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1. Statement of the problem

In many applications of probability theory an essential role is played by birth
and death processes, which is the name given to homogeneous Markov processes
with a finite or countable number of states, which we denote by 0, 1, . .., n, * ,

in which an instantaneous transition is only possible between adjacent states.
The probabilities Pn(t) = P{4(t) = n} of these states satisfy the system of
differential equations (see [2])

(1.1) Pn(t) = in-1P.-l(t) (Ai + A.i)P.(t) + !Ln+1P.+i(t)
n = 0, 1, ,where A_1 = MO = 0.

If the number of states is finite and equals N, then AN = NN+ 1 = 0. It is also
assumed that all the other parameters i,, and A, are positive. Let us consider
the random variable Zkn, k < n, the passage time from state k to state n:

(1.2) Zkn = inf {t: 4(t) = n, t > O1 (0) = k}.
The random variables Zkn are of considerable interest in reliability theory, where
birth and death processes describe the behavior of storage systems with replace
ments. Ifthe states 0, 1, , n - 1, correspond to functioning states ofa system,
and other states correspond to nonfunctioning states of a system, then the
random variable Tk n may be regarded as the length of time that the system works
without a failure, if it starts in state k. Most often the state 4 (t) is taken to be the
number of nonfunctioning elements, at time t, in some system, and it is assumed
that at the starting time the system was completely functioning, that is, 4 (0) = 0.
Therefore, the study of the random variables To0, is of greatest interest. Let us
assume that our process has a stationary distribution. As is known [2], for this
it is necessary and sufficient that the following conditions be satisfied:

00 -0 1
(1.3) E on, < X0, E i- =1 O,

n=0 n=O 0n
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where

(1.4) 00 = 1, O = ________

(for the case of a finite number of states, a stationary distribution always exists).
For such a process the time intervals 4l, 4+, ...*, l+,v. , for which c(t) < n

will alternate with the intervals r -, T-, ...*, m, . . for which {(t) _ n. Since
the process is Markovian, the lengths of all these intervals are independent, and
from the existence of a stationary distribution it follows that C and 'C- are
proper variables. Further it is not hard to see that at the beginning of every
interval l, m > 2, the process will be in state n - 1, and therefore the distri-
bution of any one of the variables l+, m = 2, coincides with the distribution
of the variable z-1,n, Thus, in reliability problems i ,n can be regarded as the
length of time during which the system works without failure or, as engineers
say, the work per failure.

Let us assume now that at the initial moment the process is in a stationary
regime, that is, P{4(0) = k} = Pk. where the Pk = OkPo are the stationary
probabilities. For reliability theory another random variable, which we denote
by Ir, is of interest:

(1.5) In = inf {t: 4(t) _ n, t _ 0}.

This variable can be interpreted as the amount of time that the system works
without failure in a stationary regime. Since the intervals T+ and zm form an
extended alternating renewal process [1], the distribution of the variable n,, is
related to the distribution of the variable _ 1,, in the following way:

P 1 > X} dx
(1.6) P{t,, > t n> O} =

f P{z,1,n > x} dx

Using ordinary methods, it is not hard to find the precise distributions of the
variables Zk,n and rI, which will be done below. However, computation with
the exact formulas is very cumbersome. On the other hand, in applications the
attainment of the level n denotes, as a rule, an undesirable event (an absence of
demand in queuing theory, and a failure of the system in reliability theory), and
therefore the parameters Ai and pi and the level n are usually such that a crossing
of the level n is "infrequent," that is, the level n is high. In such a situation, it is
natural to investigate the asymptotic behavior of the variables rkn and, as a
consequence, to obtain approximate formulas for their distributions. In [5] it is
shown that for fixed Ai and pi, as n -. o the distribution function of the
appropriately normalized variable Ork, converges to the function

(1.7) 1 -ae-x, x > 0, 0 < a 1.

However, this result fails to satisfy us for two reasons.
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First, in problems of reliability theory the level n (which is usually the number
of elements in reserve) is almost never large. On the other hand, the parameters
Ai and pi most often depend upon the number n. For example, for the case of an
immediate reserve with one maintenance unit [4] Ai = (n - i))L, pi = Mi. There-
fore, the following formulation of the problem is more natural and more general.
Suppose that the parameters Ai and pi and the level n vary in an arbitrary way;
find conditions under which the distribution of the normalized variables Zk,n
converges to the distribution (1.7).

