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�� Introduction

These notes are meant to provide a survey of some recent results and techniques
in the theory of conservation laws� In one space dimension� a system of conservation
laws can be written as

ut � f�u�x � � � �����

Here u � �u�� � � � � un� is the vector of conserved quantities while the components of
f � �f�� � � � � fn� are called the �uxes� Integrating ����� over the interval �a� b	 one
obtains

d
dt

R b
a u�t� x� dx �

R b
a ut�t� x� dx � � R ba f�u�t� x��x dx

� f
�
u�t� a�

�� f
�
u�t� b�

�
� �in
ow at a	� �out
ow at b	 �

�����

In other words� each component of the vector u represents a quantity which is
neither created nor destroyed� its total amount inside any given interval �a� b	 can
change only because of the 
ow across boundary points�

Systems of the form ����� can be used to express the fundamental balance laws
of continuum physics� when small viscosity or dissipation e
ects are neglected �D�	�
A primary example is provided by the Euler equations describing the evolution of
a compressible� non viscous 
uid����

�t � ��v�x � � �conservation of mass�
��v�t � ��v

� � p�x � � �conservation of momentum�
��E�t � ��Ev � pv�x � � �conservation of energy�

Here � is the mass density� v is the velocity while E � e � v��� is the energy
density per unit mass� The system is closed by a constitutive relation of the form
p � p��� e�� determining the pressure as a function of the density and the internal
energy� The particular values of p depends on the gas under consideration�

Using the chain rule� ����� can be written in the quasilinear form

ut �A�u�ux � � � �����
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where A�u�
�
� Df�u� is the Jacobian matrix of �rst order partial derivatives of

f � For smooth solutions� the two equations ����� and ����� are entirely equivalent�
However� if u has a jump at a point x�� the left hand side of ����� will contain
the product of the discontinuous function x �� A

�
u�x�

�
with the distributional de�

rivative ux� which in this case contains a Dirac mass at the point x�� In general�
such a product is not well de�ned� Hence ����� is meaningful only within a class of
continuous functions� On the other hand� working with the equation in divergence
form ����� allows us to consider discontinuous solutions as well� interpreted in dis�
tributional sense� More precisely� a locally integrable function u � u�t� x� is a weak
solution of ����� provided thatZ Z �

u�t � f�u��x
�
dxdt � � �����

for every di
erentiable function with compact support � � C�c �

We say that the above system is strictly hyperbolic if every matrix A�u� has
n real� distinct eigenvalues� say ���u� � � � � � �n�u�� In this case� one can �nd
dual bases of left and right eigenvectors of A�u�� denoted by l��u�� � � � � ln�u� and
r��u�� � � � � rn�u�� normalized according to

jrij � � � li � rj �
�
� if i � j�

� if i �� j�
�����

To appreciate the e
ect of the non�linearity� consider �rst the case of a linear
system with constant coe�cients

ut �Aux � �� �����

Call �� � � � � � �n the eigenvalues of the matrix A� and let li� ri be the correspond�
ing left and right eigenvectors as in ������ One can then write the general solution
of ����� as a superposition of independent linear waves�

u�t� x� �
X
i

�i�x� �it�ri � �i�y�
�
� li � u��� y� �

Notice that here the solution is completely decoupled along the eigenspaces of
A� and each component travels with constant speed� given by the corresponding
eigenvalue of A�

In the nonlinear case ����� where the matrix A depends on the state u� new
features will appear in the solutions�

�i� Since the eigenvalues �i now depend on u� the shape of the various components
in the solution will vary in time ��g� ��� In particular� rarefaction waves will decay�
and compression waves will become steeper� possibly leading to shock formation in
�nite time�

�ii� Since the eigenvectors ri also depend on u� nontrivial interactions between
di
erent waves will occur ��g� ��� In particular� the strength of the interacting
waves may change� and new waves of di
erent families can be created� as a result
of the interaction�
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Of all these e
ects� the most important for the mathematical analysis is the
possible loss of regularity� This lack of regularity �also due to the absence of sec�
ond order terms that could provide a smoothing e
ect�� together with the strong
nonlinearity of the equations� is the main source of the di�culties encountered in
a rigorous mathematical analysis of this subject� Indeed� most of the powerful
techniques of functional analysis do not apply in this context� Solutions cannot be
represented as �xed points of continuous transformations� or in variational form� as
critical points of suitable functionals� Dealing with vector valued functions� com�
parison principles based on upper or lower solutions cannot be used� Similarly�
the theory of accretive operators and contractive nonlinear semigroups works well
in the scalar case �C	� but does not apply to systems� For the above reasons� the
theory of hyperbolic conservation laws has largely developed by ad hoc methods�
along two main lines�

�� The BV setting� considered by Glimm �G	� Solutions are here constructed within
a space of functions with bounded variation� controlling the BV norm by a wave
interaction functional�

�� The L� setting� introduced by Tartar and DiPerna �DP�	� based on weak
convergence and a compensated compactness argument�

Both approaches yield results on the global existence of weak solutions� How�
ever� the method of compensated compactness appears to be suitable only for ���
systems� Moreover� it is only in the BV setting that the well�posedness of the
Cauchy problem could recently be proved� as well as the stability and convergence
of vanishing viscosity approximations� In the remainder of this paper we thus con�
centrate on the theory of BV solutions� referring to �DP�	 or �Se	 for the alternative
approach based on compensated compactness�

Since the pioneering work of Glimm� the basic building block toward the con�
struction and the analysis of more general solutions has been provided by the Rie�
mann problem� i�e� the initial value problem with piecewise constant data

u��� x� � �u�x� �

�
u� if x � ��

u� if x � ��
�����

This was �rst introduced by B� Riemann ������ in the context of isentropic gas
dynamics� A century later� P� Lax �Lx	 solved the Riemann problem for a general
class of n� n systems� Solutions are self�similar� having the form

u�t� x� � U�x�t��
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The central position taken by the Riemann problem is related to a symmetry
of the equations ������ If u � u�t� x� is a solution of ������ then for any � � � the
function

u��t� x�
�
� u��t� �x�

provides another solution� The solutions which are invariant under these rescalings
of the independent variables are precisely those which correspond to some Riemann
data�

Both the Glimm scheme and the method of front tracking yield approximate so�
lutions of a general Cauchy problem by piecing together a large number of Riemann
solutions� The approach is successful because one can provide an a priori bound
on the total amount of new waves produced by nonlinear interactions� and hence
on the total variation of the solution� It is safe to say that� in the context of weak
solutions with small total variation� nearly all results on the existence� uniqueness�
continuous dependence and qualitative behavior have relied on a careful analysis of
the Riemann problem�

Very recently� in �BB	 a substantially di
erent perspective has emerged from
the study of vanishing viscosity approximations� Solutions of ����� are sought as
limits for 	� � of solutions to the parabolic problems

u�t �A�u��u�x � 	u�xx � �����

Here A�u�
�
� Df�u�� This approach is very natural� and has been considered since

the �����s� However� it was only in the scalar case �O	� �K	� that complete results
could be obtained� For general n�n systems� the main di�culty lies in establishing
the compactness of the approximating sequence� We observe that u��t� x� solves
����� if and only if u��t� x� � u�t�	� x�	� for some function u which satis�es

ut �A�u�ux � uxx � �����

In the analysis of vanishing viscosity approximations� the key step is to derive a
priori estimates on the total variation and on the stability of solutions of ������
For this parabolic system� the rescaling �t� x� �� ��t� �x� no longer determines a
symmetry� Hence the Riemann data no longer hold a privileged position� The
role of basic building block is now taken by the viscous travelling pro�les� i�e� the
solutions of the form

u�t� x� � U�x� �t��

Of course� the function U must then satisfy the second order O�D�E�

U �� �
�
A�U�� �

�
U ��

The new point of view consists in decomposing the gradient ux locally as a sum
of gradients of viscous travelling waves� More precisely� let a smooth function
u � IR �� IRn be given� At each point x� looking at the third order jet �u� ux� uxx�
we seek travelling pro�les U�� � � � � Un such that

U ��i �
�
A�Ui�� 
i

�
U �i ������

for some speed 
i close to the characteristic speed �i� and moreover

Ui�x� � u�x� i � �� � � � � n � ������
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i

U �i�x� � ux�x� �
X
i

U ��i �x� � uxx�x� � ������

It turns out that this decomposition is unique provided that the travelling pro�les
are chosen within suitable center manifolds� We let �ri be the unit vector parallel to
U �i � so that U

�
i � vi�ri for some scalar vi� One can show that �ri remains close to the

eigenvector ri�u� of the Jacobian matrix A�u�
�
� Df�u�� but �ri �� ri�u� in general�

The �rst equation in ������ now yields the decomposition

ux �
X
i

vi�ri � ������

If u � u�t� x� is a solution of ������ we can think of vi as the density of i�waves
in u� The remarkable fact is that these components satisfy a system of evolution
equations

vi�t � ���ivi�x � vi�xx � �i i � �� � � � � n � ������

where the source terms �i on the right hand side are INTEGRABLE over the whole
domain fx � IR � t � �g� Indeed� we can think of the sources �i as the new waves
produced by interactions between viscous waves� Their total strength is controlled
by means of viscous interaction functionals� somewhat similar to the one introduced
by Glimm in the hyperbolic case� Since the left hand side of ������ is in conservation
form and the vectors �ri have unit length� we obtain the bound

kux���
��
L�
�
X
i

��vi�����
L�
�
X
i

	��vi������ Z �

�

Z 

�i�t� x�

 dxdt� � ������

This line of argument yields global BV bounds and stability estimates for viscous
solutions� In turn� letting 	� � in ������ a standard compactness argument yields
the convergence of u� to a weak solution u of ������

The plan of these notes is as follows� In Section � we review some basic facts
about shock and rarefaction waves� and describe the solution of the Riemann prob�
lem� Section � is concerned with solutions of the more general Cauchy problem�
obtained as limits of Glimm or front tracking approximations� Stability and unique�
ness issues are discussed in the next two sections� The remaining sections � to �
describe the vanishing viscosity approach� based on decomposition along gradients
of viscous travelling waves and the new Lyapunov functionals controlling the in�
teractions among viscous waves� Some further research directions are discussed in
Section ��

�� The Riemann problem

Here and in the next section� we shall consider a strictly hyperbolic system of
conservation laws satisfying the additional hypothesis

�H� For each i � �� � � � � n� the i�th �eld is either genuinely nonlinear� so that
D�i�u� � ri�u� � � for all u� or linearly degenerate� with D�i�u� � ri�u� � � for all u�

Notice that� in the genuinely nonlinear case� the i�th eigenvalue �i is required
to be strictly increasing along each integral curve of the corresponding �eld of
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eigenvectors ri� In the linearly degenerate case� on the other hand� the eigenvalue
�i is constant along each such curve�

Shocks and Admissibility Conditions�

The simplest type of discontinuous solution is given by a shock �

U�t� x� �

�
u� if x � �t�

u� if x � �t�
�����

for some left and right states u�� u� � IRn and a speed � � IR� Using the divergence
theorem� one checks that the identity ����� is satis�ed if and only if the following
Rankine�Hugoniot conditions hold�

� �u� � u�� � f�u��� f�u�� � �����

Denote by A�u� � Df�u� the n � n Jacobian matrix of f at u� For any u� v�
de�ne the averaged matrix

A�u� v�
�
�

Z �

�

A
�
�u� ��� ��v

�
d�

and call �i�u� v�� i � �� � � � � n its eigenvalues� We can then write ����� in the
equivalent form

� �u��u�� �
Z �

�

Df
�
�u�������u����u��u�� d� � A�u�� u����u��u��� �����

In other words� the Rankine�Hugoniot conditions hold if and only if the jump u��
u� is an eigenvector of the averaged matrix A�u�� u�� and the speed � coincides
with the corresponding eigenvalue�

De�nition �� A function u � u�t� x� has an approximate jump discontinuity at
the point ��� �� if there exists vectors u� �� u� and a speed � such that

lim
r���

�

r�

Z r

�r

Z r

�r



u�� � t� � � x�� U�t� x�


 dxdt � � �

with U as in ������ We say that u is approximately continuous at the point ��� �� if
the above relations hold with u� � u� �and � arbitrary��

More generally� if u is now a solution of the system of conservation laws �����
having an approximate jump� one can prove that the states u�� u� and the speed
� again satisfy the Rankine�Hugoniot conditions�

In order to achieve uniqueness of solutions to initial value problems� it is cus�
tomary to supplement the conservation equations ����� with additional admissibility
conditions� to be satis�ed at points of jump� We recall here two basic approaches�

De�nition �� A continuously di
erentiable function 
 � IRn �� IR is called an
entropy for the system of conservation laws ������ with entropy �ux q � IRn �� IR� if
it satis�es the identity

D
�u� �Df�u� � Dq�u�� �����
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An immediate consequence of ����� is that� if u � u�t� x� is a C� solution of
������ then


�u�t � q�u�x � �� �����

In other words� for a smooth solution u� not only the quantities u�� � � � � un are
conserved� but the additional conservation law ����� holds as well� However one
should be aware that� for a discontinuous solution u� the quantity 
�u� may not be
conserved�

A standard admissibility condition for weak solutions can now be formulated
as follows�

De�nition �� Let 
 be a convex entropy for the system ������ with entropy 
ux q�
A weak solution u is entropy�admissible if


�u�t � q�u�x � � �����

in distribution sense� i�e�ZZ �

�u��t � q�u��x

�
dxdt � � �����

for every function � � �� continuously di
erentiable with compact support�

In analogy with ������ if u is an entropy admissible solution� at every point of
approximate jump one can show that

�
�

�u��� 
�u��


 � q
�
u��� q�u��� �����

An alternative admissibility condition� due to Lax �Lx	� is particularly useful
because it can be applied to any system and has a simple geometrical interpretation�
We recall that� at a point of approximate jump� the speed � must be an eigenvalue of
the averaged matrix A�u�� u�� at ������ i�e� � � �i�u

�� u�� for some i � f�� � � � � ng�

De�nition �� A solution u � u�t� x� of ����� satis�es the Lax admissibility condi�
tion if� at each point of approximate jump� the left and right states u�� u� and the
speed � � �i�u

�� u�� of the jump satisfy

�i�u
�� � � � �i�u

��� �����

To appreciate the geometric meaning of this condition� consider a piecewise
smooth solution� having a discontinuity along the line x � ��t�� where the solution
jumps from a left state u� to a right state u�� According to ������ this discontinuity
must travel with a speed �

�
� �� � �i�u

�� u�� equal to an eigenvalue of the averaged
matrix A�u�� u��� If we now look at the i�characteristics� i�e� at the solutions of
the O�D�E�

�x � �i
�
u�t� x�

�
�

we see that the Lax condition ����� requires that these lines run into the shock�
from both sides�

Centered Rarefaction Waves�
Next� we consider another special type of solutions� in the form of centered

rarefaction waves� Fix a state u� � IRn and an index i � f�� � � � � ng� As before� let
ri�u� be an i�eigenvector of the Jacobian matrix A�u� � Df�u�� The integral curve



	 ALBERTO BRESSAN

of the vector �eld ri through the point u� is called the i�rarefaction curve through
u�� It is obtained by solving the Cauchy problem in state space�

du

d

� ri�u�� u��� � u�� ������

We shall denote this curve as


 �� Ri�
��u���

Clearly� the parametrization depends on the choice of the eigenvectors ri� In par�
ticular� if we impose the normalization



ri�u�

 	 �� then the rarefaction curve Ri

will be parametrized by arc�length�

Let the i�th �eld be genuinely nonlinear� and assume that u� lies on the positive
i�rarefaction curve through u�� i�e� u� � Ri�
��u

�� for some 
 � �� For each
s � ��� 
	� de�ne

�i�s� � �i
�
Ri�s��u

��
�
�

Observe that� by genuine nonlinearity� the map s �� �i�s� is strictly increasing�
Hence� for every � � ��i�u��� �i�u��
� there is a unique value s � ��� 
	 such that
� � �i�s�� We claim that� for t � �� the function

u�t� x� �

�����
u� if x�t � �i�u

���

Ri�s��u
�� if x�t � �i�s� �

�
�i�u

��� �i�u
��


�

u� if x�t� �i�u
���

������

is a continuous solution of the Riemann problem ������ ������ Indeed� by construc�
tion it follows

lim
t���

��u�t� ��� �u��
L�
� ��

Moreover� the equation ����� is trivially satis�ed in the sectors where x�t � �i�u
��

or x�t � �i�u
��� since here ut � ux � �� Next� assume x�t � �i�s� for some

s � 	�� 
� � Since u is constant along each ray through the origin fx�t � cg� we
have

ut�t� x� �
x

t
ux�t� x� � ��

We now observe that the de�nition ������ implies x�t � �i
�
u�t� x�

�
� Moreover�

ux is parallel to ri�u�� hence it is an eigenvector of the Jacobian matrix A�u�
with eigenvalue �i�u�� On the sector

�
�i�u

�� � x�t � �i�u
��
�
we thus have

ut �A�u�ux � � � proving our claim� Notice that the assumption 
 � � is essential
for the validity of this construction� In the opposite case 
 � �� the de�nition ������
would yield a triple�valued function in the region where x�t � 


