Current Developments in Mathematics, 2001
Pages 777 — 777

One Dimensional Hyperbolic Systems
of Conservation Laws

Alberto Bressan

1. Introduction

These notes are meant to provide a survey of some recent results and techniques
in the theory of conservation laws. In one space dimension, a system of conservation
laws can be written as

ur + f(u) =0. (L.1)
Here u = (uy, ... ,uy) is the vector of conserved quantities while the components of
f=1(f1,..., fn) are called the fluzes. Integrating (1.1) over the interval [a, b] one
obtains
b b b
% J ut,z)de = [ u(t,z)de = — [] f(u(t,a:))z dz (1.2)

= f(u(t,a)) — f(u(t,b)) = [inflow at a] — [outflow at b].

In other words, each component of the vector u represents a quantity which is
neither created nor destroyed: its total amount inside any given interval [a, b] can
change only because of the flow across boundary points.

Systems of the form (1.1) can be used to express the fundamental balance laws
of continuum physics, when small viscosity or dissipation effects are neglected [D2].
A primary example is provided by the Euler equations describing the evolution of
a compressible, non viscous fluid:

pr+ (pv)g =0 (conservation of mass)
(pv)e + (pv® + p)a =0  (conservation of momentum)
(pE): + (pEv+pv), =0 (conservation of energy)

Here p is the mass density, v is the velocity while E = e + v?/2 is the energy
density per unit mass. The system is closed by a constitutive relation of the form
p = p(p, e), determining the pressure as a function of the density and the internal
energy. The particular values of p depends on the gas under consideration.

Using the chain rule, (1.1) can be written in the quasilinear form
u + A(u)u, =0, (1.3)
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where A(u) = Df(u) is the Jacobian matrix of first order partial derivatives of
f. For smooth solutions, the two equations (1.1) and (1.3) are entirely equivalent.
However, if u has a jump at a point xg, the left hand side of (1.3) will contain
the product of the discontinuous function z — A(u(z)) with the distributional de-
rivative u,, which in this case contains a Dirac mass at the point xy. In general,
such a product is not well defined. Hence (1.3) is meaningful only within a class of
continuous functions. On the other hand, working with the equation in divergence
form (1.1) allows us to consider discontinuous solutions as well, interpreted in dis-
tributional sense. More precisely, a locally integrable function v = u(t, x) is a weak
solution of (1.1) provided that

/ {ugs + f(u)¢s } dudt = 0 (1.4)
for every differentiable function with compact support ¢ € CL.

We say that the above system is strictly hyperbolic if every matrix A(u) has

n real, distinct eigenvalues, say Aj(u) < --- < Ap(u). In this case, one can find
dual bases of left and right eigenvectors of A(u), denoted by I (u),... ,I,(u) and
r1(u), ..., rp(u), normalized according to
1 f o
il =1, li-rj = ooi=d, (1.5)
0 if i#7].

To appreciate the effect of the non-linearity, consider first the case of a linear
system with constant coefficients

ug + Au, = 0. (1.6)

Call A\; < --- < A, the eigenvalues of the matrix A, and let [;, r; be the correspond-
ing left and right eigenvectors as in (1.5). One can then write the general solution
of (1.6) as a superposition of independent linear waves:

u(t,z) = Z bi(x — Nit)rs bi(y) = 1; - u(0,y) .

Notice that here the solution is completely decoupled along the eigenspaces of
A, and each component travels with constant speed, given by the corresponding
eigenvalue of A.

In the nonlinear case (1.3) where the matrix A depends on the state w, new
features will appear in the solutions.

(i) Since the eigenvalues \; now depend on u, the shape of the various components
in the solution will vary in time (fig. 1). In particular, rarefaction waves will decay,
and compression waves will become steeper, possibly leading to shock formation in
finite time.

(ii) Since the eigenvectors r; also depend on u, nontrivial interactions between
different waves will occur (fig. 2). In particular, the strength of the interacting
waves may change, and new waves of different families can be created, as a result
of the interaction.
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Of all these effects, the most important for the mathematical analysis is the
possible loss of regularity. This lack of regularity (also due to the absence of sec-
ond order terms that could provide a smoothing effect), together with the strong
nonlinearity of the equations, is the main source of the difficulties encountered in
a rigorous mathematical analysis of this subject. Indeed, most of the powerful
techniques of functional analysis do not apply in this context. Solutions cannot be
represented as fixed points of continuous transformations, or in variational form, as
critical points of suitable functionals. Dealing with vector valued functions, com-
parison principles based on upper or lower solutions cannot be used. Similarly,
the theory of accretive operators and contractive nonlinear semigroups works well
in the scalar case [C], but does not apply to systems. For the above reasons, the
theory of hyperbolic conservation laws has largely developed by ad hoc methods,
along two main lines.

1. The BV setting, considered by Glimm [G]. Solutions are here constructed within
a space of functions with bounded variation, controlling the BV norm by a wave
interaction functional.

2. The L* setting, introduced by Tartar and DiPerna [DP2], based on weak
convergence and a compensated compactness argument.

Both approaches yield results on the global existence of weak solutions. How-
ever, the method of compensated compactness appears to be suitable only for 2 x 2
systems. Moreover, it is only in the BV setting that the well-posedness of the
Cauchy problem could recently be proved, as well as the stability and convergence
of vanishing viscosity approximations. In the remainder of this paper we thus con-
centrate on the theory of BV solutions, referring to [DP2] or [Se] for the alternative
approach based on compensated compactness.

Since the pioneering work of Glimm, the basic building block toward the con-
struction and the analysis of more general solutions has been provided by the Rie-
mann problem, i.e. the initial value problem with piecewise constant data

u” if x<0,

0,z) =u(z) = 1.7
This was first introduced by B. Riemann (1860) in the context of isentropic gas
dynamics. A century later, P. Lax [Lx] solved the Riemann problem for a general
class of n x n systems. Solutions are self-similar, having the form

u(t,z) = U(x/t).
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The central position taken by the Riemann problem is related to a symmetry
of the equations (1.1). If u = u(t,z) is a solution of (1.1), then for any 6 > 0 the
function

u’(t, ) = u(ft,bz)

provides another solution. The solutions which are invariant under these rescalings
of the independent variables are precisely those which correspond to some Riemann
data.

Both the Glimm scheme and the method of front tracking yield approximate so-
lutions of a general Cauchy problem by piecing together a large number of Riemann
solutions. The approach is successful because one can provide an a priori bound
on the total amount of new waves produced by nonlinear interactions, and hence
on the total variation of the solution. It is safe to say that, in the context of weak
solutions with small total variation, nearly all results on the existence, uniqueness,
continuous dependence and qualitative behavior have relied on a careful analysis of
the Riemann problem.

Very recently, in [BB] a substantially different perspective has emerged from
the study of vanishing viscosity approximations. Solutions of (1.1) are sought as
limits for £ — 0 of solutions to the parabolic problems

u; + A(u®)u, = eul, . (1.8)

Here A(u) = Df(u). This approach is very natural, and has been considered since
the 1950’s. However, it was only in the scalar case [O], [K], that complete results
could be obtained. For general n x n systems, the main difficulty lies in establishing
the compactness of the approximating sequence. We observe that u®(t,z) solves
(1.8) if and only if u®(t,z) = u(t/e, x/e) for some function u which satisfies

ur + A(u)uy = Ugy - (1.9)

In the analysis of vanishing viscosity approximations, the key step is to derive a
priori estimates on the total variation and on the stability of solutions of (1.9).
For this parabolic system, the rescaling (t,z) — (6t, fx) no longer determines a
symmetry. Hence the Riemann data no longer hold a privileged position. The
role of basic building block is now taken by the wviscous travelling profiles, i.e. the
solutions of the form

u(t,z) = U(x — At).
Of course, the function U must then satisfy the second order O.D.E.
U" = (A(U) - \U".

The new point of view consists in decomposing the gradient u, locally as a sum
of gradients of viscous travelling waves. More precisely, let a smooth function
u: IR — IR™ be given. At each point z, looking at the third order jet (u,ug,Uzs)
we seek travelling profiles Uy, ... , U, such that

U/ = (A(h) — ;)U] (1.10)
for some speed o; close to the characteristic speed \;, and moreover

Ui(z) = u(z) i=1,...,n, (1.11)
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ZU;(x) = u, (), ZU;'(;L«) = Uy () . (1.12)

It turns out that this decomposition is unique provided that the travelling profiles
are chosen within suitable center manifolds. We let 7; be the unit vector parallel to
U}, so that U] = v;7; for some scalar v;. One can show that 7; remains close to the
eigenvector 7;(u) of the Jacobian matrix A(u) = D f(u), but 7; # r;(u) in general.
The first equation in (1.12) now yields the decomposition

Uy = Y 0. (1.13)

If u = u(t,z) is a solution of (1.9), we can think of v; as the density of i-waves
in u. The remarkable fact is that these components satisfy a system of evolution
equations

Vit + ()\ZUZ)z — Vigz = o3y 1=1,...,n, (114)
where the source terms ¢; on the right hand side are INTEGRABLE over the whole
domain {z € IR, t > 0}. Indeed, we can think of the sources ¢; as the new waves
produced by interactions between viscous waves. Their total strength is controlled
by means of viscous interaction functionals, somewhat similar to the one introduced
by Glimm in the hyperbolic case. Since the left hand side of (1.14) is in conservation
form and the vectors 7; have unit length, we obtain the bound

e (7)) < Z [ o:(7) || < Z <||vi(0)|| +/0/ |¢i(t,x)|dxdt> . (L15)

This line of argument yields global BV bounds and stability estimates for viscous
solutions. In turn, letting ¢ — 0 in (1.8), a standard compactness argument yields
the convergence of u® to a weak solution w of (1.1).

