NSF-CBMS Regional Conference Series in Probability and Statistics Volume 5

MIXTURE MODELS: THEORY, GEOMETRY AND APPLICATIONS

Bruce G. Lindsay

Pennsylvania State University

Institute of Mathematical Statistics Hayward, California American Statistical Association Alexandria, Virginia Conference Board of the Mathematical Sciences

Regional Conference Series in Probability and Statistics

Supported by the National Science Foundation

The production of the NSF-CBMS Regional Conference Series in Probability and Statistics is managed by the Institute of Mathematical Statistics: John Collins, IMS Managing Editor/Statistics; Patrick Kelly, IMS Production Editor; Miriam Gasko Donoho, IMS Treasurer; and Barbara J. Lindeman, IMS Business Manager.

Library of Congress Catalog Card Number: 94-75429

International Standard Book Number: 0-940600-32-3

Copyright © 1995 Institute of Mathematical Statistics

All rights reserved

Printed in the United States of America

Acknowledgments

I have many persons to thank for their part in the writing of this monograph. First and foremost, John Grego was responsible for the successful proposal that led to the lecture series. He also assumed the onerous task of being the local host. Without him, and his strong supporting cast from the University of South Carolina, neither the lectures nor the notes would have come into being. Of course, I am also indebted to the NSF and CBMS for their sponsorship of the conference and the lecture notes.

Much of the work reported in this set of notes is based on collaborative efforts of myself with others. I owe much to the many people who I have worked with over the years on these problems. I must thank especially Kathryn Roeder and Dankmar Böhning, as a considerable bit of what I report here is due to them. While engaged in this research, I have been provided research support by the National Science Foundation and the Humboldt Foundation of Germany.

In addition, my current graduate students have all contributed in a substantial way to the final product you have in your hands. In the last frantic days of finishing, they pulled together with me to help construct the many figures, tables, and the bibliography. For this, I thank Matilde Sanchez, Liwen Xi and Ramani Pilla for their efforts, and add special thanks to Yanling Zuo for the bibliographical work and Yong Lin for the many figures found in Chapter 4.

I am also indebted to those friends and family members who contributed, both by positive support and by accepting my extended working hours. Finally, the book is dedicated to my parents, George Speers Lindsay (1907– 1994) and Geneva Elizabeth Lindsay (1907–), whose formative role in my life becomes more and more apparent to me. The best that I have, I got from them. An additional dedication is to Cifford Clogg (1949–1995), whose premature death was a great personal loss to me and a tragedy for our profession.

Contents

---- -

СНА		1
1.1.	The finite mixture problem	2
	1.1.1. A simple example	3
	1.1.2. More complicated applications	5
1.2.		6
	1.2.1. The discrete latent distribution	6
	1.2.2. The continuous latent distribution	8
1.3.	Many more variations and names	9
	1.3.1. Known component densities	9
	1.3.2. Linear inverse problems	10
	1.3.3. Random effects models	11
	1.3.4. Repeated measures models	12
	1.3.5. Latent class and latent trait models	12
	1.3.6. Missing covariates and data	13
	1.3.7. Random coefficient regression models	13
	1.3.8. Empirical and hierarchical Bayes	13
	1.3.9. Nuisance parameter models	14
	1.3.10. Measurement error models	14
	1.3.11. Deconvolution problems	15
	1.3.12. Robustness and contamination models	16
	1.3.13. Overdispersion and heterogeneity	16
	1.3.14. Hidden mixture structures	17
	1.3.15. Clustering: A second kind	17
1.4.		17
	1.4.1. Robustness characteristics	18
	1.4.2. Extracting signal from noise	18
1.5.		20
		21
		21
1.6.		22

vi	MIXTURE MODELS: THEORY, GEOMETRY, AND APPLICATIONS	
	1.6.1. The fundamental theorem	22
1.7.	Related nonparametric problems	24
	1.7.1. The MLE of an unknown distribution	$\overline{25}$
	1.7.2. Accurate and error-prone measurements	25
	1.7.3. Monotone density problems	26
		20 26
1 0	1.7.4. Censoring problems	
1.8.	Similar statistical problems	27
CHA	APTER 2: Structural Features	28
2.1.	Descriptive features	28
	2.1.1. Some simple moment results	28
	2.1.2. Shape and modality	29
	2.1.3. Overdispersion and sign changes	30
	2.1.4. Log convexity of ratios	32
	2.1.5. Moments and sign changes	33
	2.1.6. Dispersion models	34
0.0		35 35
2.2.	Diagnostics for exponential families	
	2.2.1. Empirical ratio plots	35
	2.2.2. Gradient function plots	35
	2.2.3. Comparing gradient and ratio plots	38
2.3.	Geometry of multinomial mixtures	38
	2.3.1. Known component densities	39
	2.3.2. Basic convex geometry	40
	2.3.3. Identifiability of weight parameters	41
	2.3.4. Carathéodory's theorem	42
2.4.	Exponential family geometry	43
	2.4.1. Identifiable functions	43
	2.4.2. Identifiability of weights, m fixed	44
		46
	· · · · · · · · · · · · · · · · · · ·	
	2.4.4. Hyperplanes and convex sets	47
	2.4.5. Identifiability of weights and supports	48
	2.4.6. Related problems	50
2.5.		51
2.6.	Certain nested mixture models	53
2.7.	Concluding remark	55
CHAI	PTER 3: Parametric Models	56
3.1.	Discrete versus continuous	56
	3.1.1. Continuous models: The conjugate family	57
3.2.		59
	3.2.1. Known component distributions	59
	3.2.2. Unknown component parameters	60
2 2	Properties of the <i>m</i> -component MLE	
ບ.ບ. ຊ⁄/		60 61
ა.4 .	EM algorithm	61
	3.4.1. A description of the EM	61