�i�u
��� �i�u

��
�
�

Solution of the Riemann Problem�

Relying on the previous analysis� the solution of the general Riemann problem

ut � f�u�x � � � u��� x� �

�
u� if x � ��

u� if x � ��
������

can be obtained by �nding intermediate states �� � u�� ��� � � � � �n � u� such that
each pair of adiacent states �i��� �i can be connected by an i�shock� or by a centered
rarefaction i�wave� By the implicit function theorem� this can always be done
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provided that the two states u�� u� are su�ciently close� The complete solution is
now obtained by piecing together the solutions of the n Riemann problems

ut � f�u�x � �� u��� x� �

�
�i�� if x � ��

�i if x � ��
������

on di
erent sectors of the t�x plane� A typical solution is illustrated in �g� ��

�� Glimm and front tracking approximations

Approximate solutions to a more general Cauchy problem can be constructed
by patching together solutions of several Riemann problems� In the Glimm scheme
��g� ��� one works with a �xed grid in the t�x plane� with mesh sizes �t� �x� At
time t � � the initial data is approximated by a piecewise constant function� with
jumps at grid points� Solving the corresponding Riemann problems� a solution
is constructed up to a time �t su�ciently small so that waves emerging from
di
erent nodes do not interact� At time t�

�
� �t� we replace the solution u��t� ��

by a piecewise constant function having jumps exactly at grid points� Solving the
new Riemann problems at every one of these points� one can prolong the solution
to the next time interval ��t� ��t	� At time t�

�
� ��t� the solution is a gain

approximated by a piecewise constant functions with jumps exactly at grid points�
etc� � � A key ingredient of the Glimm scheme is the restarting procedure� At each
time tj

�
� j�t� a natural way to approximate a BV function with a piecewise

constant one is by taking its average value on each subinterval Ji
�
� �xi��� xi	�

However� this procedure may generate an arbitrarily large amount of oscillations�
Instead� the Glimm scheme is based on random sampling� a point yi is selected at
random inside each interval Ji and the value u�tj�� yi� is taken as the new value
of u�tj � x� for all x � Ji� An excellent introduction to the Glimm scheme can be
found in the book by J� Smoller �Sm	�

An alternative technique for contructing approximate solutions is by wave�front
tracking ��g� ��� This method was introduced by Dafermos �D�	 in the scalar case
and later developed by various authors �DP�	� �B�	� �Ri	� �BJ	� It now provides an
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e�cient tool in the study of general n � n systems of conservation laws� both for
theoretical and numerical purposes �B�	� �HR	�

The initial data is here approximated with a piecewise constant function� and
each Riemann problem is solved approximately� within the class of piecewise con�
stant functions� In particular� if the exact solution contains a centered rarefaction�
this must be approximated by a rarefaction fan� containing several small jumps�
At the �rst time t� where two fronts interact� the new Riemann problem is again
approximately solved by a piecewise constant function� The solution is then pro�
longed up to the second interaction time t�� where the new Riemann problem is
solved� etc� � � The main di
erence is that in the Glimm scheme one speci�es a priori
the nodal points where the the Riemann problems are to be solved� On the other
hand� in a solution constructed by wave�front tracking the locations of the jumps
and of the interaction points depend on the solution itself� No restarting procedure
is needed and the map t �� u�t� �� is thus continuous with values in L�loc�
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In the end� both algorithms produce a sequence of approximate solutions� whose
convergence relies on a compactness argument based on uniform bounds on the
total variation� We sketch the main idea involved in these a priori BV bounds�
Consider a piecewise constant function u � IR �� IRn� say with jumps at points
x� � x� � � � � � xN � Call 
� the amplitude of the jump at x�� The total strength
of waves is then de�ned as

V �u�
�
�
X
�

j
�j� �����

Clearly� this is an equivalent way to measure the total variation� Along a solution
u � u�t� x� constructed by front tracking� the quantity V �t� � V

�
u�t� ��� may well

increase at interaction times� To provide global a priori bounds� following �G	 one
introduces a wave interaction potential� de�ned as

Q�u� �
X

������A

j
� 
� j� �����

where the summation runs over the set A of all couples of approaching waves�
Roughly speaking� we say that two wave�fronts located at x� � x� are approaching
if the one at x� has a faster speed than the one at x� �hence the two fronts are
expected to collide at a future time�� Now consider a time � where two incoming
wave�fronts interact� say with strengths 
� 
� �for example� take � � t� in �g� ���
The di
erence between the outgoing waves emerging from the interaction and the
two incoming waves 
� 
� is of magnitude O��� � j

�j� On the other hand� after
time � the two incoming waves are no longer approaching� This accounts for the
decrease of the functional Q in ����� by the amount j

�j� Observing that the new
waves generated by the interaction could approach all other fronts� the change in
the functionals V�Q across the interaction time � is estimated as

�V ��� � O��� � j

�j � �Q��� � �j

�j�O��� � j

�jV �����
If the initial data has small total variation� for a suitable constant C� the quantity

��t�
�
� V

�
u�t� ���� C�Q

�
u�t� ���

is monotone decreasing in time� This argument provides the uniform BV bounds
on all approximate solutions� Using Helly�s compactness theorem� one obtains
the convergence of a subsequence of approximate solutions� and hence the global
existence of a weak solution�

Theorem �� Let the system ����� be strictly hyperbolic and satisfy the assumptions
�H�� Then� for a su�ciently small � � � the following holds� For every initial
condition �u with

k�ukL� � � � Tot�Var�f�ug � � � �����

the Cauchy problem has a weak solution� de�ned for all times t � ��

The proof is based on careful analysis of solutions of the Riemann problem
and on the use of a quadratic interaction functional ����� to control the creation of
new waves� These techniques also provided the basis for subsequent investigations
of Glimm and Lax �GL	 and Liu �L�	� �L�	 on the asymptotic behavior of weak
solutions as t�
�
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�� Stability

The previous existence result relied on a compactness argument which� by itself�
does not provide informations on the uniqueness of solutions� A �rst understanding
of the dependence of weak solutions on the initial data was provided by the analysis
of front tracking approximations� The idea is to perturb the initial data by shifting
the position of one of the jumps� say from x to a nearby point x�� By carefully
estimating the corresponding shifts in the positions of all wave�fronts at a later time
t� one obtains a bound on the L� distance between the original and the perturbed
approximate solution� After much technical work� this approach yielded a proof of
the Lipschitz continuous dependence of solutions on the initial data� �rst in �BC�	
for �� � systems� then in �BCP	 for general n� n systems�

Theorem �� Let the system ����� be strictly hyperbolic and satisfy the assumptions
�H�� Then� for every initial data �u satisfying �	�	� the weak solution obtained as
limit of front tracking approximations is unique and depends Lipschitz continuously
on the initial data� in the L� distance�

These weak solutions can thus be written in the form u�t� �� � St�u� as trajecto�
ries of a semigroup S � D � ���
� �� D on some domain D containing all functions
with su�ciently small total variation� For some Lipschitz constants L�L� one has��St�u� Ss�v

��
L�
� L k�u� �vkL� � L�jt� sj � �����

for all t� s � � and initial data �u� �v � D�

A more transparent proof of Theorem � was later achieved by a technique
introduced by Liu and Yang in �LY	 and developed in �BLY	 into its �nal form�
The heart of the matter is to construct a nonlinear functional� equivalent to the L�

distance� which is decreasing in time along every pair of solutions� We thus seek
� � ��u� v� and a constant C such that

�

C
� ��v � u

��
L�
� ��u� v� � C � ��v � u

��
L�

� �����

d

dt
�
�
u�t�� v�t�

� � �� �����

u

v

= u(x)
0

ω

ω1

2

x

q
1

= v(x)ω

3
q

ω

xα

σα

3

�gure �
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Throughout the following� it will be convenient to measure the strength of wave�
fronts of a genuinely nonlinear family in terms of the change in the characteristic
speed� If u has a jump in the k�th family at the point x�� in the genuinely nonlinear
case we thus de�ne the strength as


�
�
� �k

�
u�x���

�� �k
�
u�x���

�
� �����

In connection with piecewise constant functions u� v � IR �� IRn generated by a
front tracking algorithm� the functional � can be de�ned as follows ��g� ��� At
each point x� we connect the states u�x�� v�x� by means of n shock curves� In
other words� we construct intermediate states �� � u�x�� ��� � � � � �n � v�x� such
that each pair �i��� �i is connected by an i�shock� These states can be uniquely
determined by the implicit function theorem� Call q�� � � � � qn� the strengths of these
shocks� We regard qi�x� as the i�th scalar component of the jump

