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Introduction

Consider a class # of probability measures on a measurable space X and
measurable functions gi and h on X. In a typical moment problem we want
further information on the possible sets of values taken by the integrals p (gj)
and p (h) as p runs through #. And the main purpose of the present paper is to
develop into more systematic methods certain principles which in special cases
have been found effective for handling such moment problems.

In Sections 2 through 4 we take up certain frequently occurring moment
problems where the class X happens to be convex. In Section 2 the space X
can be any locally compact Hausdorff space. For {hj, j E J} as an arbitrary col-
lection (finite or infinite) of lower semicontinuous functions on X, we establish
a condition which is both necessary and sufficient for the existence of a regular
probability measure p on X satisfying y (hj) < ,lj for all j E J. However, we do
assume as a side condition that the hj dominate each other at infinity in a certain
weak sense. This domination condition is void when X is compact and nearly so
when hi _ 0.

In Sections 3 and 4 we are interested in the smallest value L(y) of p(h) when
it is known that p E X and that p(gj) = yj forj = 1, - * *, n; the spaceX can be
any measurable space. Provided this smallest value L(y) is in fact assumed, it
turns out that in the determination of L(y) we only need to consider so called
admissible measures.

These are defined as the measures pt E X which attain the smallest possible
value pu(o) for some linear combination f of the form / = h - dIg1 - *.. -
d5g". In the special case that X consists of all probability measures on X, we
have admissibility if and only if the measure is carried by the set of minima of
some such linear combination f.

In Sections 5 and 6 we are interested in bounds for and inequalities between
the different moments of a sum Sn = Z, + * * * + Zn of independent random
variables Zi. Here, the Zi may have different distributions subject to certain
restrictions on these distributions. The resulting collection !' of possible distri-
butions of S,, is usually not convex.
An essential use is made of the fact that each cumulant cj(S,,) of S, is equal to

the sum of the Kj(Zi). The set K[q] of possible q-tuples (Kl (Z), K* *, lcq(Z)) is
usually not a convex subset of R4. It turns out that for large n the existing
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inequalities between the different moments E(Si), j = 1, * , q, are more or less
determined by the structure of the convex hull of K[q].

In Section 5 the resulting inequalities are worked out in detail for the case
that 0 < Z < 1 and q < 4. Section 6 contains among other things an explicit
method for determining the best possible upper bound on E(exp {tS,}) subject
only to the condition thatO < Zi _ 1, E(Zt) = cj forj = 1, ,m, all i, while
E(Si) = dj for j = m + 1, ,q. Here q _ 2m + 1 and the Zi may have
different distributions.

2. A general moment problem

2.1. In the present section we treat a frequently occurring moment problem
which may involve infinitely many side conditions. In the sequel, X denotes a
locally compact Hausdorff space made into a measurable space by the a-field
of all Borel subsets of X. We shall often employ lower semicontinuous functions
h: X - R. This means that h(x) _ lim infy, h(y) for all x E X; equivalently,
the set {x: h(x) > c} is always open; such a function h is bounded below on
each compact subset of X.

Further on, {hj, j E J} will denote a given finite or infinite collection of lower
semicontinuous functions on X (such as the characteristic functions of the open
subsets of X). This collection is sometimes denoted by Xf. Next, {,?j j e J} de-
notes a given real valued function on the index set J. Finally, .* will stand for
the class of all regular probability measures p on X such that each hj is integrable
relative to p in such a way that

(2.1) u(hj) = j hj(x)p(dx) . ij for each jE J;

IA(A) < rlj if hj is the characteristic function of the open set A.
We shall be interested in establishing sufficient conditions for ./* to be non-

empty. We may expect that such a result would enable us to handle many other
moment problems simply by adjoining new functions hi to the system .X° and
adding new conditions of the type (2.1), (see for instance [5], p. 569). Also
observe that (2.1) allows us to formulate a condition of the form

(2.2) f gi(x)u(dx) = Pi,

where gi is a continuous function on X and i may run through an index set I of any
cardinality. All one needs to do is to adjoin both gi and -gi to the system X'.