Second, any limit theorem which does not contain an estimate of the rate of
convergence cannot, strictly speaking, be used for approximate calculations.
Therefore, for applications it is highly essential to obtain constructive bounds
on the rate of convergence, which do not contain the symbols o( ) and 0(4).
IfF is the exact distribution, and (D is the limit distribution, then a bound of the
following type would seem to be ideal:

(1.8) IIF - .11_e(Ai,H i, n) and |IF - D1- e(Ai{ Hi, n) as e(Ai, pi, n) -. 0.

An unimprovable bound of this kind gives simultaneously necessary and suf-
ficient conditions for the convergence of F to (. It is estimates of just this kind
which will be obtained in this paper. We will restrict ourselves to the study of the
asymptotic behavior of the variables TO,n, n- 1,n and Tz since, as was shown, they
are the variables of greatest interest in reliability theory.

2. The exact distributions of the variables TO,, nl, and c,,

We introduce the notation

P{Tr" < t} F"(t),

(2.1) P{z?11,n < t} =
P{T < t} = Gn(t).

The exact distribution of the variable TO,n is found in [4]:

1 a+ i ezt
(2.2) F,(t) = 2

0

j ZA,(z)d a > 0,

where the polynomials An(z) = 1 + An 1z + An,2z2 + + An,z are deter-
mined from the recursion relation

(2.3)( 1Ak Z Jk(2.3) Ak+l(Z) =' ± - + )Ilk Z) - k-1Z)
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Since ZO,n = TO, 1 + * * * + Tn- 1,n and since the terms are independent as a result
of the process being Markovian, using elementary properties of the Laplace
transform, we obtain

1 a +' An i(z)ez(2.4) I.(t) I a- dz, a > 0.
2iri Ji. zAn(z)

From formulas (2.2), (2.3), and (2.4), it is not hard to determine the expectation
of Ton and n- 1,n:

n-i 1 k

MTO,n = Ton = An, 1 = E il. E

(2.5)
k=0 k s=0

1 n-'
MT._bn = Tni-,n = To,n - To,n-1 = Z Ok.

2n-10n-1 k=O

To find the distribution of zn, we use formula (1.6):
n-1

E Pk 0

(2.6) 1 - Gn(t) = P{tn > t} = 7 J [1 - (Dn(X)] dx,
In-l,n t

where the Pk are the stationary probabilities of the states.
Hence, again using the properties of the Laplace transform, we obtain

(2.7) Gn(t) 1 - n 2+ J ; Z2An(z) n e dz2iti ,J -i Z2nZ)Tn.i_

= 1 - On + 2 " e"( dz, a > 0,
2iti ai ZAn(Z)

where
n-1

n= E Pk,
(2.8)

6nn(Z) = zT- n = 1 + 6niZ +
*

+ 6n,n-l.

3. Properties of the polynomials An(z) and 56(z)
LEMMA 3.1. The roots of the polynomials An(Z) and bn(Z) have the following

properties:
(i) they are simple and negative;
(ii) between any two adjacent roots of An(Z) there lies a root of An- 1 (Z);

(iii) between any two adjacent roots of An(z) there lies a root of (5n(Z).
PROOF. The first and second assertions concerning the polynomials An(Z)

follow from the theory of orthogonal polynomials [6]. Let - z, - z'2,
-zn- be the roots of Ani(Z), and -z', -Z', * , -zn be the roots of An(Z),
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numbered in the order of increasing modulus. Since

(3.1) 0 < z' < z' < Z` < z2 < < zn1 < Z`,
the polynomial

(3.2) 6n(z)= /An (z) - An- 1 (z)

ZTn- 1,n

is positive at the points - X-Z'-- * and negative at the points -z"
-z4, -z, * from which it follows that all the roots of 6,,(z) are negative,
and that between any two roots of A"(z) there lies a root of 6,,(z). This proves
the lemma.

Let us now introduce the normalized polynomials

(A 1) 1 + Z + an,,2Z2 + * + a,,,zn,
(3.3)

c5in( ) = 1 + bn,1z + bn,2z2 + + b,,,-Zn-1.