�
u�x�� v�x�

�
�

For some constant C �� one clearly has

�

C �
� 

v�x� � u�x�



 � nX
i
�



qi�x�

 � C � � 

v�x� � u�x�


 � �����

The functional � is now de�ned as

��u� v�
�
�

nX
i
�

Z �

��

Wi�x�


qi�x�

 dx� �����

where the weights Wi take the form

Wi�x�
�
� � ��� �

�
total strength of waves in u and in v which approach the i�wave qi�x�



��� �

�
wave interaction potentials of u and of v



�
� � ���Vi�x� � ��

�
Q�u� �Q�v�



�����

for suitable constants ��� ��� Notice that� by construction� qi�x� represents the
strength of a �ctitious shock wave located at x� travelling with a speed �i�x� de�
termined by the Rankine�Hugoniot equations� In ������ it is thus meaningful to
consider the quantity

Vi�x�
�
�

X
��Ai�x�

j
�j �

where the summation extends to all wave�fronts 
� in u and in v which are ap�
proaching the i�shock qi�x�� By ����� and the boundedness of the weights Wi� it is
clear that ����� holds�

Next� we will sketch an argument showing why the functional � should decrease
along pairs of solutions� For a detailed proof� see �BLY	 or �B�	� We �rst observe
that the maps t �� qi�t� �� are Lipschitz continuous as maps with values into L�� At
a time � where an interaction occurs in u or in v� if the coe�cient �� is su�ciently
large the decrease of the functionals Q�u� or Q�v� implies

Wi��� � x� � Wi��� � x� �

for every i � f�� � � � � ng and almost every x � IR� Hence � is decreasing at each
interaction time�
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Interchanging the order of the summation and the integral� the functional � in
����������� can be written in the equivalent form

��u� v� �
�
� � ��Q�u� � ��Q�v�


 �Pn
i
�

R�
��



qi�x�

 dx
��� �

P
���J �u��J �v�

j
�j �
P

i

R
qi�x� approaches ��



qi�x�

 dx � �����

For our further analysis� the following construction will be useful� Given two piece�
wise constant functions u� v with compact support� for i � �� � � � � n we can de�ne
the scalar components ui� vi by induction on the jump points of u� v� We start by
setting ui��
� � vi��
� � �� If x� � J �u� is a jump point of u� then we let vi
be constant across x� and set

ui�x���
�
� ui�x����

�
qi�x���� qi�x���



�

On the other hand� if x� � J �v� is a jump point of v� then we let ui be constant
across x� and set

vi�x���
�
� vi�x��� �

�
qi�x���� qi�x���



�

These de�nitions trivially imply

qi�x� � vi�x�� ui�x� for all x � IR� i � �� � � � � n�

By de�nition� the i�waves in u and v which approach qi�x� are those located within
the thick portions of the graphs of ui� vi in �g� �� Viceversa� for a given i�wave 
�
located at x�� the regions where the jumps qi�x� approach 
� are represented by
the shaded areas in in �g� ��

To understand why the expression ����� decreases in time� assume �rst that v
has a wave�front at x� with strength 
�� say in the k�th family� In connection with
this front ��g� ��� for every i � k the functional ��u� v� contains a term of the form

���i
�
� ���j
�j�

�
area of the region between the graphs of ui and vi� to the right of x�



�

By strict hyperbolicity� the i�th and k�th characteristic speeds are strictly sep�
arated� say �k � �i � c � �� We thus expect

d���i

dt
� ���j
�j



q�i 

� �x� � ��i � � �c��j
�j


q�i 

� �����

up to higher order terms� Here ��i
�
� �i

�
�i���x��� �i�x��

�
is the speed of the

i�shock q�i � In addition� for every i � k the functional ��u� v� contains a term of
the form

���i
�
� ���j
�j�

�
area of the region between the graphs of ui and vi� to the left of x�



�

Entirely similar estimates can be proved also for these terms�
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Next� if the k�th �eld is genuinely nonlinear� the functional ��u� v� also contains
a term of the form ��g� ���

���k
�
� ���j
�j�

�
area of the region between the graphs of uk and vk� to the right of x�



�

Notice that� because of genuine nonlinearity� the points on the graphs of uk and vk
move with di
erent speeds� As a consequence� the shape of these graphs changes in
time� In particular� while the area enclosed by the two graphs may remain constant�
the portion of this area located to the right of a given front 
� will decrease� In
�gure ��� the two points P�Q lie initially on the same vertical line� At a later time
this is no longer true� The area of the shaded region� enclosed by the graphs of uk
and vk and by a vertical line through P � has decreased by an amount roughly equal
to the area of the triangular region with vertices P� P �� Q�

The di
erence between the speed �x� of the jump 
� at P and the average speed
���k of points between P and Q is estimated by

�x� � ���k � �

�



q��k � 
�


 �
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Hence� up to higher order terms� the time derivative of ���k satis�es

d���k

dt
� ���j
�j



q��k 

� �x� � ���k � � ���j
�j


q��k 

 � �

�



q��k � 
�


� ������

Yet another kind of estimate is needed in the case where the jump in vk crosses
the graph of uk� say vk�x��� � uk�x�� � vk�x���� In this case� the estimates �����
remain valid� In connection with the k�th �eld� the functional � contains a term of
the form

��k
�
� � � �area of the region between the graphs of uk and vk
�

where the above area includes points both on the right and on the left of x��
For convenience� call ��k

�
� �k

�
v�x���

�
� Since q��k � q��k � 
�� the genuine

nonlinearity of the k�th characteristic �eld and the parametrization ����� yield

���k � ��k � jq��k j� �

�
jq��k j ���k � ��k �

�

�
jq��k j �

�x� � ��k �
�

�

�jq��k j� jq��k j� �
Neglegting higher order terms� the shaded area in �g� �� thus decreases at the rate

d��k
dt

� 

q��k 

����k � �x���


q��k 

� �x�����k � � jq��k jjq��k j � jq��k j 


��q��k 

 � ������

Notice that in this last case the decrease of the functional � is simply due to
the decrease of the L� distance between the k�th components of u and v� In this
occasion� the weights Wk play no role� For all details we always refer to �B�	�

For general n � n systems� in ����� one �nds a Lipschitz constant L � ��
Indeed� it is only in the scalar case that the semigroup is contractive and the
theory of accretive operators and abstract evolution equations in Banach spaces can
be applied� see �K	� �C	� We refer to the 
ow generated by a system of conservation
laws as a Riemann semigroup� because it is entirely determined by specifying how
Riemann problems are solved� As proved in �B�	� if two semigroups S� S� yield the
same solutions to all Riemann problems� then they coincide� up to the choice of
their domains�
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From ����� one can deduce the error bound

��w�T �� STw���
��
L�
� L �

Z T

�

�
lim inf
h���

��w�t � h�� Shw�t�
��
L�

h

�
dt � ������

valid for every Lipschitz continuous map w � ��� T 	 �� D taking values inside the
domain of the semigroup� We can think of t �� w�t� as an approximate solution of
������ while t �� Stw��� is the exact solution having the same initial data� According
to ������� the distance at time T is bounded by the integral of an instantaneous
error rate� ampli�ed by the Lipschitz constant L of the semigroup�

Using ������� one can estimate the distance between a front tracking approxima�
tion and the corresponding exact solution� For approximate solutions constructed
by the Glimm scheme� a direct application of this same formula is not possible
because of the additional errors introduced by the restarting procedures at times
tk

�
� k�t� However� relying on a careful analysis of Liu �L�	� one can construct a

front tracking approximate solution having the same initial and terminal values as
the Glimm solution� By this technique� in �BM	 the authors proved the estimate

lim
�x��

��uGlimm��� ��� uexact��� ����
L�p

�x � j ln�xj � � ������

for every � � �� In other words� letting the mesh sizes �x��t � � while keeping
their ratio �x��t constant� the L� norm of the error in the Glimm approximate

solution tends to zero at a rate slightly slower than
p
�x�

�� Uniqueness

The uniqueness and stability results stated in Theorem � refer to a special class
of weak solutions� those obtained as limits of Glimm or front tracking approxima�
tions� For several applications� it is desirable to have a uniqueness theorem valid for
general weak solutions� without reference to any particular constructive procedure�
Results in this direction were proved in� �BLF	� �BG	� �BLw	� They are all based on
the error formula ������� In the proofs� one considers a weak solution u � u�t� x� of
the Cauchy problem

ut � f�u�x � � � u��� x� � �u�x� � �����

Assuming that u satis�es suitable entropy and regularity conditions� one shows that

lim inf
h���

��u�t� h�� Shu�t�
��
L�

h
� � �����

at almost every time t� By ������� u thus coincides with the semigroup trajectory
t �� Stu��� � St�u� Of course� this implies uniqueness� As an example� we state
below the result of �BLw	� Consider the following assumptions�

�A�� �Conservation Equations� The function u � u�t� x� is a weak solution of
the Cauchy problem ����� taking values within the domain D of the semigroup S�



�	 ALBERTO BRESSAN

More precisely� u � ��� T 	 �� D is continuous w�r�t� the L� distance� The initial
condition u��� x� � �u�x� holds� together withZZ �

u�t � f�u��x


dxdt � �

for every C� function � with compact support contained inside the open strip
	�� T ��IR�

�A�� �Lax Entropy Condition� Let u have an approximate jump discontinuity
at some point ��� �� � 	�� T ��IR� In other words� assume that there exists states
u�� u� �  and a speed � � IR such that� calling

U�t� x�
�
�

�
u� if x � � � ��t� ���

u� if x � � � ��t� ���
�����

there holds

lim
����

�

��

Z ���

���

Z ���

���




u�t� x�� U�t� x�



 dxdt � �� �����

Then� for some i � f�� � � � � ng� one has the entropy inequality�
�i�u

�� � � � �i�u
��� �����

�A�� �Bounded Variation Condition� For some small constant � � �� the
function x �� u

�
��x�� x

�
has bounded variation along every Lipschitz continuous

space�like curve
�
t � ��x�

�
� such that



��x� � ��x��


 � �jx� x�j for all x� x��

Theorem �� Let u � u�t� x� be a weak solution of the Cauchy problem �
����
satisfying the assumptions �A��� �A�� and �A	�� Then

u�t� �� � St�u �����

for all t� In particular� the solution that satis�es the three above conditions is
unique�

An additional characterization of these solutions� based on local integral esti�
mates� was given in �B�	� The underlying idea is as follows� In a forward neighbor�
hood of a point ��� �� where u has a jump� the weak solution u should behave much
in the same way as the solution of the corresponding Riemann problem� On the
other hand� on a region where its total variation is small� our solution u should be
accurately approximated by the solution of a linear hyperbolic system with constant
coe�cients�

To state the result more precisely� we introduce some notations� Given a func�

tion u � u�t� x� and a point ��� ��� we denote by U 	
�u����� the solution of the Riemann

problem with initial data

u� � lim
x���

u��� x�� u� � lim
x���

u��� x�� �����

In addition� we de�ne U 

�u����� as the solution of the linear hyperbolic Cauchy prob�

lem with constant coe�cients

wt � bAwx � �� w��� x� � u��� x�� �����
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Here bA �
� A

�
u��� ��

�
� Observe that ����� is obtained from the quasilinear system

ut �A�u�ux � � �A � Df� �����

by !freezing" the coe�cients of the matrix A�u� at the point ��� �� and choosing
u��� as initial data� A new notion of !good solution" can now be introduced� by
locally comparing a function u with the self�similar solution of a Riemann problem
and with the solution of a linear hyperbolic system with constant coe�cients� More
precisely� we say that a function u � u�t� x� is a viscosity solution of the system
����� if t �� u�t� �� is continuous as a map with values into L�loc� and moreover the
following integral estimates hold�

�i� At every point ��� ��� for every �� � � one has

lim
h���

�

h

Z ����h

����h




u�� � h� x�� U 	
�u������h� x� ��




 dx � �� ������

�ii� There exist constants C� � � � such that� for every � � � and a � � � b� one
has

lim sup
h���

�

h

Z b��h

a��h




u�� � h� x� � U 

�u������h� x�




 dx � C �
�
Tot�Var�

�
u���# 	a� b�

���
�

������

As proved in �B�	� this concept of viscosity solution completely characterizes
semigroup trajectories�

Theorem �� Let S � D � ���
��D be a semigroup generated by the system of
conservation laws ������ A function u � ��� T 	 �� D is a viscosity solution of �����
if and only if u�t� � Stu��� for all t � ��� T 	�

	� Vanishing viscosity approximations

It is natural to expect that the entropy weak solutions of the hyperbolic system
����� actually coincide with the limits of solutions to the parabolic system

u�t � f�u��x � 	 u�xx �����

letting the viscosity coe�cient 	� �� For smooth solutions� this convergence result
is easy to show� However� one should keep in mind that a weak solution of the hy�
perbolic system ����� in general is only a function with bounded variation� possibly
with a countable number of discontinuities� In this case� as the smooth functions
u� approach the discontinuous solution u� near points of jump their gradients u�x
must tend to in�nity ��g� ���� while their second derivatives u�xx become even more
singular� Therefore� the convergence u� � u of the vanishing viscosity limit is a
highly nontrivial matter�

In earlier literature� results in this direction relied on three di
erent approaches�

� 
 Comparison principles for parabolic equations� For a scalar conservation
law� the existence� uniqueness and global stability of vanishing viscosity solutions
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was �rst established by Oleinik �O	 in one space dimension� The famous paper by
Kruzhkov �K	 covers the more general class of L� solutions and is also valid in
several space dimensions�

� 
 Singular perturbations� This technique was developed by Goodman and Xin
�GX	� and covers the case where the limit solution u is piecewise smooth� with a
�nite number of non�interacting� entropy admissible shocks� See also �Y	 and �Ro	�
for further results in this direction�

� 
 Compensated compactness� With this approach� introduced by Tartar
and DiPerna �DP�	� one �rst considers a weakly convergent subsequence u� �
u� For a class of � � � systems� one can show that this weak limit u actually
provides a distributional solution to the nonlinear system ������ The proof relies
on a compensated compactness argument� based on the representation of the weak
limit in terms of Young measures� which must reduce to a Dirac mass due to the
presence of a large family of entropies�

In view of recent results on the well�posedness of the hyperbolic Cauchy problem
within the space of BV functions� it is natural to seek uniform BV bounds also on
the viscous approximations u� in ������ This is indeed the main goal accomplished
in �BB	� As soon as these BV bounds are established� the existence of a vanishing
viscosity limit follows by a standard compactness argument� The uniqueness of
the limit can then be deduced from the uniqueness theorem in �BG	� By further
analysis� one can also prove the continuous dependence on the initial data for the
viscous approximations u�� in the L� norm� These results are valid� more generally�
for hyperbolic systems not necessarily in conservation form� In this case� however�
the unique limits of vanishing viscosity approximations cannot be interpreted as
weak solutions in a distributional sense� Their characterization thus requires more
care� The main results in �BB	 can be stated as follows�

Theorem �� Consider the Cauchy problem for the hyperbolic system with viscosity

u�t � A�u��u�x � 	 u�xx u���� x� � �u�x� � �����

Assume that the matrices A�u� are strictly hyperbolic� smoothly depending on u in
a neighborhood of the origin� Then there exist constants C�L� L� and � � � such
that the following holds� If

k�ukL� � � � Tot�Var�f�ug � � �
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then for every 	 � � the Cauchy problem ����� has a unique solution u�� de�ned for
all t � �� Adopting a semigroup notation� this will be written as t �� u��t� �� �

� S�
t �u�

In addition� one has


BV bounds � Tot�Var�
�
S�
t �u
� � C Tot�Var�f�ug �

�����

L� stability �
��S�

t �u�S�
t �v
��
L�
� L

���u��v��
L�

�

�������S�
t �u� S�

s �u
��
L�
� L�

�
jt� sj� 

p	t�p	s 

� � �����

Convergence� As 	� ��� the solutions u� converge to the trajectories of a semi�
group S such that ��St�u� Ss�v

��
L�
� L k�u� �vkL� � L� jt� sj � �����

These vanishing viscosity limits can be regarded as the unique vanishing viscosity
solutions of the hyperbolic Cauchy problem

ut �A�u�ux � �� u��� x� � �u�x� � �����

In the conservative case A�u� � Df�u�� every vanishing viscosity solution is a
weak solution of

ut � f�u�x � �� u��� x� � �u�x� � �����

satisfying the Liu admissibility conditions �L���

We outline here the main ideas in the proof of Theorem ��

�� The rescaling t �� t�	� x �� x�	 transforms the problem ����� into

ut �A�u�ux � uxx u��� x� � �u�	x� � �����

Clearly� the total variation of a solution u is not a
ected by this rescaling� Notice
however that the values of a solution u� of ����� on a time interval ��� T 	 correspond
to the value of a solution u of ����� on the much longer interval ��� T�		� To obtain
BV estimates uniformly valid for all 	 � �� we thus need to prove similar estimates
for the problem

ut �A�u�ux � uxx ������

uniformly valid for all t � ��� 
� and all initial data u��� �� with suitably small total
variation�

�� From now on we thus consider the parabolic system ������� On an initial time
interval ��� T 	� the solution can be represented as

u�t� � G�t� � u����
Z t

�

G�t� s� �A�u�s��ux�s� ds � ������

in terms of convolutions with the standard heat kernel G�t� x�
�
� ���t�����e�x

���t�
Even if the initial data is discontinuous� the presence of viscosity has an immediate
regularizing e
ect and the solution becomes smooth for all times t � �� The
smoothing e
ect of the parabolic equation is summarized in �g� ��� Let