Let R' denote the collection of all real valued functions ,B(-) on J such that
p(j) = pj = 0 for all but finitely many j E J. Similarly, let R-' denote the col-
lection of all nonnegative functions in R'. It is clear from (2.1) that

(2.3) f [(X, + E Pjhj] dp _ ao + E fpj'ij
J J
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as soon as aO E R, f3() E RJ and , E J4. Therefore, in order that #* be non-
empty it is at least necessary that

(2.4) ao + p.jhj >0, aceR,f3eRJ
=

+Iojo _>0
J J

Here, if 0:X -*R then 4) _0 denotes that ¢>(x) .0 for all xE X.
REMARK 2.1. Actually, (2.4) is already a necessary condition for a much

weaker property than #* being nonempty. Namely, suppose instead that for
each choice of the finite subset J' of J and each, choice of the numbers 6j > 0,
j E J', there exists a probability measure p on X such that

(2.5) f hj dy . tj + bj for each j EJP.

Obviously this implies (2.4).
2.2. The following examples will show that in fact condition (2.4) is not

sufficient for #* to be nonempty.
Let X = R and let J* be determined by the conditions

(2.6) jx2p(dx) _ 1, Xe_x2 I(dx) = 1.

Then X* is clearly empty though (2.4) is satisfied. More precisely, one may take
in this case J = {1, 2}, hI(x) = 1 - x2 with t = 0 and h2(x) = 1 - eX2 with
q2 = 0. That (2.4) is satisfied follows, for instance, from Remark 2.1 by re-
placing t12 = 0 by q2 = 6 with 6 > 0 arbitrarily small, and observing that there
do exist probability measures , on R for which I X2 dy _ 1 and I e-X2 dp _
1 - 6.
As a second counterexample, take X as the discrete space X = {1, 2, 3, .

Let {hj, j E J} and {j, j E J} be such that hj(x) > 0 always while

(2.7) .j > lim sup hj(x), jE J,
x- 0c

and further

(2.8) inf {rj/hj(x): j E J, hj(x) > 0} = 0 for all x E X.

(For instance, one may take hj(x) = x-i and ?tj = l/j!, where j = 1, 2, * ; or
take ?I = 0 = lim._ hj(x) and supj hj(x) > 0; or take hj(x) = j + j3/x and

j = j, where j = 1, 2,..)
Condition (2.4) is an immediate consequence of (2.7). On the other hand, let

p be any nonnegative measure on X satisfying (2.1). Then bj _ hj(x)p({x}) for
all j E J, x E X and we conclude from (2.8) that p({x}) = 0 for all x E X, so that
p cannot possibly be a probability measure. In other words, #* is empty.

As a last counterexample, take again X = {1, 2, 3, - * } and let (2.1) be of the
form p(gi) = 0 for all i E I. Here, we take gi: X -+ R such that gi(x) -+ 0 as
x - oo, for all i E I, so that condition (2.4) is trivially satisfied. Finally, suppose
that for each x E X and each E > 0 there exists an index i e I such that gi(x) > 0
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and gi(x') > -egi(x) for all x' E X; (it would be sufficient that a single function
gi be positive and nonincreasing toward 0). If y were a probability measure
satisfying ju(gi) = 0, we would have

(2.9) 0 = i(gi) > -(1 - P({x}))gi(x) + z({x})gi(X),
implying that ,u({x}) _ 8/(1 + e). But x E X and E > 0 are arbitrary, thus, u = 0
so that X#* is in fact empty.
REMARK 2.2. We can think of other necessary conditions besides (2.4) for

M* to be nonemgpty. For instance, one would be

(2.10) hj(x) > 0 for allx EX=qj > 0.