The plan of these notes is as follows. In Section 2 we review some basic facts
about shock and rarefaction waves, and describe the solution of the Riemann prob-
lem. Section 3 is concerned with solutions of the more general Cauchy problem,
obtained as limits of Glimm or front tracking approximations. Stability and unique-
ness issues are discussed in the next two sections. The remaining sections 6 to 8
describe the vanishing viscosity approach, based on decomposition along gradients
of viscous travelling waves and the new Lyapunov functionals controlling the in-
teractions among viscous waves. Some further research directions are discussed in
Section 9.

2. The Riemann problem

Here and in the next section, we shall consider a strictly hyperbolic system of
conservation laws satisfying the additional hypothesis

(H) For each i = 1,...,n, the i-th field is either genuinely nonlinear, so that
DX;(u) -ri(u) > 0 for all u, or linearly degenerate, with DX;(u) - ;(u) = 0 for all u.

Notice that, in the genuinely nonlinear case, the i-th eigenvalue \; is required
to be strictly increasing along each integral curve of the corresponding field of
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eigenvectors r;. In the linearly degenerate case, on the other hand, the eigenvalue
A; is constant along each such curve.

Shocks and Admissibility Conditions.

The simplest type of discontinuous solution is given by a shock :

+ i At
U(t,z) = {u Z.f v (2.1)
U if x < At,

for some left and right states v, u™ € IR"™ and a speed A € IR. Using the divergence
theorem, one checks that the identity (1.4) is satisfied if and only if the following
Rankine-Hugoniot conditions hold:

A —u7) = flut) = flu7). (2.2)

Denote by A(u) = Df(u) the n x n Jacobian matrix of f at u. For any u,v,
define the averaged matrix

Au,v) = /OIA(Qu—i— (1-0)0) df

and call \;(u,v), i = 1,...,n its eigenvalues. We can then write (2.2) in the
equivalent form

A(ut—u™) = /0 Df(fut+(1—-0)u") (vt —u") df = A(ut,u™) (T —u7). (2.3)

In other words, the Rankine-Hugoniot conditions hold if and only if the jump u™ —
u~ is an eigenvector of the averaged matrix A(u™,u~) and the speed A coincides
with the corresponding eigenvalue.

Definition 1. A function v = u(t,z) has an approzimate jump discontinuity at
the point (7, &) if there exists vectors u™ # u™ and a speed A such that

. 1
lim -
r—0+ 7

/ / |u(T+t,f+:r)—U(t,:r)|d:rdt:0,

with U as in (2.1). We say that u is approzimately continuous at the point (7, &) if
the above relations hold with «™ = u~ (and X arbitrary).

More generally, if u is now a solution of the system of conservation laws (1.1)
having an approximate jump, one can prove that the states v~,ut and the speed
A again satisfy the Rankine-Hugoniot conditions.

In order to achieve uniqueness of solutions to initial value problems, it is cus-
tomary to supplement the conservation equations (1.1) with additional admissibility
conditions, to be satisfied at points of jump. We recall here two basic approaches.

Definition 2. A continuously differentiable function n : R™ — IR is called an
entropy for the system of conservation laws (1.1), with entropy fluz q : R™ — IR, if
it satisfies the identity

Dn(u) - Df(u) = Dqu). (2.4)
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An immediate consequence of (2.4) is that, if u = u(t,z) is a C! solution of
(2.1), then
n(u)e + q(u)z = 0. (2.5)
In other words, for a smooth solution u, not only the quantities ui,...,u, are
conserved, but the additional conservation law (2.5) holds as well. However one
should be aware that, for a discontinuous solution u, the quantity n(u) may not be
conserved.
A standard admissibility condition for weak solutions can now be formulated
as follows.

Definition 3. Let 1 be a convex entropy for the system (1.1), with entropy flux g.
A weak solution u is entropy-admissible if

n(w): +q(u), <0 (2.6)

in distribution sense, i.e.

J[ {ntwren + atwye.y dzat > 0 (2.7)
for every function ¢ > 0, continuously differentiable with compact support.

In analogy with (2.3), if u is an entropy admissible solution, at every point of
approximate jump one can show that

Aln(u®) = ()] > q(u’) = q(u”). (2.8)

An alternative admissibility condition, due to Lax [Lx], is particularly useful
because it can be applied to any system and has a simple geometrical interpretation.
We recall that, at a point of approximate jump, the speed A must be an eigenvalue of
the averaged matrix A(u~,u™) at (2.3),i.e. A = N\j(u™,u™) for some i € {1,...,n}.

Definition 4. A solution v = u(¢t,x) of (1.1) satisfies the Laz admissibility condi-
tion if, at each point of approximate jump, the left and right states u~,u™ and the
speed A = \;(u~,u™) of the jump satisfy

Ai(u™) > A > Ni(uh). (2.9)

To appreciate the geometric meaning of this condition, consider a piecewise
smooth solution, having a discontinuity along the line = ~(t), where the solution
jumps from a left state u™ to a right state ut. According to (2.3), this discontinuity
must travel with a speed A =4 = \;(u™,u™") equal to an eigenvalue of the averaged
matrix A(u—,u"). If we now look at the i-characteristics, i.e. at the solutions of
the O.D.E.

i = \i(u(t,z)),
we see that the Lax condition (2.9) requires that these lines run into the shock,
from both sides.

Centered Rarefaction Waves.

Next, we consider another special type of solutions, in the form of centered
rarefaction waves. Fix a state ug € IR™ and an index ¢ € {1,... ,n}. As before, let
r;(u) be an i-eigenvector of the Jacobian matrix A(u) = D f(u). The integral curve
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of the vector field r; through the point ug is called the i-rarefaction curve through
ug- It is obtained by solving the Cauchy problem in state space:

d
L ri(w), u(0) = up. (2.10)
do
We shall denote this curve as
o — Ri(o)(ug)-

Clearly, the parametrization depends on the choice of the eigenvectors r;. In par-
ticular, if we impose the normalization |ri (u)| = 1, then the rarefaction curve R;
will be parametrized by arc-length.

Let the i-th field be genuinely nonlinear, and assume that u™ lies on the positive
i-rarefaction curve through u~, i.e. ut = R;(0)(u™) for some ¢ > 0. For each
s € [0, 0], define

Ai(s) = Xi(Ri(s)(u7))-
Observe that, by genuine nonlinearity, the map s — \;(s) is strictly increasing.
Hence, for every A € [Ai(u™), Xi(u™)], there is a unique value s € [0, 0] such that
A = \;(s). We claim that, for ¢ > 0, the function

u” if z/t < Ai(u™),
u(t,z) = { Ri(s)(u™) if xft=X(s) € Ni(u), Ni(uh)],  (211)
ut if x/t> \i(u'),

is a continuous solution of the Riemann problem (1.1), (1.7). Indeed, by construc-
tion it follows

Jim e, )~ =0

Moreover, the equation (1.3) is trivially satisfied in the sectors where z/t < A;(u™)
or z/t > Xi(u™), since here uy = u, = 0. Next, assume z/t = X;(s) for some
s €]0,0[. Since w is constant along each ray through the origin {z/t = ¢}, we
have

we(t, z) + %uz(t,m) =0.

We now observe that the definition (2.11) implies z/t = X;(u(t,z)). Moreover,
ug is parallel to r;(u), hence it is an eigenvector of the Jacobian matrix A(u)
with eigenvalue A;(u). On the sector {\;(u™) < @/t < A\;(u™)} we thus have
ut + A(u)u, = 0, proving our claim. Notice that the assumption o > 0 is essential
for the validity of this construction. In the opposite case o < 0, the definition (2.11)
would yield a triple-valued function in the region where z/t € |A;(u™), Ai(u™)[.

Solution of the Riemann Problem.

Relying on the previous analysis, the solution of the general Riemann problem

u” if =<0,
+ = 0’ 0’ = 2.12
i+ () u(0, ) {U+ s @D
can be obtained by finding intermediate states wg = u~, w1, ..., w, = uT such that

each pair of adiacent states w;—1,w; can be connected by an ¢-shock, or by a centered
rarefaction i-wave. By the implicit function theorem, this can always be done
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provided that the two states u—,u™ are sufficiently close. The complete solution is
now obtained by piecing together the solutions of the n Riemann problems

we+ S, =0, u(0,2) = {: AN CET)

on different sectors of the -z plane. A typical solution is illustrated in fig. 3.