��
�
� Tot�Var�f�ug

be the total variation of the initial data� Then� on an initial interval t � 	�� T 	 with
T � O��� � ���� one can show that
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� The total variation of u�t� �� remains bounded� i�e���ux�t� ����
L�
� O��� � �� � ������

� The norms of all higher order derivatives decay at algebraic rates� In particular��ux�t� ����
L�

� ��uxx�t� ����
L�
� O��� � ��t�������uxx�t� ����

L�
� ��uxxx�t� ����

L�
� O��� � ��t��� ������

All these bounds can be derived by looking at integral representations of the
form �������

For t � �T� 
� � these parabolic type estimates yield only partial informations�
What can be proved is the following� as long as the bound ������ on the total vari�
ation remains valid� also the norms of all higher derivatives remain small� Namely��ux�t� ����

L�
� ��uxx�t� ����

L�
� O��� � ��� ���uxx�t� ����

L�
� ��uxxx�t� ����

L�
� O��� � ��� � ������

�� The main part of the proof is to establish the uniform bound ������ on the
total variation� for all times t � ���
� � By the previous step� we can assume that
the bounds ������ on higher order derivatives already hold� As mentioned in the
Introduction� the basic approach is as follows� At each point �t� x� we decompose
the gradient along a suitable basis of unit vectors �ri� say

ux �
X

vi�ri � ������

Then we derive an evolution equation for these gradient components� and show that
their L� norm remains uniformly bounded�

Toward this decomposition� the �rst step is to select n families of travelling
wave pro�les Ui� each depending on n�� scalar parameters� This will allows us to
solve the system ������������� in unique way� depending continuously on the data
�u� ux� uxx��
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�� A viscous travelling i�wave pro�le is a solution of ������� where the speed 

is close to the i�th eigenvalue �i of the hyperbolic matrix A� This second order
O�D�E� can be rewritten as a �rst order system����

�u � v �
�v �

�
A�u�� 


�
v �

�
 � � �
������

Linearizing at a point P �i �
�
u�� �� �i�u

��
�
we obtain the linear system with con�

stant coe�cients ���
�u � v �
�v �

�
A�u��� �i�u

��
�
v �

�
 � � �
������

This system admits a center subspaceNi of dimension n��� By the center manifold
theorem �V	� there exists a manifoldMi� tangent to Ni at the point P

�
i �see �g� ����

locally invariant for the 
ow of the nonlinear system ������� Instead of looking at
all viscous travelling pro�les� we can now restrict ourselves to only those pro�les
corresponding to a trajectory on the center manifold Mi� Since this manifold is
�n � ���dimensional� through each state u � IRn there is a ��parameter family of
such pro�les� say Ui�u� vi� 
i�� Here vi denotes the scalar amplitude of the wave�
and 
i is the speed� Calling �ri�u� vi� 
i� the unit vector parallel to U

�
i � this pro�le

Ui is characterized by the equations

U ��i �
�
A�Ui�� 
i�U

�
i � Ui��� � u � U �i��� � vi�ri � ������

The manifold can then be de�ned as

Mi �
�
�u� v� 
i� � IRn�n�� # v � vi�ri�u� vi� 
i�

�
� ������

We can now try to solve the system ������������� using not all travelling wave
pro�les in ������� but only those Ui which correspond to a trajectory on the cen�
ter manifold Mi� Notice that in this case we get the correct number of param�
eters� in all� the n pro�les U�� � � � � Un through the point u�x� depend on the
�n scalar parameters v�� 
�� � � � � vn� 
n� Exactly the right number to �t the data�
ux�x�� uxx�x�

� � IRn�n�
To better understand how our decomposition works� consider �rst the special

case where u is precisely the pro�le of a viscous travelling wave of the j�th family�
In this case� the decomposition should clearly contain one single component�

ux � vj�rj�u� vj � 
j� �
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It is easy to guess what vj and 
j should be� Indeed� since by construction j�rj j � ��
the quantity

vj � 
juxj
is the signed strength of the wave� We also notice that� for a travelling wave� the
vectors ux and ut are always parallel� Indeed� ut � �
jux� where 
j is the speed
of the wave� We can thus write

ut � uxx �A�u�ux � �j�rj�u� vj � 
j�

for some scalar �j � The speed of the wave is now obtained as 
j � ��j�vj �
Motivated by the previous analysis� as a �rst attempt we de�ne our decompo�

sition in terms of the equations�
ux �

P
i vi �ri�u� vi� 
i��

ut �
P

i �i �ri�u� vi� 
i��

i � ��i

vi
� ������

The trouble with ������ is that the vectors �ri are de�ned only for speeds 
i close
to the i�th characteristic speed ��i

�
� �i�u

��� However� when ux � � one has vi � �
and the ratio �i�vi may become arbitrarily large� To overcome this problem� we
introduce a smooth cuto
 function � such that

��s� �

�
s if jsj � ��

� if jsj � ���
������

for some small constant �� � �� We now rewrite ������ in terms of the new variable
wi� related to �i by �i

�
� wi � ��i vi� We require that 
i coincides with ��i�vi only

when this ratio is su�ciently close to ��i
�
� �i�u

��� Our basic equations thus take
the form �

ux �
P

i vi �ri�u� vi� 
i��
ut �

P
i�wi � ��i vi� �ri�u� vi� 
i��

������

where

ut � uxx �A�u�ux � 
i � ��i � �

	
wi

vi

�
� ������

The system ������������� can be written in the more compact form	
ux
ut

�
� $�u� v� w� � ������

Using the implicit function theorem one can prove that� for each given state u �
u� and ux� ut su�ciently small� there exists unique v � �v�� � � � � vn� and w �
�w�� � � � � wn� such that ������������� hold� Furthermore� the map �u� ux� ut� ��
�v� w� is C� with Lipschitz continuous �rst derivative� This achieves the desired
decomposition of the gradient ux�

We observe that above equations are closely related to ������� Indeed� recalling
������� from the �rst equation in ������ it follows

ux�x� �
X
i

U �i�x� �

If 
i � ��i � wi�vi for all i � �� � � � � n� i�e� if none of the cuto
 functions is active�
then

uxx�x� � ut �A�u�ux �
P

i�wi � ��i vi��ri �A�u�
P

i vi�ri
�

P
i

�
A�u�� 
i

�
vi�ri �

P
i U

��
i �x� �

In this case� both of the equalities in ������ hold� Notice however that the second
equality in ������ may fail if jwi�vij � �� for some i� so that ��wi�vi� �� wi�vi�
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Remark �� For each i � �� � � � � n� in addition to the eigenvalue �i�u� of the matrix

A�u�� one can de�ne the viscous eigenvalue ��i�u� vi� 
i� by setting

��i
�
�
�
�ri � A�u��ri

�
� ������

Instead of the standard relation�
A�u�� �i

�
ri � � �

a direct computation shows that these viscous eigenvectors satisfy�
A�u�� ��i

�
�ri � vi

�
�ri�u�ri � �ri�v���i � 
i�

�
� ������

Here �ri�u � ��ri��u and �ri�v � ��ri��vi denote partial derivatives� In the special
case vi � �� an easy consequence of ������ is the identity

�ri�u� �� 
i� � ri�u��

The presence of non�zero terms on the right hand side of ������ is of fundamental
importance� Indeed� in the evolution equation for the component vi� these terms
achieve a crucial cancellation with other terms that would otherwise not be inte�
grable�

�� We now consider a smooth solution u � u�t� x� of the parabolic system �������
By the previous step� we can de�ne the scalar functions vi � vi�t� x�� wi � wi�t� x��
according to the decomposition �������������� The equations governing the evolu�
tion of these �n components can be written in the form�

vi�t � ���ivi�x � vi�xx � �i �

wi�t � ���iwi�x � wi�xx � �i �
������

We recall that ��i is the speed de�ned at ������� The source terms �i� �i can be
computed by inserting ������ in the evolution equation	
ux
ut

�
t�

	�
A�u� �
� A�u�

�	
ux
ut

��
x

�
	
ux
ut

�
xx �

	
��

DA�u� � ux
�
ut �

�
DA�u� � ut

�
ux

�
and di
erentiating various times w�r�t� t� x� using the fundamental relation �������
For all details we refer to �BB	� Rather than the exact form of the source terms�
what matters here is their magnitude� This can be estimated as follows�

Lemma �� The source terms in ������ satisfy the bounds

�i� �i � O��� �Pj

�jvj�xj� jwj�xj
� � jwj � �jvj j �cuto� error�

�O��� �Pj �
k

�jvjvkj� jvj�xvkj� jvjwkj� jvj�xwkj� jvjwk�xj� jwjwkj
�

�interaction of waves of di�erent families�

� O��� �Pj jvj�xwj � vjwj�xj � O��� �Pj




vj �wj
vj

�
x




� � ��
jwj�vj j��
�

� �in

������

Here �� is the constant in the cuto
 function at ������� A rigorous proof of
Lemma � requires lengthy calculations� Here we shall only provide an intuitive
explanation of how the various terms arise� Consider �rst the special case where u
is precisely one of the travelling wave pro�les on the center manifold ��g� ��a�� say
u�t� x� � Uj�x � 
jt�� In this case one has

ux � vj�rj � ut � �wj � ��j vj��rj � vi � wi � � for i �� j �
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and all source terms �i� �i vanish identically�
Next� consider the case of a general solution u � u�t� x� of ������� The sources

on the right hand sides of ������ arise for three di
erent reasons ��g� ��b��

�i� The ratio jwj�vj j is large and hence the cuto
 function �j �
� ��wj�vj� is active�

Typically� this will happen near a point x� where ux � � but ut � uxx �� �� In this
case the second identity in ������ fails because of a !wrong" choice of the speed�

j �� ��j � �wj�vj��

�ii� Waves of two di
erent families j �� k are present at a given point x� These will
produce quadratic source terms� due to transversal interactions�

�iii� Since the decomposition ������ is de�ned pointwise� it may well happen that
the travelling j�wave pro�le Uj at a point x is not the same as the pro�le Uj at
a nearby point x�� Indeed� these two travelling waves may have slightly di
erent
speeds� It is the rate of change in this speed� 
j�x � ��wj�vj�x� that determines
the in�nitesimal interaction between nearby waves of the same family� A detailed
analysis shows that the corresponding source terms can only be linear or quadratic
w�r�t� 
j�x� with the square of the strength of the wave always appearing as a factor�
These terms can thus be estimated as O��� � v�j
j�x �O��� � v�j
�j�x�

To complete the proof of the BV bounds� it remains to show that all terms on
the right hand side of ������ are integrable over the domain ft � T � x � IRg� For
this purpose� we shall introduce four types of Lyapunov functionals� called energy�
transversal interaction� curve length and area functional� monotonically decreasing



ONE DIMENSIONAL HYPERBOLIC SYSTEMS OF CONSERVATION LAWS ��

*

x

z
z

�gure ��

along solutions� Each of the terms that we need to estimate will be dominated by
the rate of decrease of one of these functionals�


� Lyapunov functionals

We begin by describing a functional which controls the amount of interaction
between viscous waves of di
erent families�

Consider two independent� scalar di
usion equations with strictly di
erent
drifts ��g� ���� �

zt �
�
��t� x�z



x
� zxx � � �

z�t �
�
���t� x�z�



x
� z�xx � � �

assuming that

inf
t�x

���t� x�� sup
t�x

��t� x� � c � � �

We can think z as the density of waves with a slow speed � and z� as the density
of waves with a fast speed ��� We seek an a priori bound on the total amount of
interaction Z �

�

Z
IR



z�t� x�

 � 

z��t� x�

 dxdt � �����

This can be achieved by means of a transversal interaction potential� de�ned
by

Q�z� z��
�
�
�

c

Z Z
IR�

K�x� � x��


z�x��

 

z��x��

 dx�dx� � �����

K�y�
�
�

�
e�cy�� if y%� �

� if y � � � �����

Notice that� to the product of a slow wave located at x� and a fast wave at x��
in ����� we assign weight K�x� � x�� � � if the two waves are approaching �i�e� if
x� � x��� and an exponentially small weight if they are moving away from each
other �i�e� if x� � x��� It turns out that this functional is monotonically decreasing
along every couple of solutions z� z�� Moreover� the rate of decrease controls the
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integrand in ������ NamelyZ �

�

Z
IR



z�t� x�

 

z��t� x�

 dxdt � �
Z �

�

�
d

dt
Q
�
z�t�� z��t�

��
dt

� Q
�
z���� z����

� � �

c

Z
IR



z��� x�

 dx � Z
IR



z���� x�

 dx �
By introducing Lyapunov functionals of this type� we can bound the integrals of
all terms of the form

jvjvkj jvj�xvk j � jvjwk j � jvj�xwkj � jwjwk j
with j �� k� due to the interaction of waves of di
erent families�

Next� we seek functionals which control the interactions between waves of the
same family� Toward this goal� we �rst consider Lyapunov functionals which are
decreasing along every solution of the scalar viscous conservation law

ut � f�u�x � uxx � �����

Given a scalar function x �� u�x�� de�ne the curve ��g� ���

�
�
�

	
u

f�u�� ux

�
�

	
conserved quantity


ux

�
� �����

In connection with a solution u � u�t� x� of ������ the curve � evolves according
to

�t � f ��u��x � �xx � �����

Notice that the vector f ��u��x is parallel to �� hence the presence of this term
in ����� only amounts to a reparametrization of the curve� and does not a
ect its
shape� The curve thus evolves in the direction of curvature� An obvious Lyapunov
functional is thus the length of the curve� In terms of the variables

�x �

	
v
w

�
�
�

	
ux
�ut

�
� �����
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this length is given by

L���
�
�

Z
j�xj dx �

Z p
v� � w� dx � �����

We can estimate the rate of decrease of the length as

� d

dt
L
�
��t�

�
�

Z
IR

jvj ��w�v�x
��
� � �w�v��

���� dx � �

�� � ������

Z
jw�vj�


jvj ��w�v�x
� dx �
for any given constant � � �� ThereforeZ �

�

Z
jw�vj�
�

jvj ��w�v�x
� dx dt � O��� �
Z �

�





 ddtL���t��




 dt � O��� � L�������

This argument allows us to estimate all source terms in ������ of the form

O��� �




vj 	wj

vj

�
x





� � ��jwj�vj j��
�� �
In connection with the same curve � in ������ we now introduce a second func�

tional� de�ned in terms of a wedge product�

Q���
�
�
�

�

ZZ
x�x�



�x�x� � �x�x��

 dx dx� � �����

For any curve that moves in the plane in the direction of curvature ��g� ��a�� this
functional is monotone decreasing and its decrease controls the area swept by the
curve� jdAj � �dQ� An intuitive proof of this fact can be obtained by looking at
polygonal approximations� In the special case ��g� ��b� where � is a polygonal with
edges v�� � � � �vm� the functional in ����� reduces to

Q��� �
�

�

X
i�j



vi � vj

 �
Consider now a second polygonal ��� obtained from � by replacing two consecutive
edges vh�vk by a single one� The area of the triangle between � and �

� is then

Area �
�

�



vh � vk

 � Q����Q�����

Observing that every continuous curve moving in the direction of curvature can
be approximated by a suitable sequence of polygonals� the relation jdAj � �dQ is
obtained in the limit�



�� ALBERTO BRESSAN

Using ����������� we now compute

�dQ

dt
�




dAdt





 � Z
j�t � �xj dx �

Z
j�xx � �xj dx �

Z
jvxw � vwxj dx �

Therefore� integrating w�r�t� time one �ndsZ �

�

Z
jvxw � vwxj dx dt �

Z �

�





 ddtQ���t��




 dt � Q

�
����

�
�

This argument allows us to estimate all source terms in ������ of the form

O��� � 

vj�xwj � vjwj�x



 �
Remark �� De�ning the speed of a scalar viscous wave as 
�x�

�
� �ut�x��ux�x��

the area functional Q��� in ����� can be written as

Q��� � �
�

RR
x�y



ux�x�ut�y�� ut�x�ux�y�


 dxdy

� �
�

RR
x�y



ux�x� dx

 � 

ux�y� dy

 � 


�x� � 
�y�




� �
�

RR
x�y�wave at x	� �wave at y	� �di
erence in speeds	 �

It now becomes clear that the area functional can be regarded as an interaction po�
tential between waves of the same family� Indeed� it closely resembles the functional
used by T� P� Liu in �L�	�

Remark �� In the case where u is precisely a viscous travelling wave� the curve �
reduces to a segment� Assume now that the 
ux f is genuinely nonlinear� say with
f �� � c � �� Consider a solution u which initially consists of two viscous travelling
waves� far apart from each other ��g� ���� To �x the ideas� let the �rst wave join a
left state a with a middle state b� and the second wave join the middle state b with
a right state c� with a � b � c� The strength of the two waves can be measured
as s � a � b� s� � b � c� The corresponding curve � is approximately given by
two segments� joining the points P