CONTENTS

	3.4.2.	The EM for finite mixtures	62
	3.4.3.	Algorithmic theory	63
3.5.	Multin	nodality and starting values	65
CHA	PTER 4:	Testing for Latent Structure	68
4.1.	Disper	sion score tests	69
	4.1.1.	The dispersion score	69
	4.1.2.	Neyman and Scott's $C(\alpha)$ test	70
	4.1.3.	Dispersion test optimality	72
	4.1.4.	Auxiliary parameters	73
4.2.	LRT fo	or number of components	74
	4.2.1.	The testing problem	74
	4.2.2.	Historical perspective	75
	4.2.3.	Initial observations	76
4.3.	Asymp	totic multinomial geometry	77
	4.3.1.	The dagger simplex	77
	4.3.2.	Maximum likelihood and projections	79
	4.3.3.	Type I likelihood ratio testing	81
4.4.		pe II likelihood ratio problem	82
	4.4.1.	Parameter constraints	82
	4.4.2.	Convex cones	82
	4.4.3.	The z-coordinate system	83
	4.4.4.	Projections onto convex cones	85
	4.4.5.	The dual basis	86
	4.4.6.	Sector decomposition and projection	87
	4.4.7.	The type II LRT	88
	4.4.8.	Applications	90
4.5.		totic mixture geometry	91
	4.5.1.	Directional score functions	91
	4.5.2.	The gradient scores	92
	4.5.3.	Other directional scores	93
	4.5.4.	Simple binomial examples	94
	4.5.5.	The nonparametric LRT	95
	4.5.6.	A nonconvex score cone	96
4.6.	The LR	T on nonconvex cones	97
	4.6.1.	Projections onto nonconvex cones	97
	4.6.2.	Measuring distances	99
	4.6.3.	Tubes and distributions	101
	4.6.4.	Approximations for tubes	103
		The arc length problem	104
		Final comments	106
CHAI	PTER 5:	Nonparametric Maximum Likelihood	108
51	The ort	imization framework	108
0.1.		Reformulating the problem	108
	U.I.I.	monormanning and providing	100

vii

viii		MIXTURE MODELS: THEORY, GEOMETRY, AND APPLICATIONS	
	5.1.2.	The feasible region	109
	5.1.3.	The objective function	111
5.2.	Basic	theorems	112
	5.2.1.	Existence and support size	112
	5.2.2.	Closed and bounded?	113
	5.2.3.	Gradient characterization	115
	5.2.4.	Properties of the support set	116
5.3.		er implications of the theorems	117
	5.3.1.	Duality theorem	117
	5.3.2.	Gradient bounds on the likelihood	118
	5.3.3.	Link to m -component methods	119
	5.3.4.	Moment and support point properties	119
5.4.		ations	120
0.1.	5.4.1.	A binomial mixture	121
	5.4.2.	Empirical CDF	122
	5.4.3.	Known component distributions	122
	5.4.4.	The multinomial case	123
55		eness and support size results	123
0.0.	5.5.1.	The strategy	123
	5.5.2.	A geometric approach to Task 1	120
	5.5.3.	A gradient function representation	125
		Computation: The NPMLE	127
6.1.	The co	nvergence issue	127
6.2.	Using	the \widetilde{EM}	128
6.3.	Gradie	ent-based algorithms	128
	6.3.1.	Design algorithms	129
	6.3.2.	Keeping track of the support points	129
	6.3.3.	Vertex direction and exchange methods	129
	6.3.4.	Intrasimplex direction method	130
	6.3.5.	Monotonicity	130
	6.3.6.	Using the dual problem	131
6.4.	Ideal s	topping rules	131
	6.4.1.	The ideal rule	131
	6.4.2.	A gradient-based rule	132
	6.4.3.	Combining grid and gradient	133
	6.4.4.	Bounding the second order score	134
	6.4.5.	A conservative method	134
	6.4.6.	Remarks	135
CHAI	PTER 7:	Extending the Method	136
7.1.	Proble	ms with ratio structure	136
	7.1.1.	Example: Size bias	136
	7.1.2.	NPMLE with ratio structure	137
	7.1.3.	Example: Size bias	137

CONTENTS

	7.1.4.	Example: Weibull competing risks	138
	7.1.5.		138
7.2.	NPML		139
	7.2.1.		139
	7.2.2.		140
	7.2.3.		140
	7.2.4.	-	141
	7.2.5.		142
7.3.	Smoot		143
	7.3.1.		143
	7.3.2.		144
	7.3.3.		144
	7.3.4.	•	144
CHA	PTER 8:	The Semiparametric MLE	146
8.1.	An equ	ivalence theorem	146
			148
	8.2.1.		148
	8.2.2.		149
	8.2.3.		149
	8.2.4.		150
	8.2.5.	•	150
8.3.	Errors-		151
	8.3.1.	The joint sampling model	151
	8.3.2.		152
	8.3.3.		152
	8.3.4.	The measurement error extension	153
	8.3.5.	The extended equivalency result	153
8.4.	A mixt		154
	8.4.1.		154
	8.4.2.	The concept	154
	8.4.3.		155
	8.4.4.	* *	156
	8.4.5.	Inference on the lack-of-fit index	156
Bibli	ography	y	159

ix