It follows from (2.3) that
n

E OA(Z)
(3.4) An+ 1 (Z) -An(Z) = Z k=0

from which we obtain the following recursion relation for the coefficients A,,,k:

n-1 k

(3.5) Ank = 1 k Oslsk-1
k=O 40kk s=O

Hence, the coefficients an k and bnk of the normalized polynomials are given by

(3.6) a = An,k bkb. Ank+ 1 An-1,k+1
(3.6) an k = i1ks An,1 An-1,1

Let us write these polynomials in the form

A(An,) = (1 + COZ)(1 + olz) ... (1 + OtnZ),
(3.7)

bn(LJ) = (1 + f1iZ)(1 + fI2z) ... (1 + fnl 1Z).

If we assume that the numbers ci and f3i are numbered in decreasing order, then
as follows from Lemma 3.1

(3.8) %O > piu > ai > fi2 > a2 > ... > fin-i > an-i.
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We now make some estimates of the ai and f3i.
LEMMA 3.2. If we put a= 1 - o = al + **+ a,, and P =31 +f 2 +

* + f-1, then

(3.9) a < ,

and for a, 2 < 4 we have

(3.10) 1 - (1 - 2a 2)1/2 < a < 1 -(1 -4a,2)1

PROOF. Property (3.9) follows from (3.8). From (3.7), it follows that

(3.11)
0

+ a + * ±+ 1 = 1.
(*) a~ot2 + aX2 + *-+ 0C2_l 1 -2%n2

whence

(3.12) 1 - 2a 2 < a0(aO + ± an-) = 1--a,

that is, a < 2. Further.

(3.13) 1 -2a2 < a2 + (a1 )2 = 2 + (1-)2
or

(3.14) a2 _ a + a, 2 > 0.

Solving this inequality and keeping in mind that a < 2, we obtain

(3.15) a < 2[1 -(1 -4an )1/2]
On the other hand,

(3.16) a2 = (1 -x)2 < 1 - 2a%,2

that is, a > 1 - (1 - 2a 2)1/2. This proves the lemma.
COROLLARY 3.1. Itfollowsfrom Lemma 3.2 that for an 2 - 0

(3.17) a = an,2 + O(an,2).
LEMMA 3.3. For any k _ 1 the following inequalities hold:

otk - 1
(3.18) afk < ak 1

(3.19) bnk -=k

PROOF. We shall say that the series A(z) = Yn,-0 anzn is a majorant of the
series B(z) = Ej=0 bnZn if ibnI _ an for every n. We will write this relation as
B(z) << A(z). It is easily seen that the following holds. If B1 (z) << A1 (z) and
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B2(z) << A2(z), then

(3.20) B1 (z)*B2 (z) << A 1 (z) A2 (Z).

This property will be applied in order to estimate the coefficients aflk and bfnk:

(3.21) An() = (1 + xOz)(1 + xlz) * (1 + on-lZ)

<< (1 + coz)ez.

Hence,

ak (1 - 0Co k-1

(3.22) a, k ~-+_(3.22) an'~k< ! + (k - 1)! -(k- 1)!'
It is simpler yet to bound the bnk:

(3.23) 6n(Z) = (1 + f31z) (1 ±+ Z1Z) << e/z,

that is, bn, k < 13k/k !. This proves the lemma.
COROLLARY 3.2. From inequality (3.18) and relation (3.17) itfollows thatfor

a 2- 0, we have

(3.24) ank = 0 (an21).

4. Asymptotic behavior of the variable TO,,
We will consider the normalized variable Qn = TO n/TO,. It follows from (2.2)

that

1 rix ezx dz
(4.1) P { < 2X} Ja-ioo z(1 + aoz) ( + lz) .(1 + an lz
THEOREM 4.1. For a, 2 < 4, we have the inequality

(4.2) max Fn(t) - 1 + exp }-<
0<t< 0 TO,,, 1 - o

1 - (1 - 4an 2)1/2
1 + (1 - 4an 2)1,2

PROOF. It is evident from (4.1) that 8n = ,j + q11 + - + %n-1, where
the qi are independent and distributed according to an exponential law

/4 .3 P~qi > xr} = exp i- -x i = 0, 1. n - 1.
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Let P{q11 + + q. - 1 > x} =f(x). Then

