres described below is not
stated explicitly in [8] but follows by the arguments in [17].

Proposition 3.3. Given a metric g on M and a nontrivial [β] ∈
π1(C

0 ∩ L2
1(S

2, M)), there exists a sequence of sweep-outs γj : [0, 1] →
C0 ∩ L2

1(S
2, M) with γj ∈ [β] so that

W (g) = limj→∞maxs∈[0,1]Energy(γj
s).

Furthermore, there exist sj ∈ [0, 1] and branched conformal minimal
immersions u0, . . . , um : S2 → M with index at most one so that, as

j → ∞, the maps γj
sj , converge to u0 weakly in S2

1 and uniformly on

compact subsets of S2/{x1, . . . , xk}, and

W (g) =
m∑

i=0

Energy(ui) = lim
j→∞

Energy(γj
sj

).

Finally, for each e > 0, there exists a point xki
and a sequence of

conformal dilations Di,j : S2 → S2 about xki
, so that the maps γj

sj ◦Di,j

converge to ui.

Finally, we show that the differential inequality for W (g(t)) given in
Theorem 3.1 implies finite extinction time for the Ricci flow. Namely,
rewriting this inequality as d

dt(W (g(t))(t+C)3/4) ≤ −4π(t+C)−3/4 and
then integrating gives

(T + C)−3/4W (g(T )) ≤ C−3/4W (g(0)) − 16π[(T + C)1/4 − C1/4].

Since W ≥ 0 by definition and the right hand side of the equation
would become negative for T sufficiently large, the theorem follows.
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