3. Glimm and front tracking approximations

Approximate solutions to a more general Cauchy problem can be constructed
by patching together solutions of several Riemann problems. In the Glimm scheme
(fig. 4), one works with a fixed grid in the ¢-z plane, with mesh sizes At, Az. At
time ¢ = 0 the initial data is approximated by a piecewise constant function, with
jumps at grid points. Solving the corresponding Riemann problems, a solution
is constructed up to a time At sufficiently small so that waves emerging from
different nodes do not interact. At time ¢; = At, we replace the solution u(At,-)
by a piecewise constant function having jumps exactly at grid points. Solving the
new Riemann problems at every one of these points, one can prolong the solution
to the next time interval [At, 2At]. At time t, = 2At, the solution is a gain
approximated by a piecewise constant functions with jumps exactly at grid points,
etc... A key ingredient of the Glimm scheme is the restarting procedure. At each
time ¢t; = j At, a natural way to approximate a BV function with a piecewise
constant one is by taking its average value on each subinterval J; = [z;_1, %;].
However, this procedure may generate an arbitrarily large amount of oscillations.
Instead, the Glimm scheme is based on random sampling: a point y; is selected at
random inside each interval J; and the value u(t;—,y;) is taken as the new value
of u(tj,z) for all € J;. An excellent introduction to the Glimm scheme can be
found in the book by J. Smoller [Sm].

An alternative technique for contructing approximate solutions is by wave-front
tracking (fig. 5). This method was introduced by Dafermos [D1] in the scalar case
and later developed by various authors [DP1], [B1], [Ri], [BJ]. It now provides an
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efficient tool in the study of general n x n systems of conservation laws, both for
theoretical and numerical purposes [B3], [HR].

The initial data is here approximated with a piecewise constant function, and
each Riemann problem is solved approximately, within the class of piecewise con-
stant functions. In particular, if the exact solution contains a centered rarefaction,
this must be approximated by a rarefaction fan, containing several small jumps.
At the first time ¢; where two fronts interact, the new Riemann problem is again
approximately solved by a piecewise constant function. The solution is then pro-
longed up to the second interaction time ¢, where the new Riemann problem is
solved, etc. .. The main difference is that in the Glimm scheme one specifies a priori
the nodal points where the the Riemann problems are to be solved. On the other
hand, in a solution constructed by wave-front tracking the locations of the jumps
and of the interaction points depend on the solution itself. No restarting procedure

is needed and the map ¢ — u(t,-) is thus continuous with values in L] .
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In the end, both algorithms produce a sequence of approximate solutions, whose
convergence relies on a compactness argument based on uniform bounds on the
total variation. We sketch the main idea involved in these a priori BV bounds.
Consider a piecewise constant function u : IR — IR™, say with jumps at points
T, < Ty < -+- < xy. Call o, the amplitude of the jump at z,. The total strength
of waves is then defined as

V(w) =Y oal, (3.1)

Clearly, this is an equivalent way to measure the total variation. Along a solution
u = u(t,x) constructed by front tracking, the quantity V(t) = V(u(t, )) may well
increase at interaction times. To provide global a priori bounds, following [G] one
introduces a wave interaction potential, defined as

Qu =Y loaosl: (3.2)

(a,8)EA

where the summation runs over the set A of all couples of approaching waves.
Roughly speaking, we say that two wave-fronts located at x, < x3 are approaching
if the one at x, has a faster speed than the one at x5 (hence the two fronts are
expected to collide at a future time). Now consider a time 7 where two incoming
wave-fronts interact, say with strengths o, ¢’ (for example, take 7 = ¢; in fig. 5).
The difference between the outgoing waves emerging from the interaction and the
two incoming waves o, ¢’ is of magnitude O(1) - |oo’|. On the other hand, after
time 7 the two incoming waves are no longer approaching. This accounts for the
decrease of the functional @ in (3.2) by the amount |oo’|. Observing that the new
waves generated by the interaction could approach all other fronts, the change in
the functionals V, Q) across the interaction time 7 is estimated as

AV (r) = 0() - lod’'], AQ(r) = —|od'| + O(1) - |od’| V(7).
If the initial data has small total variation, for a suitable constant Cy the quantity
Y(t) = V(u(t, )) + Co Q(u(t, ))

is monotone decreasing in time. This argument provides the uniform BV bounds
on all approximate solutions. Using Helly’s compactness theorem, one obtains
the convergence of a subsequence of approximate solutions, and hence the global
existence of a weak solution.

Theorem 1. Let the system (1.1) be strictly hyperbolic and satisfy the assumptions
(H). Then, for a sufficiently small § > 0 the following holds. For every initial
condition u with

[|a||Le < 6, Tot.Var{u} <0, (3.3)
the Cauchy problem has a weak solution, defined for all times t > 0.

The proof is based on careful analysis of solutions of the Riemann problem
and on the use of a quadratic interaction functional (3.2) to control the creation of
new waves. These techniques also provided the basis for subsequent investigations
of Glimm and Lax [GL] and Liu [L2], [L3] on the asymptotic behavior of weak
solutions as t — oo.
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4. Stability

The previous existence result relied on a compactness argument which, by itself,
does not provide informations on the uniqueness of solutions. A first understanding
of the dependence of weak solutions on the initial data was provided by the analysis
of front tracking approximations. The idea is to perturb the initial data by shifting
the position of one of the jumps, say from z to a nearby point z’. By carefully
estimating the corresponding shifts in the positions of all wave-fronts at a later time
t, one obtains a bound on the L! distance between the original and the perturbed
approximate solution. After much technical work, this approach yielded a proof of
the Lipschitz continuous dependence of solutions on the initial data, first in [BC1]
for 2 x 2 systems, then in [BCP] for general n x n systems.

Theorem 2. Let the system (1.1) be strictly hyperbolic and satisfy the assumptions
(H). Then, for every initial data @ satisfying (3.3) the weak solution obtained as
limit of front tracking approximations is unique and depends Lipschitz continuously
on the initial data, in the L1 distance.

These weak solutions can thus be written in the form u(t, ) = S;u, as trajecto-
ries of a semigroup S : D x [0, co[+— D on some domain D containing all functions
with sufficiently small total variation. For some Lipschitz constants L, L' one has

||Stﬂ—5317||L1 < L@ — | + L't — 3], (4.1)
for all £,s > 0 and initial data u,v € D.

A more transparent proof of Theorem 2 was later achieved by a technique
introduced by Liu and Yang in [LY] and developed in [BLY] into its final form.
The heart of the matter is to construct a nonlinear functional, equivalent to the L!
distance, which is decreasing in time along every pair of solutions. We thus seek
® = &(u,v) and a constant C' such that

1
E'HU_u”Ll < P(u,v) < C-Hv—u”Ll, (4.2)
d
—®(u(t), v(t)) <0. (4.3)
5= V(X)
j c N
9 T v
)
el u
—\% —
0= u(x)
X‘ ‘,
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Throughout the following, it will be convenient to measure the strength of wave-
fronts of a genuinely nonlinear family in terms of the change in the characteristic
speed. If v has a jump in the k-th family at the point z,, in the genuinely nonlinear
case we thus define the strength as

0a = A (u(@a+)) — M (u(za—)) . (4.4)

In connection with piecewise constant functions w,v : IR — IR™ generated by a
front tracking algorithm, the functional ® can be defined as follows (fig. 6). At
each point z, we connect the states u(z), v(z) by means of n shock curves. In

other words, we construct intermediate states wo = u(z),w1,... ,wn = v(z) such
that each pair w;_1,w; is connected by an ¢-shock. These states can be uniquely
determined by the implicit function theorem. Call ¢y, ... , g,, the strengths of these

shocks. We regard ¢;(z) as the i-th scalar component of the jump (u(z), v(z)).
For some constant C’, one clearly has

1 n

& [o@) —u@)] < 3 [ai)] < - o) ~u(a)| (45)

i=1

The functional ® is now defined as
n [e%s}
®(u,v) = Z/ Wi(x) |¢i(x)]| dz, (4.6)
i=1Y >

where the weights W, take the form

Wi(z) =1 4k - [total strength of waves in u and in v which approach the i-wave ¢;(z)]
+ks - |wave interaction potentials of u and of v]
=1+ Vi(@) + k2 [Qu) + Q(v)]

(4.7

for suitable constants x1,%2. Notice that, by construction, ¢;(x) represents the

strength of a fictitious shock wave located at z, travelling with a speed \;(z) de-

termined by the Rankine-Hugoniot equations. In (4.7), it is thus meaningful to

consider the quantity

Vi(z) = Z |0'a|7

a€A;(x)

where the summation extends to all wave-fronts o, in v and in v which are ap-
proaching the i-shock ¢;(z). By (4.5) and the boundedness of the weights W;, it is
clear that (4.2) holds.

Next, we will sketch an argument showing why the functional ® should decrease
along pairs of solutions. For a detailed proof, see [BLY] or [B3]. We first observe
that the maps t — ¢;(t,-) are Lipschitz continuous as maps with values into L. At
a time 7 where an interaction occurs in u or in v, if the coefficient x is sufficiently
large the decrease of the functionals Q(u) or Q(v) implies

Wilt+, ) < Wi(t—, z),

for every i € {1,...,n} and almost every x € IR. Hence ® is decreasing at each
interaction time.
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figure 7 figure 8

Interchanging the order of the summation and the integral, the functional ® in
(4.6)-(4.7) can be written in the equivalent form

B(u,v) = [1+#20Qu) + Q)] - XL, [7 |ai(2)] do
+h1 - EGQEJ(U)UJ(U) |Ua| ’ El f i(z) approaches o4 |q’(x)| dz .
For our further analysis, the following construction will be useful. Given two piece-
wise constant functions u,v with compact support, for ¢ = 1,... ,n we can define
the scalar components u;, v; by induction on the jump points of u,v. We start by
setting u;(—o0) = v;(—00) = 0. If 2, € J(u) is a jump point of u, then we let v;
be constant across x, and set

ui(Ta+) = ui(Ta—) — [gi(zat) — gi(za—)].