In view of Fatou's lemma, another necessary condition would be

(2.11) hj(x) _ 0, 3j. 0, Z1jhj(x) = oo forallx => Yjf?ij = oo,
j J

where j is to be restricted to some denumerable subset of J. In the case of con-
ditions ofthe form ju(gi) = pi, i = 1, 2, ..., the dominated convergence theorem
yields as a further necessary condition that I cipi = 0 as soon as I oigi(x) = 0
for all x E X and further that I:Ioigi(x) _< IPjhj(x) for some choice of the
numbers Pj > 0 and the functions hj _ 0 in X with I /lj3j < so, j being re-
stricted to a countable subset of J.
Some of the above additional necessary conditions are in fact violated by the

counterexamples outlined in this section. Nevertheless, if possible we would
clearly prefer to avoid using conditions of the type (2.11) since they are hard to
verify.
One would also like to keep the system X = {hj, j E J} as small as possible

so that (2.4) may not be too hard to verify. Naturally, using the properties of an
integral (such as Fatou's lemma and linearity) one can usually enlarge X con-
siderably without affecting the class *,, but we will refrain from doing this.

DEFINITION 2.1. If h and 4 are real valued functions on the locally compact
space X, we will say that h is dominated below at infinity by 4 when, for each
number e > 0, there exists a compact set Ke c X such that

(2.12) h(x) _ -|I+(x)I for each x K£-

Observe that it would be sufficient that h be nonnegative or that X itself be compact.
If (2.12) is replaced by h(x) < E|+(x)I for each x 0 K., we will say that h is

dominated above at infinity by 4. If both properties hold we say that h is
dominated at infinity by 4.

DEFINITION 2.2. Let FD denote the class of all nonnegativefunctions 4: X -+ R
which admit at least one representation as

(2.13) +(x) = ao + E ,Bjhj(x), xE X,
J

with aOo E R, /3(.) E RJ . Observe that each 4 E 'D is lower semicontinuous and also
that (D is a convex cone in the obvious sense.
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Only for the purpose of a proof, we further associate to each 4 E (D a non-
negative number q(4) such that q(4) _ ao + Ej f3jqj for at least one repre-
sentation of the form (2.13). Observe that, by (2.1), we have y(o) _ q(4) for
each t E J1*.

In the sequel we shall make a frequent use of the function go on X defined by
go(x) = 1 for all x E X. Therefore, p (g0) = 1 for each I E X*,.
THEOREM 2.1. Suppose that, for eachj E J, the function hj is dominated below

at infinity by some f -e (D; it would be sufficient that hj _ 0. Suppose further that
the specialfunction go is dominated at infinity by some 00 E (D, and let .X* denote
the collection of all regular probability measures on X satisfying (2.1). Then

(i) the collection M, is nonempty if and only if condition (2.4) holds;
(ii) .#* is a convex set which is compact in the weak* topology.
Here, as usual, the weak* topology is taken relative to the class - (X) of all

continuous functions f on X having a compact support (that is, {x:f(x) #6 0}
has a compact closure). Thus a net {yi, i E I} of regular Borel measures con-
verges to I if and only if pi (f) -4 it(f) for all f E .k(X). Concrete applications
of Theorem 2.1 may be found in [5].
For the moment, consider a pair hj, 4)j as in the theorem. Since 4j > 0 it is

integrable relative to a nonnegative finite measure t as soon as /l(4j) < oo. We
claim that this implies that hj is at least improperly integrable so that u(hj) is
well defined. After all, hj(x) _ - sj(x) for x outside some compact set KE,
while on KE the lower semicontinuous function hi is bounded below.

Assertion (i) of Theorem 2.1 was already established in [5] pp. 565 and 570.
(Apply Theorem 4.1 of [5] with F as the linear manifold spanned by go and the
hi, j E J, and take F+ as the convex cone of all f E F such that f > f for some
(upper semicontinuous) function / of the form / = q(4)go- 4; here 4 E (D,
while the scalars q(4) are chosen such that it E #* if and only if It (go) = 1 and
p(f) _ 0 for all such i//; the present condition (2.4) corresponds to the con-
dition -go O F' of [5]; condition (4.1) of [5] appears unnecessary.)
The proof in [5] used the classical Hahn-Banach theorem together with the

Riesz representation theorem. The proof below of (i) and (ii) relies more heavily
on the linear space #(X) of all real valued finite signed regular measures on X,
made into a locally convex topological vector space by means of the weak*
topology. Further,
(2.14) B(X) = { ff.(X): ._ °, 11 _ 1},
will denote the set of all nonnegative measures p E }(X) of total mass _ 1.
It is essential for the proof that B(X) is not only convex but also compact (in the
weak* topology).
PROOF OF THEOREM 2.1. In the sequel, we shall assume all the conditions

of Theorem 2.1 and further condition (2.4), since, otherwise, X* would be
empty.
For each finite subset J' of J, let X* (J) denote the set of all pe B (X)

satisfying

(2.15) ii(go) = 1, ji(hj) < ij7 if je r,
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and