�
�
�
a� f�a�

�
� Q

�
�
�
b� f�b�

�
� P �

�
�
�
c� f�c�

�
�

After a long time � �� �� the two shocks will interact� merging into one single
viscous shock� The curve ���� thus reduces to one single segment� joining P with
P �� The area swept by the curve is approximately the area of the triangle PQP ��
The assumption of genuine nonlinearity implies

area swept � O��� � jss�j �jsj� js�j��
In this case� the decrease in the area functional is of cubic order w�r�t� the strengths
s� s� of the interacting waves� This is indeed the correct order of magnitude needed
to control the strength of new waves generated by the interaction in the genuinely
nonlinear case� It is remarkable that this area functional gives the correct order of
magnitude of waves generated by an interaction also for a general 
ux function f �
not necessarily convex�

Finally� we describe two functionals which can be used to control the source
terms in ������ due to the cuto
 errors�

Recalling the constant �� in ������� we de�ne a second cuto
 function 
 such
that


�s� �

�
� if jsj � �����
� if jsj � ������
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In connection with a solution �vi� wi� of ������ we de�ne 
i
�
� 
�wi�vi�� The integral

of the �rst terms on the right hand side of ������� due to the cuto
 error� is then
controlled by the decrease of the weighted energy functionals

Ei�u�
�
�

Z

i � v�i�x dx � eEi�u�

�
�

Z

i � w�

i�x dx � ������

For all details we always refer to �BB	�

Remark �� Intuitively� we expect that the cuto
 function � will be active when
juxj �� juxxj� In these regions� the di
usion term uxx dominates over the convection
term A�u�ux and the system ������ essentially reduces to the heat equation� It is
thus natural to estimate the error due to cuto
 in terms of an energy functional�
similar to the one commonly used for the heat equation�

By means of the above functionals we obtain the L� estimates on the source
terms �i� �i in ������� proving the uniform bounds on the total variation of a solution
u of �������
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�� Stability and convergence of viscous approximations

To prove the uniform stability of all solutions of the parabolic system ������
having small total variation� we consider the linearized system describing the evo�
lution of a �rst order variation� Inserting the formal expansion u � u�� �z�O����
in ������ we obtain

zt �
�
DA�u� � z
ux �A�u�zx � zxx � �����

A basic step in the proof is to establish the a priori bound��z�t���
L�
� L

��z�����
L�

� �����

for some constant L and all t � � and every solution z of the linearized system ������
By a standard homotopy argument� from ����� one easily deduces the Lipschitz
continuity of the solution of ������ on the initial data� Namely� for every couple of
solutions u� �u with small total variation one has��u�t�� �u�t���

L�
� L

��u���� �u�����
L�

� �����

To see this� let any two solutions u� �u be given� We can connect them by a smooth
path of solutions u�� whose initial data satisfy

u���� x�
�
� �u��� x� � ��� ���u��� x� � � � ��� �	 �

The distance
��u�t� ��� �u�t� ����

L�
at any later time t � � is clearly bounded by the

length of the path � �� u��t�� In turn� this can be computed by integrating the
norm of a tangent vector� Calling z�

�
� du��d�� each vector z� is a solution of the

corresponding equation ������ with u replaced by u�� Using ����� we thus obtain��u�t � ��� �u�t� ����
L�
� R �

�

�� d
d�u

��t�
��
L�

d� �
R �
�

��z��t���
L�

d�

� L
R �
�

��z������
L�

d� � L
��u��� ��� �u��� ����

L�
�

By the simple rescaling of coordinates t �� 	t� x �� 	x� all of the above estimates
remain valid for solutions u� of the system ������ By a compactness argument� these
BV bounds imply the existence of a strong limit u�m � u in L�loc� at least for some
subsequence 	m � �� In the conservative case where A � Df � it is now easy to
show that this limit u provides a weak solution to the Cauchy problem ������

To establish ����� one follows the same strategy as in the proof of the BV
bounds� We decompose the vector z as a sum of scalar components�

z �
X
i

hi�ri �

write an evolution equation for these components and prove that the source terms
are integrable on the domain ft � � � x � IRg�

Calling �
�
� zx �A�u�z� the decomposition takes the form�

z �
P

i hi�ri
�
u� vi� �

�
i � ��gi�hi�

�
�

� �
P

i�gi � ��i hi��ri
�
u� vi� �

�
i � ��gi�hi�

�
�

�����

where � is the cuto
 function introduced at ������� These components hi� gi satisfy
the system of parabolic equations�

hi�t � ���ihi�x � hi�xx � &�i �

gi�t � ���igi�x � gi�xx � &�i �
�����
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By similar arguments as in the previous sections� one obtains uniform bounds on

all source terms &�i� &�i� This proves ����� and hence the stability of all solutions of
������ with small total variation�

Remark �� The evolution equations ����� for a �rst order perturbation z are linear�
It thus seems natural to use a decomposition �z� zx� �� �h� g� where the components
hi� gi are linear functions of z� zx� This is the case if in ����� one chooses the same
vectors �ri � �ri�u� vi� 
i� as in ������� depending only on the reference solution u and
not on the perturbation z� Unfortunately� this linear decomposition does not seem
to work� since it leads to a system of the form ����� with possibly non�integrable
source terms� On the contrary� our decomposition ����� is positive homogeneous
of degree one� but not linear� Indeed� the unit vectors �ri depend on the reference
solution u through the amplitude vi� but also on the perturbation z implicitly
through the speed 
i � ��i � ��gi�hi��

For every initial data u��� �� � �u with small total variation� the previous steps
yield the existence of a unique global solution to the parabolic system ������� de�
pending Lipschitz continuously on the initial data� in the L� norm� Performing the
rescaling t �� t�	� x �� x�	� we immediately obtain the same results for the Cauchy
problem

u�t �A�u��u�x � 	 u�xx � u���� x� � �u�x� �

Adopting a semigroup notation� this solution will be written as u��t� �� � S�
t �u�

Thanks to the uniform bounds on the total variation� a compactness argument
yields the existence of a strong limit in L�loc

u � lim
�m��

u�m � �����

at least for some subsequence 	m � �� Since the u� depend continuously on the
initial data� with a uniform Lipschitz constant� the same is true of u�t� �� � St�u� In
the conservative case where A�u� � Df�u�� it is not di�cult to show that this limit
u actually provides a weak solution to the Cauchy problem ������

The only remaining issue is to show that the limit in ����� is unique� i�e� it
does not depend on the subsequence f	mg� In the standard conservative case� this
fact can already be deduced from the uniqueness criterion in �BG	� In the general
case� uniqueness is proved in two steps� First we show that� in the special case of a
Riemann problem� the solution obtained as vanishing viscosity limit is unique and
can be completely characterized� To conclude the proof� we then rely on the same
general argument as in �B�	� if two Lipschitz semigroups S� S� provide the same
solutions to all Riemann problems� then they must coincide�

�� Concluding remarks

It remains an open problem to establish the convergence of vanishing viscosity
approximations of the form

ut �A�u�ux � 	
�
B�u�ux

�
x

�����
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for more general viscosity matrices B� as in �MP	� In the present paper we are
exclusively concerned with the case where B is the identity matrix� For systems
which are not in conservative form� we expect that the limit of solutions of ������ as
	� �� will be heavily dependent on the choice of the matrix B� Studying the case
where the viscosity matrix B�u� is only semide�nite is particularly important� for
applications to more realistic physical models and also toward the understanding
of general relaxation approximations �N	�

In the present survey we only considered initial data with small total varia�
tion� This is a convenient setting� adopted in much of the current literature� which
guarantees the global existence of BV solutions of ����� and captures the main fea�
tures of the problem� In particular� a single solution can exhibit a rich structure�
including shock formation� decay of genuinely nonlinear rarefaction waves� interac�
tion and cancellation phenomena� On the other hand� from the point of view of
dynamical systems� the global 
ow generated by a hyperbolic systems looks rather
trivial� for large times� all small BV solutions asymptotically converge to a limit
described by the solution of a Riemann problem� In particular� we are not yet in
a position to add a large source term on the right hand side of ����� and study
the resulting 
ow from a topological point of view� say determining periodic or
heteroclinic orbits� The reason is� quite simply� that this rich dynamics can only
be observed in solutions with large data� But in this case� unfortunately� no global
existence theorem is yet known� except for very special systems�

A recent example of Jenssen �J	 shows that� for initial data with large total
variation� the L� norm of the solution can blow up in �nite time� In this more
general setting� one can only expect that the existence and uniqueness of weak so�
lutions� together with the convergence of vanishing viscosity approximations� will
hold locally in time as long as the total variation remains bounded� For the hy�
perbolic system ������ results on the local existence and stability of solutions with
large BV data can be found in �Sc	 and �BC�	�

We remark that all of the blow up examples given so far arise from hyperbolic
systems that do not admit any strictly convex entropy� This allows one to hope
that� for physical systems� �nite time blow up of solutions should not occur� At
present� the role of entropies in preventing this �nite time blow�up �as well as
other pathological behavior� remains one of the major open problems in the one�
dimensional theory of hyerbolic conservation laws�
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