On the other hand, if z, € J(v) is a jump point of v, then we let u; be constant
across T, and set

(4.8)

vi(Ta+) = vi(za—) + [¢i(Tat) — ¢i(za—)].
These definitions trivially imply
qi(z) = vi(z) — ui(z) foralze R, i=1,... ,n.

By definition, the i-waves in v and v which approach ¢;(x) are those located within
the thick portions of the graphs of u;, v; in fig. 7. Viceversa, for a given i-wave o,
located at x4, the regions where the jumps ¢;(x) approach ¢, are represented by
the shaded areas in in fig. 8.

To understand why the expression (4.8) decreases in time, assume first that v

has a wave-front at x, with strength o, say in the k-th family. In connection with
this front (fig. 9), for every 7 < k the functional ®(u,v) contains a term of the form

S, = K1-|oal| [area of the region between the graphs of u; and v;, to the right of xa].
By strict hyperbolicity, the i-th and k-th characteristic speeds are strictly sep-
arated, say A — A\; > ¢ > 0. We thus expect
d®, ;
Cdt
up to higher order terms. Here A& = \;(w;—1(2q), w;i(zq)) is the speed of the
i-shock ¢f. In addition, for every i > k the functional ®(u,v) contains a term of
the form

~ —r1loalqf|(Ea — A7) < —criloallaf], (4.9)

S, = k1ol [area of the region between the graphs of u; and v;, to the left of :ra].

Entirely similar estimates can be proved also for these terms.
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figure 9

figure 10

Next, if the k-th field is genuinely nonlinear, the functional ®(u, v) also contains
a term of the form (fig. 10)

®o 1 = Ki1|oa|-[area of the region between the graphs of u; and vy, to the right of z4].

Notice that, because of genuine nonlinearity, the points on the graphs of uy and vy,
move with different speeds. As a consequence, the shape of these graphs changes in
time. In particular, while the area enclosed by the two graphs may remain constant,
the portion of this area located to the right of a given front o, will decrease. In
figure 10, the two points P, @ lie initially on the same vertical line. At a later time
this is no longer true. The area of the shaded region, enclosed by the graphs of uy,
and v and by a vertical line through P, has decreased by an amount roughly equal
to the area of the triangular region with vertices P, P', Q.

The difference between the speed &, of the jump o, at P and the average speed
A7~ of points between P and () is estimated by

. - 1
Fa — AL %§|q,‘; +0,].
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Hence, up to higher order terms, the time derivative of @, ; satisfies

d®..x
dt

1
~ —k1loal|gy (o — ALT) & —kiloal gy | - §|qk_ + 04 (4.10)

Yet another kind of estimate is needed in the case where the jump in vy, crosses
the graph of ug, say vg(Ta+) < ug(za) < vg(ro—)- In this case, the estimates (4.9)
remain valid. In connection with the k-th field, the functional ® contains a term of
the form

r=1- [area of the region between the graphs of u; and vk],

where the above area includes points both on the right and on the left of z,.
For convenience, call Ay = A (v(a:a+)). Since qfﬁ' A q, " + 04, the genuine
nonlinearity of the k-th characteristic field and the parametrization (4.4) yield

_ 5 1 . < 1
NPT e+l + 5o A A+ 3l

o~ Aa 3 (10 1)
Neglegting higher order terms, the shaded area in fig. 11 thus decreases at the rate
d®;
dt

Notice that in this last case the decrease of the functional ® is simply due to
the decrease of the L! distance between the k-th components of v and v. In this
occasion, the weights W}, play no role. For all details we always refer to [B3].

~ g | —ga)+ e T [(Ea—AT) = oy gy T = lap ™| |oatar |- (411)

For general n x n systems, in (4.1) one finds a Lipschitz constant L > 1.
Indeed, it is only in the scalar case that the semigroup is contractive and the
theory of accretive operators and abstract evolution equations in Banach spaces can
be applied, see [K], [C]. We refer to the flow generated by a system of conservation
laws as a Riemann semigroup, because it is entirely determined by specifying how
Riemann problems are solved. As proved in [B2], if two semigroups S, .S’ yield the
same solutions to all Riemann problems, then they coincide, up to the choice of
their domains.
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From (4.1) one can deduce the error bound

T h) —
|w(T) = S7w(0)]| 1. sL-/0 {%gg [t + 1) hS”“’(t)”Ll} dt,  (4.12)

valid for every Lipschitz continuous map w : [0,T] — D taking values inside the
domain of the semigroup. We can think of ¢ — w(t) as an approximate solution of
(1.1), while ¢t — S;w(0) is the exact solution having the same initial data. According
to (4.12), the distance at time T is bounded by the integral of an instantaneous
error rate, amplified by the Lipschitz constant L of the semigroup.

Using (4.12), one can estimate the distance between a front tracking approxima-
tion and the corresponding exact solution. For approximate solutions constructed
by the Glimm scheme, a direct application of this same formula is not possible
because of the additional errors introduced by the restarting procedures at times
tr = k At. However, relying on a careful analysis of Liu [L4], one can construct a
front tracking approximate solution having the same initial and terminal values as
the Glimm solution. By this technique, in [BM] the authors proved the estimate

) ||uG1imm(T, ) _ yexact (T, ) ||L1
lim =0 (4.13)
Az—0 VAz - |In Az
for every 7 > 0. In other words, letting the mesh sizes Az, At — 0 while keeping
their ratio Az /At constant, the L! norm of the error in the Glimm approximate
solution tends to zero at a rate slightly slower than VAz.

5. Uniqueness

The uniqueness and stability results stated in Theorem 2 refer to a special class
of weak solutions: those obtained as limits of Glimm or front tracking approxima-
tions. For several applications, it is desirable to have a uniqueness theorem valid for
general weak solutions, without reference to any particular constructive procedure.
Results in this direction were proved in, [BLF], [BG], [BLw]. They are all based on
the error formula (4.12). In the proofs, one considers a weak solution u = u(t, x) of
the Cauchy problem

ug + f(u)z =0, u(0,z) = u(z) . (5.1)
Assuming that u satisfies suitable entropy and regularity conditions, one shows that

- ||u(t + h) — Spu(t) ||L1
h—0+ h

=0 (5.2)

at almost every time ¢. By (4.12), u thus coincides with the semigroup trajectory
t — Siu(0) = Sia. Of course, this implies uniqueness. As an example, we state
below the result of [BLw]. Consider the following assumptions:

(A1) (Conservation Equations) The function u = u(¢, z) is a weak solution of
the Cauchy problem (5.1) taking values within the domain D of the semigroup S.
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More precisely, u : [0,T] + D is continuous w.r.t. the L' distance. The initial
condition u(0,z) = u(z) holds, together with

// [udr + f(u) ¢ dadt =0

for every C' function ¢ with compact support contained inside the open strip
10, T[ x IR.

(A2) (Lax Entropy Condition) Let u have an approximate jump discontinuity
at some point (7,£) €]0,T[xIR. In other words, assume that there exists states
u”,ut € Q and a speed X € IR such that, calling

_ . At —
Ult,z) = " i w<EHMET), (5.3)
ut if x>+ AE-1),
there holds
1 T+p r&t+p

lim — / ‘u(t,x) — U(t,z)| dzdt = 0. (5.4)

P20+ P Jrp Je—p
Then, for some i € {1,... ,n}, one has the entropy inequality:

(A3) (Bounded Variation Condition) For some small constant § > 0, the
function = u(T(a:),a:) has bounded variation along every Lipschitz continuous
space-like curve {t = 7(z)}, such that |7(z) — 7(z')| < 6|z — 2| for all z,2'.

Theorem 3. Let u = u(t,x) be a weak solution of the Cauchy problem (5.1),
satisfying the assumptions (A1), (A2) and (A3). Then

U(t, ) = Stﬂ (56)

for all t. In particular, the solution that satisfies the three above conditions is
unique.

An additional characterization of these solutions, based on local integral esti-
mates, was given in [B2]. The underlying idea is as follows. In a forward neighbor-
hood of a point (7, &) where u has a jump, the weak solution u should behave much
in the same way as the solution of the corresponding Riemann problem. On the
other hand, on a region where its total variation is small, our solution u should be
accurately approximated by the solution of a linear hyperbolic system with constant
coefficients.

To state the result more precisely, we introduce some notations. Given a func-
tion u = u(t, z) and a point (7, ), we denote by U(ﬂumé) the solution of the Riemann
problem with initial data

u” = lim u(r,z), ut = lim u(r,z). (5.7)
T—E— z—E+
In addition, we define U, (bu;'r,g) as the solution of the linear hyperbolic Cauchy prob-
lem with constant coefficients

wy + Aw, =0, w(0,z) = u(r, ). (5.8)
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Here A = A(u(r,€)). Observe that (5.8) is obtained from the quasilinear system
ur + A(u)uy, =0 (A=Df) (5.9)

by “freezing” the coefficients of the matrix A(u) at the point (7,&) and choosing
u(7) as initial data. A new notion of “good solution” can now be introduced, by
locally comparing a function u with the self-similar solution of a Riemann problem
and with the solution of a linear hyperbolic system with constant coefficients. More
precisely, we say that a function u = u(¢, ) is a viscosity solution of the system
(1.1) if ¢ — wu(t,-) is continuous as a map with values into L},., and moreover the
following integral estimates hold.