(4.4) e"(x) = FP(Tx) - 1 + ex

loexP { s [1 - f(u)] du + ex

=e so eo U f-f-(p) du.
We bound this quantity from above and below:

x) a
£,(x) _ e'x exp - <-

(45) 1 ~~~~~oJoe(1 - a)'

e' -(x) > _ |exp {- a (u) du- c of(u)du

1 M(nii + * + tn-i) = -

The assertion of the theorem follows from these bounds and inequality (3.10).
COROLLARY 4.1. In order that

(4.6) limP{To.> x =

it is necessary and sufficient that an2 -° 0.
The necessity is evident from formula (4.1), and the sufficiency follows from

inequality (4.2).
REMARK 4.1. Estimating the difference e"(x), for example, at the point

x = I, it is not hard to show that for a.,2 0

(4.7) max PF.(t) - 1 + exp { T}
0<t<G o,0"

2

and thus inequality (4.2) is asymptotically exact. We also note that from (3.6) it
is easy to find an explicit expression for a 2:

1 n-i 1 k
(4.8) a.,2 = T, A, 6 E 5To0,.,'o,n k=0 Ak k s=0

and therefore inequality (4.2) enables us to easily and precisely estimate the rate
of convergence in (4.6).
An even more precise approximation for the distribution F,(t) yields:
THEOREM 4.2. For an2 < ', we have the equality

(4.9) F (t) = 1 - exp {- } + 0 -4a,2 exp 2a,2TO. }
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where 0 < 0 < 1 and

1 001d
(4.10) = -

= 1 + Z
- 1 [7nd(-w)]U=,

mO n
0 1 dn'

(4.11) - ______ m-0 1 dwA M=0 m dwm

and

(4.12) n ) 'An 1 - Z.

PROOF. We move the path of integration in the integral in (4.1) to the left so
as to separate out the residues at the points z = 0 and z = -I/ao = -A:

e-AX
(4.13) Po(T0,.X) = 1 To,+ R,

where

r- b+ioo ezxdz 1 1
(4.14) =Xi J~b~i<2o z~l + aOZ) * * * (1 + an-1Z) aaC
Bounding Rn in terms of the maximum modulus of the integrand, we obtain

(4.15) IRn 1 ,
} (b2 + 82)1/2 [(bc 1)2 + 2e2]12 (1-ab27rb+ S [boto- 1) 0-s2]1b2

ebx d(s/b)
2n(bot- 1)(1 - bo) J [1 + (s/b)2] 02[1+ os2/(boo - 12]112
<e-bx

= 2(bao--) (1 -ba)
Putting b = [2o(1 -)] 1,we find that

(4.16) |R I < ex { 2aao} < 2a,2 e x }
1 - 4oa i- 4anex2 t2an, 2

since aOo < an 2. We now write the residue at the point z = -l/%o = -1 in the
form

(4.17) 27riJiz+1A=pz[l +ez dx
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where p is sufficiently small, and

(4.18) p (z) = an 2Z2 + an,3Z3+ + a,,,n
One could expand the integrand in powers of 9n(z) and obtain the corresponding
expansion for the residue. It has the form kX1 ltk(x)ex, where 7tk(X) is a
polynomial of degree k. By virtue of the inequalities (3.18), this series will be an
asymptotic one. However, for the residue that we are considering, one can
obtain a more convenient representation. We have

if ~~~ez dz 2
(4.19) 22i J12+= z[1 + z + On(Z)] =

where i satisfies the equation 1 = i-(Pn(-A). and A' = [1 ± Pn(-2)]'.
Now consider the function w = z -p (--z), and denote its inverse by z = 0 (w)
It is easily seen that i = f(1) and 2' = O'(1). We expand the function O'(w)
in a series:

1 do 1 z dz~(z
(4.20) Q/(W) = j dil'(;) 2 f dz

-riw - 7 0( Z

X1 r Pn'(-Z) X1 dm'
m-0 I __1m [qW n (-W)].
m~o 2niJC (z w-W~+l m0~t dw

Hence,
' 1 d`'1

(4.21) (W) = W + Z md [pn(-1()].