(2.16) p(4o) _ q(+o), p(0j) < q(oj) if jei'.
We easily verify that the class #, is precisely equal to the intersection of the
collection of all such classes }*(I). Moreover, this collection has the finite
intersection property, since .A (J')rn A' (J") = .# (J'uJ"). Hence, in order
to prove the theorem, that is, in order to prove that X* is nonempty and compact
it suffices to prove that each individual class f* (J') is nonempty and compact.
From now on, let J' be fixed. For convenience, we shall take J' = {1, 2, * * *, n}.

Using condition (2.4) and the definitions of (F and q(4), we easily see that for
any choice ofthe real constants oa, Pi 0,j = 1, ,n, and yj > Oj = 0, 1, n,
we have

n n

(2.17) a + E Ilj?1j + E yjq(oj) _ 0,
1 0

as soon as
n n

(2.18) Otgo(X) + Efjhj(x) + E yjoj(x) > 0 for all xE X.
1 o

Introducing 4n+j = hj,j = 1, * , n, and

(2.19) Cj = q(4j), j = 0,1, ,n, Cn+j = ?j, j = 1**, n,

this implication can be restated as
2n 2n

(2.20) a + yjkj ,0 yj _0,>O a + E yjCj _ o.
j=o j=o

Here, the functions 4j, j = 0, 1, - , 2n, are all lower semicontinuous. More-
over, .j> 0, j = 0, 1, *, n; thus j _ O, j = 0, * * *, n. Moreover, go 1 is
dominated at infinity by 00, while 0.+j is dominated below at infinity by
¢>, i = 1, * * *, n. Finally, #A* = k*(J') can now also be described as the col-
lection of all I e B(X) such that

(2.21) ji(go) = 1, p(j) .< , j = 0, 1 * , 2n.

We shall first prove the following three results:
(i) forj = 0, 1, - **, n, the functions , -+ p (0j) are lower semicontinuous on

B(X); in particular we have that the set {y E B(X): '(0j) < c} is always closed,
j = 0, 1 , * * * , n ;

(ii) on the set A(c) = fi e B(X): p(4o) _ c} (with c as a finite constant) the
function It -. p(go) is continuous; thus {y c B(X): P(4o) _ c, i(go) = 1} is a
closed set;

(iii) let 1 _ j _ n; then on the set

(2.22) Bj(c) = {u c B(X): (go) = 1,i'(0j) < c},

(with c as a finite constant) the function p tH(O+n+) = (t(hj) is lower semi-
continuous.
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One easily verifies that (i), (ii), (iii) together imply that the set #,, defined by
(2.21) is in fact a closed subset of B(X) and therefore compact.
To prove (i) let 0 . j < n be fixed. Then 4j is nonnegative and lower semi-

continuous, in which case

(2.23) it(0j) = sup {p(f ): f .A (X),0 < f _ 0j},
holds for each p E B(X) (see [1], p. 104). Here, by the definition of the weak*
topology each function p -/ (f) is a continuous function of p. Hence, it follows
from (2.23) that the function p -i (0j) is lower semicontinuous on B(X).

For the proof of (ii), we use that g0 is dominated at infinity by 40 _ 0.
Let s > 0 and choose the compact set KI such that 1 = go(x)l < Eso(x) for
each x K,. Next choose // in Y(X) such that x(x) = 1 = go(x) for x e KE
and 0 _ /i(x) < 1, otherwise. It follows that

(2.24) I9(go) - _(I< .fK dy _ s f o(x) dp Ec,

as long as p E A(c). Hence, on A(c) the function p -E p(g0) is the uniform limit of
the continuous functions p -+ y(*) and therefore itself continuous.
To prove (iii), let 1 _ j _ n be fixed. We know that the function 4.+j = hj

on X is dominated below at infinity by the nonnegative function 4,j. Hence, for
each s > 0 there exists a compact set K. in X such that