(i) At every point (7, &), for every 5’ > 0 one has

) 1 €+8'h .
hlgngﬁ o ‘U(T-l-h, 2) = Ulyr ey (s —f)‘ dez = 0. (5.10)

(ii) There exist constants C,3 > 0 such that, for every 7 > 0 and a < £ < b, one
has

1 [b—Bh 2

lim sup —/ ‘U(T +h, x)— U(bumg)(h,a:)‘ de < C - (Tot.Var.{u(T); la, b] }) .
h—0+ a+Bh

(5.11)

As proved in [B2], this concept of viscosity solution completely characterizes
semigroup trajectories.

Theorem 4. Let S : D x [0,00[xD be a semigroup generated by the system of
conservation laws (1.1). A function u : [0,T] — D is a viscosity solution of (1.1)
if and only if u(t) = S;u(0) for all t € [0,T].

6. Vanishing viscosity approximations

It is natural to expect that the entropy weak solutions of the hyperbolic system
(1.1) actually coincide with the limits of solutions to the parabolic system

uj + f(u¥)y =eu, (6.1)

letting the viscosity coefficient € — 0. For smooth solutions, this convergence result
is easy to show. However, one should keep in mind that a weak solution of the hy-
perbolic system (1.1) in general is only a function with bounded variation, possibly
with a countable number of discontinuities. In this case, as the smooth functions
u® approach the discontinuous solution u, near points of jump their gradients u,
must tend to infinity (fig. 12), while their second derivatives uf, become even more
singular. Therefore, the convergence u® — wu of the vanishing viscosity limit is a
highly nontrivial matter.

In earlier literature, results in this direction relied on three different approaches:

1 - Comparison principles for parabolic equations. For a scalar conservation
law, the existence, uniqueness and global stability of vanishing viscosity solutions
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figure 12

was first established by Oleinik [O] in one space dimension. The famous paper by
Kruzhkov [K] covers the more general class of L solutions and is also valid in
several space dimensions.

2 - Singular perturbations. This technique was developed by Goodman and Xin
[GX], and covers the case where the limit solution u is piecewise smooth, with a
finite number of non-interacting, entropy admissible shocks. See also [Y] and [Ro],
for further results in this direction.

3 - Compensated compactness. With this approach, introduced by Tartar
and DiPerna [DP2], one first considers a weakly convergent subsequence u® —
u. For a class of 2 x 2 systems, one can show that this weak limit u actually
provides a distributional solution to the nonlinear system (1.1). The proof relies
on a compensated compactness argument, based on the representation of the weak
limit in terms of Young measures, which must reduce to a Dirac mass due to the
presence of a large family of entropies.

In view of recent results on the well-posedness of the hyperbolic Cauchy problem
within the space of BV functions, it is natural to seek uniform BV bounds also on
the viscous approximations u¢ in (1.3). This is indeed the main goal accomplished
in [BB]. As soon as these BV bounds are established, the existence of a vanishing
viscosity limit follows by a standard compactness argument. The uniqueness of
the limit can then be deduced from the uniqueness theorem in [BG]. By further
analysis, one can also prove the continuous dependence on the initial data for the
viscous approximations u?, in the L' norm. These results are valid, more generally,
for hyperbolic systems not necessarily in conservation form. In this case, however,
the unique limits of vanishing viscosity approximations cannot be interpreted as
weak solutions in a distributional sense. Their characterization thus requires more
care. The main results in [BB] can be stated as follows.

Theorem 5. Consider the Cauchy problem for the hyperbolic system with viscosity
u; + A(u®)u, = cu;, u®(0,z) = u(z). (6.2)

Assume that the matrices A(u) are strictly hyperbolic, smoothly depending on u in
a neighborhood of the origin. Then there exist constants C,L,L" and 6 > 0 such
that the following holds. If

|E]|lL- <6, Tot.Var{a} <0,
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then for every e > 0 the Cauchy problem (6.2) has a unique solution u®, defined for
allt > 0. Adopting a semigroup notation, this will be written as t — u®(t,-) = Sia.
In addition, one has:

BV bounds : Tot.Var.{S;u} < C Tot.Var.{u} .
(6.3)
L! stability : |S;a—S;o|| ., <L|a—o|
(6.4)
|sia = Szallg, < L' (1t = sl + Vet - V&5 ). (6.5)

Convergence: As e — 0+, the solutions u® converge to the trajectories of a semi-
group S such that

|Sett — S|, < Lt —0lpr + L' |t — 5] . (6.6)
These vanishing viscosity limits can be regarded as the unique vanishing viscosity

solutions of the hyperbolic Cauchy problem
ug + A(u)u, =0, u(0,z) = a(x) . (6.7)

In the conservative case A(u) = D f(u), every vanishing viscosity solution is a
weak solution of
ug + f(u), =0, u(0,z) = a(z), (6.8)
satisfying the Liu admissibility conditions [L1].

We outline here the main ideas in the proof of Theorem 5.

1. The rescaling t — t/e, ¢ — /e transforms the problem (6.2) into
ug + A(u)uy = Ugy u(0,z) = u(ex) . (6.9)

Clearly, the total variation of a solution u is not affected by this rescaling. Notice
however that the values of a solution u® of (6.2) on a time interval [0,7'] correspond
to the value of a solution u of (6.9) on the much longer interval [0, T'/¢]. To obtain
BV estimates uniformly valid for all £ > 0, we thus need to prove similar estimates
for the problem

ur + Au)ug = Ugy (6.10)
uniformly valid for all ¢ € [0, oo[ and all initial data «(0,-) with suitably small total
variation.

2. From now on we thus consider the parabolic system (6.10). On an initial time
interval [0, T, the solution can be represented as

t
u(t) = G(t) * u(0) — / G(t — 5) * A(u(s))ug(s) ds, (6.11)
0
in terms of convolutions with the standard heat kernel G(,z) = (4rt)~1/2e~*"/4,
Even if the initial data is discontinuous, the presence of viscosity has an immediate
regularizing effect and the solution becomes smooth for all times ¢t > 0. The
smoothing effect of the parabolic equation is summarized in fig. 13. Let

0o = Tot.Var.{u}

be the total variation of the initial data. Then, on an initial interval ¢ € ]0,T] with
T = O(1) - §; % one can show that
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- The total variation of u(t,-) remains bounded, i.e.

e (t,-) || 0 = O(1) - b . (6.12)
- The norms of all higher order derivatives decay at algebraic rates. In particular
uz(t) )” oo < uzz(t; )” 1= O(]-) : 60t71/2)
uzﬁ(t) )r[ w < uzzz(t, ) r[Ll = O(].) . (50t71.

All these bounds can be derived by looking at integral representations of the
form (6.11).

For t € [T, oo[, these parabolic type estimates yield only partial informations.
What can be proved is the following: as long as the bound (6.12) on the total vari-
ation remains valid, also the norms of all higher derivatives remain small. Namely
g (t, )” o <
Uy (t; )rr oo S

(6.13)

Uge (t, ) |;. = O1) - 62,
T—C -|)|r[L1 =0(1) _?;g _ (6.14)

3. The main part of the proof is to establish the uniform bound (6.12) on the
total variation, for all times ¢ € [0,00[. By the previous step, we can assume that
the bounds (6.14) on higher order derivatives already hold. As mentioned in the
Introduction, the basic approach is as follows. At each point (¢,2) we decompose
the gradient along a suitable basis of unit vectors 7;, say

Uy = Y 0. (6.15)
Then we derive an evolution equation for these gradient components, and show that
their L' norm remains uniformly bounded.

Toward this decomposition, the first step is to select n families of travelling
wave profiles U;, each depending on n + 2 scalar parameters. This will allows us to
solve the system (1.11)-(1.12) in unique way, depending continuously on the data
(u7 um) UII) .
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figure 14

4. A viscous travelling i-wave profile is a solution of (1.10), where the speed o
is close to the i-th eigenvalue A; of the hyperbolic matrix A. This second order
O.D.E. can be rewritten as a first order system:

uw =v,
v = (A(u) —o)v, (6.16)

o =

Linearizing at a point P} = (u*, 0, A;(u*)) we obtain the linear system with con-
stant coefficients

I
—~

U )
0 A(u*) — Ni(u*))v, (6.17)
g =0.
This system admits a center subspace N; of dimension n+2. By the center manifold
theorem [V], there exists a manifold M;, tangent to N; at the point P} (see fig. 14),
locally invariant for the flow of the nonlinear system (6.16). Instead of looking at
all viscous travelling profiles, we can now restrict ourselves to only those profiles
corresponding to a trajectory on the center manifold M;. Since this manifold is
(n + 2)-dimensional, through each state u € IR™ there is a 2-parameter family of
such profiles, say U;(u,v;,0;). Here v; denotes the scalar amplitude of the wave,
and o; is the speed. Calling 7;(u,v;, 0;) the unit vector parallel to U, this profile
U; is characterized by the equations

Ui” = (A(Ul) - Ui)Uz!’ Ui(0) = u, UZ"(O) = ;T . (6.18)
The manifold can then be defined as
M; = {(w,v,0;) € R™™ 5 v = v (u, v3,04) } - (6.19)