Letting w = 1 in these series, we obtain the desired expansions (4.10), (4.11).
This proves the theorem.
REMARK 4.2. Using inequality (3.18). it is not hard to show by a simple

estimate using the maximum modulus that the mth terms of these series do not
exceed the quantity 2[2(e2,- 1)]m, from which, taking (3.10) into account, it
follows that the series (4.10), (4.11) converge for an 2 < 0.2.

5. The asymptotic behavior of the variables T.
THEOREM 5.1. For f, < (e- 1)/e one has the inequality

(5.1) max Gn(t) -1 + 9~exp {- T <
O<t< 00 TO

PROOF. As follows from (2.7),

(5.2) G.(T O,X) }<X

_+ni~ (1+ f 1 Z) ... (1 + /-iz)ezx1-a+,+
-

I- dz
27U6a z( 1 + OC0z) .. (1 ± Otn z)
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= 1 - exp {- -}
aOO

± - exp -
OCO

[g,,(u)-1du.axo Jo J 9() 1 u
where

1 ra1i (1 + /31z) ... (1 + i_1Z) ezu
(5.3) g.(U) 2iJa7-j Z(1 + alz) ... (1 + ,-1z)

=1 + exp {-
k =1 a~k ak

From inequalities (3.8). we easily obtain

(5.4) Ak = OCk ( a;k+ )> 0.

Oak OakJ Oak J V k OkJ

Consequently.

(5.5) - exp {- x } [g,(u) 1] du

<-I [9n(u) 1] du
aOCO

1 a'/ -

k1 Ak=1-aO k~l 1-a

We can now bound the difference:

(5.6) 0 < G,(TOx) - 1 + 9Y eX

ep{ex ex! +±J exp {- U [g,(u)- 1]du}

[e( - O) OC7

If P < (e - 1)/e = 0.63 . then the last expression does not exceed fl3~.
from which we obtain the assertion of the theorem.

COROLLARY 5.1. From the theorem just proved, it follows that

(5.7) lim P > X > 0l n x.
P-~O
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REMARK 5.1. It is not hard to show that for x = 1

(5.8) G.(TO,.) - 1 + ,-.e 1 J1ee

from which it follows that for fi 0 the bound (5.1) is exact, as concerns order.
REMARK 5.2. Proceeding as in Theorem 4.2, it is not difficult to obtain a more

precise bound. For: < 2

(5.9) G.(t) = 1 - - 1exexp -T + 0 12e {P 101 < 1,

where A is defined by the series (4.10) and

(5.10) ="m= m! dwm [ \ To m T

It is easy to show that the mth term of this series is of order pm.

6. The asymptotic behavior of the variables r.- 1, n

THEOREM 6.1. For any t > 0, we have the inequality

(6.1) 4)"(t) - 1 + T exp { TO,,}
Fo TO,('~-l1 f _
< [1 T 0(1, _ exp -_l_

PROOF. It follows from (2.4) that

(6.2) P To,'> x 1 - (D.(T,)

Tn n 1 da+ioo Ad(ik)e , a > O.TOn 276 a j. e z3
We consider the integral

(6.3) h,.(x) =
a (#) e)z

= BoeX/30 + Ble-X13 + ... + B.-lex/'n-
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Making use of the inequalities (3.8), it is easily shown that Bk > 0. Moreover,

(6.4) 1 = ~(1
-:) ..(1~_ An))(6.4) 1 > BO = aO gOC a-a,

It is not hard to see that

T
(6.5) B0 + B1 + + B,, = h,(O) = To

n-1,n

Further,

(6.6) Ihn(x) - e-1 < IBoe-x/0 -e-xl + lhn(x) - B0e`1al1
< IBO- 1I + (B1 + + B,1) e-X/X

< : + r ~Ton 1 -a-S _X/2
= 1~~~T-a l_1,n 1-a

from which we obtain the assertion of the theorem.
COROLLARY 6.1. From the theorem just proved, it follows that for any x > 0

(6.7) lim (D,,(TO,,x) - 1 + T ne-x 0;

however, this convergence, generally speaking, is not uniform in the neighborhood
of zero. In order that the limit in (6.7) be uniform, it is necessary and sufficient that

T ,

(6.8) lim = 1.