We can now try to solve the system (1.11)-(1.12) using not all travelling wave
profiles in (1.10), but only those U; which correspond to a trajectory on the cen-
ter manifold M;. Notice that in this case we get the correct number of param-
eters: in all, the n profiles Uy,...,U, through the point u(z) depend on the
2n scalar parameters vy,0q,... ,V,,0,. Exactly the right number to fit the data
(uz(2), e (z)) € R,

To better understand how our decomposition works, consider first the special
case where u is precisely the profile of a viscous travelling wave of the j-th family.
In this case, the decomposition should clearly contain one single component:

Uy = ’Ujfj(’LL,Uj,O’j) .
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It is easy to guess what v; and o; should be. Indeed, since by construction |7;| = 1,
the quantity
vj = g
is the signed strength of the wave. We also notice that, for a travelling wave, the
vectors u, and u; are always parallel. Indeed, u; = —oju,, where o; is the speed
of the wave. We can thus write
Up = Ugy — A(UW)ug = w;T;(u,vj,0;)
for some scalar w;. The speed of the wave is now obtained as 0; = —w;/v;.
Motivated by the previous analysis, as a first attempt we define our decompo-
sition in terms of the equations
Uy = ZZ Uifii(uyvi;o-i)) o; = _ﬂ . (620)
ug = Ziwi 7i(u, i, 04), v;
The trouble with (6.20) is that the vectors 7; are defined only for speeds o; close
to the i-th characteristic speed A} = A;(u*). However, when u, &~ 0 one has v; ~ 0
and the ratio w;/v; may become arbitrarily large. To overcome this problem, we
introduce a smooth cutoff function 6 such that
s i s| <6
f(s) = fooksl<a (6.21)
|S| 3(51

IV IA

0 if
for some small constant d; > 0. We now rewrite (6.20) in terms of the new variable
w;, related to w; by w; = w; — Afv;. We require that o; coincides with —w;/v; only
when this ratio is sufficiently close to A} = A;(u*). Our basic equations thus take
the form

uy =, 0 Ti(u,v;,0),
! *o0\ & 6.22
{ ue =y (w; — Ajvy) 7i(w, 05, 04), ( )
where
Ut = Uge — A(U)ug , o=\ —6 <ﬂ> . (6.23)
v
The system (6.22)-(6.23) can be written in the more compact form

(“z> = Au,v,w) . (6.24)

Ut

Using the implicit function theorem one can prove that, for each given state u =
u* and wug,u; sufficiently small, there exists unique v = (v1,...,v,) and w =
(wi,...,wy,) such that (6.22)-(6.23) hold. Furthermore, the map (w,us,us) —
(v,w) is C! with Lipschitz continuous first derivative. This achieves the desired
decomposition of the gradient w,.

We observe that above equations are closely related to (1.12). Indeed, recalling
(6.18), from the first equation in (6.22) it follows

U, (z) = Z Ul(z).

If o; = A\ —w;/u; for all i =1,... ,n, ie. if none of the cutoff functions is active,
then
Upe () = up + A()u, = D, (wi — Ajvg)T + A(u) D, v
= i (A(w) —oi)vits = 35, Uf'(2).
In this case, both of the equalities in (1.12) hold. Notice however that the second
equality in (1.12) may fail if |w;/v;| > 61 for some 4, so that 6(w;/v;) # w;/v;.
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Remark 1. Foreachi=1,... ,n,in additio~n to the eigenvalue A;(u) of the matrix
A(u), one can define the viscous eigenvalue \;(u,v;,o;) by setting
Xi = (i, Au)i;) . (6.25)

Instead of the standard relation
(A(w) = Xi)ri =0,
a direct computation shows that these viscous eigenvectors satisfy
(A(w) = X7 = v (Fiufs + Fio(Ni — 07)) - (6.26)
Here 7;, = 07;/0u and 7;, = 07;/0v; denote partial derivatives. In the special
case v; = 0, an easy consequence of (6.26) is the identity
7i(u,0,0;) = ri(u).

The presence of non-zero terms on the right hand side of (6.26) is of fundamental
importance. Indeed, in the evolution equation for the component v;, these terms
achieve a crucial cancellation with other terms that would otherwise not be inte-
grable.

5. We now consider a smooth solution v = u(t,x) of the parabolic system (6.10).
By the previous step, we can define the scalar functions v; = v;(t, z), w; = w;(t, x),
according to the decomposition (6.22)-(6.23). The equations governing the evolu-
tion of these 2n components can be written in the form

Vit + (szz)z — Vi,zz = ¢l )
’ ~ ’ 6.27
{ Wit + (Aw;i)g — Wige =i (627)

We recall that \; is the speed defined at (6.25). The source terms ¢;,; can be
computed by inserting (6.24) in the evolution equation

() (1" atal (o))~ Co)= (v 0100 )

and differentiating various times w.r.t. ¢, z, using the fundamental relation (6.26).
For all details we refer to [BB]. Rather than the exact form of the source terms,
what matters here is their magnitude. This can be estimated as follows.

Lemma 1. The source terms in (6.27) satisfy the bounds

¢i, Yi= O(1)-3; (|vj,2] + |wj,2]) - lw; — 6;v;] (cutoff error)
+O(1) - Y2524 (lojvel + |vj vkl + [vjwe] + |vjewi| + [vjwp .| + [wjwy])
(interaction of waves of different families)

+0(1) - 325 lvjew; — vjwja| + O(l)'zi‘”j (%)z

(6.28)

Here ¢; is the constant in the cutoff function at (6.21). A rigorous proof of
Lemma 1 requires lengthy calculations. Here we shall only provide an intuitive
explanation of how the various terms arise. Consider first the special case where u
is precisely one of the travelling wave profiles on the center manifold (fig. 15a), say
u(t,z) = Uj(x — o;t). In this case one has

_ o Ns .,
Uy = VT, ug = (wj — Ajvj)fy, vi=w; =0 fori#j,

2
'X{le/ij%l}

(in
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figure 15a

figure 15b

and all source terms ¢;, v; vanish identically.
Next, consider the case of a general solution u = u(t,x) of (6.10). The sources
on the right hand sides of (6.27) arise for three different reasons (fig. 15b).

(i) The ratio |wj/v;| is large and hence the cutoff function 8; = 8(w; /v;) is active.
Typically, this will happen near a point g where u; = 0 but u; = uz, # 0. In this
case the second identity in (1.12) fails because of a “wrong” choice of the speed:

oj # X — (wj/vj).

(ii) Waves of two different families j # k are present at a given point z. These will
produce quadratic source terms, due to transversal interactions.

(iii) Since the decomposition (6.22) is defined pointwise, it may well happen that
the travelling j-wave profile U; at a point z is not the same as the profile U; at
a nearby point z'. Indeed, these two travelling waves may have slightly different
speeds. It is the rate of change in this speed: o;, = —(w;/v;)., that determines
the infinitesimal interaction between nearby waves of the same family. A detailed
analysis shows that the corresponding source terms can only be linear or quadratic
w.r.t. 0; ., with the square of the strength of the wave always appearing as a factor.

These terms can thus be estimated as O(1) - v3o; . + O(1) - vio7 .

To complete the proof of the BV bounds, it remains to show that all terms on
the right hand side of (6.28) are integrable over the domain {¢t > T', = € IR}. For
this purpose, we shall introduce four types of Lyapunov functionals, called energy,
transversal interaction, curve length and area functional, monotonically decreasing
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figure 16

along solutions. Each of the terms that we need to estimate will be dominated by
the rate of decrease of one of these functionals.

7. Lyapunov functionals

We begin by describing a functional which controls the amount of interaction
between viscous waves of different families.
Consider two independent, scalar diffusion equations with strictly different
drifts (fig. 16):
{ z¢ + [A(t,m)z]z — Zew =0,

assuming that
itnf X (t,z) —sup A(t,z) > ¢ > 0.

t,x
We can think z as the density of waves with a slow speed A and z* as the density
of waves with a fast speed A\*. We seek an a priori bound on the total amount of
interaction

/00/ |z(t,a:)| - |z*(t,a:)| dzdt . (7.1)
0o JR

This can be achieved by means of a transversal interaction potential, defined
by

Q(z,2") = %//ﬂ2 K(xy — x1)|z(x1)| |z*(a:2)| dzidzs (7.2)
L fee if 0,
K(y)—{1 if  y<0. (7.3)

Notice that, to the product of a slow wave located at z; and a fast wave at xo,
in (7.2) we assign weight K(x2 — x1) = 1 if the two waves are approaching (i.e. if
x1 > x2), and an exponentially small weight if they are moving away from each
other (i.e. if 1 < z2). It turns out that this functional is monotonically decreasing
along every couple of solutions z,z*. Moreover, the rate of decrease controls the
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fu)-u,

figure 17

integrand in (7.1). Namely

/ / |2(t,2)| |2 (t, 2) | dwdt < _/OOO [%Q(Z(t),z*(t))} i
<QE0).20) < 1 [ [20.0)dr- [ [0.)]|do.

By introducing Lyapunov functionals of this type, we can bound the integrals of
all terms of the form

lvjvk| [vjzvk], lvjwk|, [vjzwk|, lwjw]

with j # k, due to the interaction of waves of different families.

Next, we seek functionals which control the interactions between waves of the
same family. Toward this goal, we first consider Lyapunov functionals which are
decreasing along every solution of the scalar viscous conservation law

ur + f(w)g = Ugy - (7.4)
Given a scalar function z — u(x), define the curve (fig. 17)
N U __ (conserved quantity
7= (f(u) - uz> - ( flux > ’ (7.5)

In connection with a solution u = u(t, z) of (7.4), the curve v evolves according
to
Notice that the vector f’(u)y, is parallel to 7, hence the presence of this term
in (7.6) only amounts to a reparametrization of the curve, and does not affect its
shape. The curve thus evolves in the direction of curvature. An obvious Lyapunov
functional is thus the length of the curve. In terms of the variables

e (0)+(5)
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figure 18a figure 18b

this length is given by

L(v) i/|%|da::/\/mdm. (7.8)

We can estimate the rate of decrease of the length as

d _ [ bl 1 ol /o) 12 da
&0 = /R (1+(w/v)2)3/2d Z 1o /|w/u<a| [ (ofve]"de

for any given constant § > 0. Therefore

o0 o0 d
/ / o] [(w/0)s] dedt = 0(1)-/ aL(v(t))‘ dt = 0(1)-L((0)).
0 |Jw/v|<81 0

This argument allows us to estimate all source terms in (6.28) of the form
w;i\

o (2)
Vi /e

In connection with the same curve v in (7.5), we now introduce a second func-
tional, defined in terms of a wedge product.

Q) i%//< (@) A do (7.9)

For any curve that moves in the plane in the direction of curvature (fig. 18a), this
functional is monotone decreasing and its decrease controls the area swept by the
curve: |[dA| < —d@. An intuitive proof of this fact can be obtained by looking at
polygonal approximations. In the special case (fig. 18b) where + is a polygonal with

'X{\wj/vj|<351}'

edges vi, ..., vy, the functional in (7.9) reduces to
1
Q) = §Z|Vz’/\"j|-
i<j

Consider now a second polygonal 7', obtained from 7 by replacing two consecutive
edges vy, vy by a single one. The area of the triangle between v and + is then

Area = %|vh/\vk| < QM) —Q(Y).

Observing that every continuous curve moving in the direction of curvature can
be approximated by a suitable sequence of polygonals, the relation |dA| < —d@Q is
obtained in the limit.
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Usmg (7.6)-(7.7) we now compute

o _‘ /|%/\%|daj:/|7m/\7z|da::/|Uzw—vwz|da:.

Therefore, integrating w.r.t. time one finds

[ [ oot wa < [7]5e0w)| @ < oto).

This argument allows us to estimate all source terms in (6.28) of the form
O1) - [vj.0w; — vjwja|-

Remark 2. Defining the speed of a scalar viscous wave as o(z) = —u(x)/uy(x),
the area functional Q(v) in (7.9) can be written as

Qly) = 2 ffx< |u”” y) —u(x )Uz(y)|d$dy
2 ffz<y |U’”” dw| |u9” dy| : |0’(.7;) - U(y)|
=3 f I v<y [wave at z| X [wave at y| x [difference in speeds] .

It now becomes clear that the area functional can be regarded as an interaction po-
tential between waves of the same family. Indeed, it closely resembles the functional
used by T. P. Liu in [L5].

Remark 3. In the case where u is precisely a viscous travelling wave, the curve
reduces to a segment. Assume now that the flux f is genuinely nonlinear, say with
f" > ¢ > 0. Consider a solution v which initially consists of two viscous travelling
waves, far apart from each other (fig. 19). To fix the ideas, let the first wave join a
left state a with a middle state b, and the second wave join the middle state b with
a right state ¢, with @ > b > ¢. The strength of the two waves can be measured
as s = a—b, s = b— c. The corresponding curve v is approximately given by
two segments, joining the points P = (a, f(a)), @ = (b, f(b)), P' = (c, f(c)).
After a long time 7 >> 0, the two shocks will interact, merging into one single
viscous shock. The curve «(7) thus reduces to one single segment, joining P with
P'. The area swept by the curve is approximately the area of the triangle PQP’.
The assumption of genuine nonlinearity implies

area swept = O(1) - [ss'| (|s| + |s']).

In this case, the decrease in the area functional is of cubic order w.r.t. the strengths
s, 8" of the interacting waves. This is indeed the correct order of magnitude needed
to control the strength of new waves generated by the interaction in the genuinely
nonlinear case. It is remarkable that this area functional gives the correct order of
magnitude of waves generated by an interaction also for a general flux function f,
not necessarily convex.

Finally, we describe two functionals which can be used to control the source
terms in (6.28) due to the cutoff errors.

Recalling the constant d; in (6.21), we define a second cutoff function n such
that
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figure 19

In connection with a solution (v;, w;) of (6.27) we define n; = n(w;/v;). The integral
of the first terms on the right hand side of (6.28), due to the cutoff error, is then
controlled by the decrease of the weighted energy functionals

E;(u) = /ni . Uix dz , El(u) = /ni - wim dx . (7.10)

For all details we always refer to [BB].

Remark 4. Intuitively, we expect that the cutoff function € will be active when
|uz| << |uge|- In these regions, the diffusion term u,, dominates over the convection
term A(u)u, and the system (6.10) essentially reduces to the heat equation. It is
thus natural to estimate the error due to cutoff in terms of an energy functional,
similar to the one commonly used for the heat equation.

By means of the above functionals we obtain the L! estimates on the source
terms ¢;,1; in (6.27), proving the uniform bounds on the total variation of a solution
u of (6.10).
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8. Stability and convergence of viscous approximations

To prove the uniform stability of all solutions of the parabolic system (6.10)
having small total variation, we consider the linearized system describing the evo-
lution of a first order variation. Inserting the formal expansion u = ug + ez + O(€?)
in (1.9), we obtain

2 + [DA(u) - z]up + A(u)2p = 240 - (8.1)
A basic step in the proof is to establish the a priori bound
[z < L]|20) 1 s (8:2)

for some constant L and all ¢ > 0 and every solution z of the linearized system (8.1).
By a standard homotopy argument, from (8.2) one easily deduces the Lipschitz
continuity of the solution of (6.10) on the initial data. Namely, for every couple of
solutions u, % with small total variation one has

ut) = ()] . < L ||u(0) = @(0)]|, - (8.3)
To see this, let any two solutions u, % be given. We can connect them by a smooth
path of solutions u?, whose initial data satisfy

u?(0,2) = u(0,2) + (1 — 0)a(0,z), 6 €[0,1].

The distance ||u(t, -) — u(t, -)||Ll at any later time ¢ > 0 is clearly bounded by the
length of the path § + u’(¢). In turn, this can be computed by integrating the
norm of a tangent vector. Calling 2? = du’/df, each vector 2’ is a solution of the
corresponding equation (8.1), with u replaced by u’. Using (8.2) we thus obtain

utt ) —a(t, ')”Ll < fol ||%u0(t)||L1 df = fol ||Z€(t)||L1 df
S Lf()1 ||29(0)||L1 g = L ||’LL(0, ) - ﬁ(o, ')”Ll .
By the simple rescaling of coordinates t — et, x — ez, all of the above estimates
remain valid for solutions u® of the system (1.8). By a compactness argument, these
BV bounds imply the existence of a strong limit u®™ — u in L] _, at least for some
subsequence €, — 0. In the conservative case where A = Df, it is now easy to
show that this limit u provides a weak solution to the Cauchy problem (1.1).
To establish (8.2) one follows the same strategy as in the proof of the BV
bounds. We decompose the vector z as a sum of scalar components:

i

write an evolution equation for these components and prove that the source terms
are integrable on the domain {t > 0,z € IR}.
Calling T = z, — A(u)z, the decomposition takes the form

YT =309 — Afh)Fi(u, v, Af — 0(gi/hs)) '

where 6 is the cutoff function introduced at (6.21). These components h;, g; satisfy
the system of parabolic equations

{ hi,t + (‘}:\zhz)z - hi,z:t - (Z)z ’

- 8.5
git + (Ni9i)z — Giga =i (8:)
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By similar arguments as in the previous sections, one obtains uniform bounds on
all source terms ¢;,1;. This proves (8.2) and hence the stability of all solutions of
(6.10) with small total variation.

Remark 5. The evolution equations (8.1) for a first order perturbation z are linear.
It thus seems natural to use a decomposition (z, z,) — (h, g) where the components
hi, g; are linear functions of z, z,. This is the case if in (8.4) one chooses the same
vectors 7; = 7;(u, v;,0;) as in (6.22), depending only on the reference solution v and
not on the perturbation z. Unfortunately, this linear decomposition does not seem
to work, since it leads to a system of the form (8.6) with possibly non-integrable
source terms. On the contrary, our decomposition (8.5) is positive homogeneous
of degree one, but not linear. Indeed, the unit vectors 7; depend on the reference
solution u through the amplitude v;, but also on the perturbation z implicitly
through the speed o; = AF — 0(g;/h;).

For every initial data «(0,-) = @ with small total variation, the previous steps
yield the existence of a unique global solution to the parabolic system (6.10), de-
pending Lipschitz continuously on the initial data, in the L' norm. Performing the
rescaling t — t/e, x — x /e, we immediately obtain the same results for the Cauchy
problem

u; + A(u®)ul, = cus,,

u®(0,z) = a(z).