7. A class of infinitely divisible laws

We have earlier obtained conditions under which the distributions of the
suitably normalized variables ro n, Tz and r,, 1,n converge to an exponential
distribution (possibly with a jump at zero). It would be natural to go further and
attempt to find other limiting distributions for these variables. If, passing to the
limit, one varies the level n as well as the parameters Ak and pk, then the problem
is empty, since by choosing these parameters appropriately we can always make
the roots of the polynomials An(z) equal to any preassigned negative numbers.
Therefore, we assume that the parameters Ak and Ik are fixed, and that the level
n - 00.
For this statement of the problem, the following holds.
THEOREM 7.1. Suppose that the parameters .k and gk satisfy the conditions

(7.1) lim TO,n = +°°,
n r
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(7.2) lim On+1 =1,
n-~xTO,n

T
(7.3) lim n = _ y co.

n- X nTnn+i

Then

(7.4) urn o {ZOn < 9,> = 'Fi ezx dz.
n (o O, 27ti a-i.x zF((Z.y

where

(7.5) $D(z~) =
k=0 k!1r~k + y)

PROOF. We shall prove that for any k, limn af,,k = ak exists. From formula
(3.6) it is not difficult to find an explicit expression for ank:

'I. k
n-1 i1 f

(7.6) ank = knk1 n-i _1 To,S
n,1 O,n =0 f 1 s=0

We will prove the existence of the limit by induction on k. For k = 1, we have
a, = 1 and the assertion is trivial. Let us assume that lirn n 0 ak - 1 = ak- 1
exists. Since TO nTTOO to find the limit of the an k, we can apply a theorem of
Stolz [3] (the finite-difference analog of L'Hospital's rule):

n-1 1 6

> 0 ~Osas k-1 TOk.S
(7.7) lim ank "lim f s=°

n- J, n-x TO, n

n

OSas,k-1 TO S

= lim S= ° n

k Tok,n + 1 1 OS
sOa

= lim Onank -1TOn
n- cxk[(k - 1O)T2Tn2n+ii4On + TOk, n]

= lim an,k -1 -- yak.1 = ak.n-'o kL(k- 1) Tn2 lP + 1j k(k- 1 + 7)

WVe have twice applied Stolz's theorem, using here the condition (7.1). Thus

kykak- 1 +_ ) r(y)(7.8) a~~~~~~~~ =
(

- 1 + y)= k! F(k ± y)'
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from which it follows, taking account of the inequality (3.18), that

(7.9) lir An(T, ) = k=O k!F(k!D(z.+)

uniformly on any finite interval. Therefore,

(7.10) lim { =< dz,
n-.o TO 2iri JiXD z(D(z.

which proves the theorem.
REMARK 7.1. It follows from the hypothesis of the theorem that the terms

in the sum TO, = To,1 + r1,2 + + T _1,n are uniformly small. Therefore,
the distribution (7.4) is infinitely divisible.
REMARK 7.2. For the extreme values, we have

(7.11) D(Z, 0) = 1 + z. (D(z. so) = ez,

which corresponds to the exponential and the identity distribution.
REMARK 7.3. In a similar way, one can show that if the conditions (7.1),

(7.2), (7.3) are satisfied, then

(7.12) lim 6,, z) = (Z(z,)
nM TO,n

fromi which it follows that

___ ~~~1ra+c1 ~l(z Y)d(7.13) lim P {- < x =-e dz.
n-x (Jo.n 27ti JXa-i z (D(z, 7)

and

(7.14) lim P n-1n > x = 1 ('e)z(-7)e dz.n-mo TO, n Tn ,n 27ri 'Dis(>z, m)
In concluding this paper, we note that the results of Section 4 (bounds on the

distribution of To n) are obviously valid also for an arbitrary Markov process
with a finite number of states for which

(7.15) M exp {-zro,} =

where P(z) is a polynomial, all of whose roots are negative. The equality (7.15)
will, for example, be satisfied for a process in which instantaneous transitions
upward can only occur by one state at a time. In the general case, where

(7.16) M exp {-ZzO,n} = Q(z)
P(z)
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and the roots of the polynomial P(z) are negative, the asymptotic behavior of
the variables lon can be investigated by our methods, if certain restrictions are
imposed upon the growth of the polynomial Q(z).
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