Adopting a semigroup notation, this solution will be written as u(t,-) = S;a.
Thanks to the uniform bounds on the total variation, a compactness argument

yields the existence of a strong limit in L] _

— 3 Em
u= g}irgou , (8.6)
at least for some subsequence €,, — 0. Since the u® depend continuously on the
initial data, with a uniform Lipschitz constant, the same is true of u(t, ) = Siu. In
the conservative case where A(u) = D f(u), it is not difficult to show that this limit
u actually provides a weak solution to the Cauchy problem (6.8).

The only remaining issue is to show that the limit in (8.6) is unique, i.e. it
does not depend on the subsequence {e,,}. In the standard conservative case, this
fact can already be deduced from the uniqueness criterion in [BG]. In the general
case, uniqueness is proved in two steps. First we show that, in the special case of a
Riemann problem, the solution obtained as vanishing viscosity limit is unique and
can be completely characterized. To conclude the proof, we then rely on the same
general argument as in [B2]: if two Lipschitz semigroups S, S’ provide the same
solutions to all Riemann problems, then they must coincide.

9. Concluding remarks

It remains an open problem to establish the convergence of vanishing viscosity
approximations of the form

up + A(u)u, = e(B(u)u,) (9.1)

T
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for more general viscosity matrices B, as in [MP]. In the present paper we are
exclusively concerned with the case where B is the identity matrix. For systems
which are not in conservative form, we expect that the limit of solutions of (9.1), as
e — 0, will be heavily dependent on the choice of the matrix B. Studying the case
where the viscosity matrix B(u) is only semidefinite is particularly important: for
applications to more realistic physical models and also toward the understanding
of general relaxation approximations [N].

In the present survey we only considered initial data with small total varia-
tion. This is a convenient setting, adopted in much of the current literature, which
guarantees the global existence of BV solutions of (1.1) and captures the main fea-
tures of the problem. In particular, a single solution can exhibit a rich structure,
including shock formation, decay of genuinely nonlinear rarefaction waves, interac-
tion and cancellation phenomena. On the other hand, from the point of view of
dynamical systems, the global flow generated by a hyperbolic systems looks rather
trivial: for large times, all small BV solutions asymptotically converge to a limit
described by the solution of a Riemann problem. In particular, we are not yet in
a position to add a large source term on the right hand side of (1.1) and study
the resulting flow from a topological point of view, say determining periodic or
heteroclinic orbits. The reason is, quite simply, that this rich dynamics can only
be observed in solutions with large data. But in this case, unfortunately, no global
existence theorem is yet known, except for very special systems.

A recent example of Jenssen [J] shows that, for initial data with large total
variation, the L* norm of the solution can blow up in finite time. In this more
general setting, one can only expect that the existence and uniqueness of weak so-
lutions, together with the convergence of vanishing viscosity approximations, will
hold locally in time as long as the total variation remains bounded. For the hy-
perbolic system (1.1), results on the local existence and stability of solutions with
large BV data can be found in [Sc] and [BC2].

We remark that all of the blow up examples given so far arise from hyperbolic
systems that do not admit any strictly convex entropy. This allows one to hope
that, for physical systems, finite time blow up of solutions should not occur. At
present, the role of entropies in preventing this finite time blow-up (as well as
other pathological behavior) remains one of the major open problems in the one-
dimensional theory of hyerbolic conservation laws.

References

[1] P. Baiti and H. K. Jenssen, On the front tracking algorithm, J. Math. Anal.
Appl. 217 (1998), 395-404.

[2] S. Bianchini and A. Bressan, Vanishing viscosity solutions to nonlinear
hyperbolic systems, Annals of Mathematics, to appear.

[3] A. Bressan, Global solutions to systems of conservation laws by wave-front
tracking, J. Math. Anal. Appl. 170 (1992), 414-432.

[4] A. Bressan, The unique limit of the Glimm scheme, Arch. Rational Mech.
Anal. 130 (1995), 205-230.



ONE DIMENSIONAL HYPERBOLIC SYSTEMS OF CONSERVATION LAWS 35

[5] A. Bressan, Hyperbolic Systems of Conservation Laws. The One Dimen-
stonal Cauchy Problem. Oxford University Press, 2000.

[6] A. Bressan and R. M. Colombo, The semigroup generated by 2 X 2 conser-
vation laws, Arch. Rational Mech. Anal. 133 (1995), 1-75.

[7] A. Bressan and R. M. Colombo, Unique solutions of 2 x 2 conservation laws
with large data, Indiana Univ. Math. J. 44 (1995), 677-725.

[8] A. Bressan, G. Crasta and B. Piccoli, Well posedness of the Cauchy problem
for n x n conservation laws, Amer. Math. Soc. Memoir 694 (2000).

[9] A. Bressan and P. Goatin, Oleinik type estimates and uniqueness for n x n
conservation laws, J. Diff. Equat. 156 (1999), 26-49.

[10] A. Bressan and P. LeFloch, Uniqueness of weak solutions to systems of
conservation laws, Arch. Rat. Mech. Anal. 140 (1997), 301-317.

[11] A. Bressan and M. Lewicka, A uniqueness condition for hyperbolic systems
of conservation laws, Discr. Cont. Dynam. Syst. 6 (2000), 673-682.

[12] A. Bressan, T. P. Liu and T. Yang, L' stability estimates for n x n conser-
vation laws, Arch. Rational Mech. Anal. 149 (1999), 1-22.

[13] A. Bressan and A. Marson, Error bounds for a deterministic version of the
Glimm scheme, Arch. Rational Mech. Anal. 142 (1998), 155-176.

[14] M. Crandall, The semigroup approach to first-order quasilinear equations
in several space variables, Israel J. Math. 12 (1972), 108-132.

[15] C. Dafermos, Polygonal approximations of solutions of the initial value
problem for a conservation law, J. Math. Anal. Appl. 38 (1972), 33-41.

[16] C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,
Springer-Verlag, Berlin 1999.

[17] R. DiPerna, Global existence of solutions to nonlinear hyperbolic systems
of conservation laws, J. Diff. Equat. 20 (1976), 187-212.

[18] R. DiPerna, Convergence of approximate solutions to conservation laws,
Arch. Rational Mech. Anal. 82 (1983), 27-70.

[19] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equa-
tions, Comm. Pure Appl. Math. 18 (1965), 697-715.

[20] J. Glimm and P. Lax, Decay of solutions of systems of nonlinear hyperbolic
conservation laws, Amer. Math. Soc. Memoir 101 (1970).

[21] J. Goodman and Z. Xin, Viscous limits for piecewise smooth solutions to
systems of conservation laws, Arch. Rational Mech. Anal. 121 (1992), 235-
265.



36

ALBERTO BRESSAN

[22] H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation
Laws, Springer Verlag, New York 2002.

[23] S. Kruzhkov, First order quasilinear equations with several space variables,
Math. USSR Sbornik 10 (1970), 217-243.

[24] H. K. Jenssen, Blowup for systems of conservation laws, SIAM J. Math.
Anal. 31 (2000), 894-908.

[25] P. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl.
Math. 10 (1957), 537-566.

[26] T. P. Liu, The entropy condition and the admissibility of shocks, J. Math.
Anal. Appl. 53 (1976), 78-88.

[27] T. P. Liu, Decay to N-waves of solutions of general systems of nonlinear
hyperbolic conservation laws, Comm. Pure Appl. Math. 30 (1977), 585-610.

[28] T. P. Liu, Linear and nonlinear large-time behavior of solutions of gen-
eral systems of hyperbolic conservation laws, Comm. Pure Appl. Math. 30
(1977), T767-796.

[29] T. P. Liu, The deterministic version of the Glimm scheme, Comm. Math.
Phys. 57 (1977), 135-148.

[30] T. P. Liu, Admissible solutions of hyperbolic conservation laws, Amer.
Math. Soc. Memoir 240 (1981).

[31] T. P. Liu and T. Yang, L' stability for 2 x 2 systems of hyperbolic conser-
vation laws, J. Amer. Math. Soc. 12 (1999), 729-774.

[32] A. Majda and R. Pego, Stable viscosity matrices for systems of conservation
laws, J. Differential Equations 56 (1985), 229-262.

[33] R. Natalini, Recent results on hyperbolic relaxation problems, in Analysis of
Systems of Conservation Laws, H. Freisthiiler Ed., Chapman & Hall/CRC,
1998, pp.128-198.

[34] O. Oleinik, Discontinuous solutions of nonlinear differential equations
(1957), Amer. Math. Soc. Translations 26, 95-172.

[35] N. H. Risebro, A front-tracking alternative to the random choice method,
Proc. Amer. Math. Soc. 117 (1993), 1125-1139.

[36] F. Rousset, Viscous approximation of strong shocks of systems of conser-
vation laws, STAM J. Math.Anal., to appear.

[37] S. Schochet, Sufficient conditions for local existence via Glimm’s scheme
for large BV data, J. Differential Equations 89 (1991), 317-354.



ONE DIMENSIONAL HYPERBOLIC SYSTEMS OF CONSERVATION LAWS 37

[38] D. Serre, Systems of Conservation Laws I, II, Cambridge University Press,
2000.

[39] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-
Verlag, New York, 1983.

[40] A. Vanderbauwhede, Centre manifolds, normal forms and elementary bi-
furcations, Dynamics Reported, Vol. 2 (1989), 89-169.

[41] S. H. Yu, Zero-dissipation limit of solutions with shocks for systems of
hyperbolic conservation laws, Arch. Rational Mech. Anal. 146 (1999), 275-
370.

S.I.S.S.A., TRIESTE 34014, ITALY.