(2.25) hj(x) + eg.j(x) > 0 for x KE-

Here, the left side defines a lower semicontinuous function which therefore is
bounded below on K.. Consequently, there exists a constant a, such that a,g0 +
hj + 80j > 0 everywhere. In view of a relation of the type (2.23), the function
p - p(a.g0 + hi + ECt) is lower semicontinuous throughout B(X). Hence, on
Bj(c) the function

(2.26) p(hj + s4j) = p(a.g0 + hj + 4,Oj) - a.
is lower semicontinuous. But on Bj(c) we also have

(2.27) IM(hj) - p(hj + soj)j < &p(oj) < sc.

Therefore, on Bi(c) the function c-/p(hj) is the uniform limit of lower semi-
continuous functions and thus itself lower semicontinuous.

It remains to prove that the compact set .* is nonempty. Let D denote the
set of all points w E R2n+1 such that there exists a measure p E B(X) satisfying

(2.28) P(go) = 1, /p(4.) < w., j = 0, 1, ** *, 2n.

Clearly the set D is convex. Using the above results (i), (ii), (iii) and the fact
that B(X) itself is compact, we easily see that the set D is also closed. Thus, D is
equal to an intersection of a collection of closed half spaces.

It is given that (2.20) holds and we must prove that the set .'* defined by
(2.21) is nonempty. In other words, we must prove that (2.20) implies z E D,
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where z = (CO, 1, * * *, C2n ) It suffices to prove that z E H, whereH is any closed
half space containing D. Let this half space have the form

(2.29) H={w: + 2n }
j=O

where a and yj denote real constants. Since D c H and D is unbounded in each
positive wj direction we must have that yj . 0.

Considering a probability measure sx on X supported by a single point x E X,
we see that wj = Oj(x), j = 0, 1, * , 2n, defines a point w e D c H; hence, we
have that

2n
(2.30) a + Z yj j(x) > 0 forallxe X.

j=o

Invoking (2.20), we conclude that a + Zj,no yiC,j _ 0, that is, z E H. This com-
pletes the proof of Theorem 2.1.
REMARK 2.3. In Theorem 2.1 the condition (2.4) can also be replaced by

(2.31) axO+ZflBjhj > 0, ooeR, P RJ oo + ji?j > °,
J J

or by

(2.32) axO+ZEf,Bjhj > 0, cOxeR, P E RJ =oo + Epjqj > 0.
J J

After all, given the other (domination type) conditions of the theorem, we have
the implications

(2.33) (2.4) } .#* nonempty = (2.31) = (2.32) => (2.4).

Here, the first implication follows from Theorem 2. 1, while the others are more
or less obvious. For an important special case (with X compact) the equivalence
between #* * 0 and (2.31) is due to Ky Fan ([3], p. 68).
The following variation of Theorem 2.1 is often useful in applications.
THEOREM 2.2. As in Theorem 2.1, assume that go _ 1 is dominated at infinity

by some /0 in (D and further that each hj, j E J, is dominated below at infinity by
some 4j in (. Assume also that &#* is nonempty; equivalently, assume that (2.4)
holds.

Next, let f be a fixed upper semicontinuous function on X which is dominated
above at infinity by some 0 in (D, and define

(2.34) q(f) = inf {a + E ,jtlj: a + E ,jhj _ f};
here, a ranges through R while ,B(-) ranges through R J.

Clearly, M(f) _ q(f) < oo, where

(2.35) M(f) = sup {/l(f): P e}*1-
We assert that in fact M(f ) = q(f ) and further that the supremum in (2.35) is
assumed. In fact, the set of j1 E #* satisfying (f) = M(f ) is nonempty, convex
and compact (in the weak* topology).
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PROOF. Let f be dominated at infinity by f E (D; in particular f <,o for
some 4 e (D, thus, q(f ) < oo. Put h = -f so that h is lower semicontinuous and
dominated below by the function i in (D. Adjoining h to X = {hp,j E J}, one
obtains a new class

(2.36) # (y)= {fi eJ4:/(hK) < -y} = {Pu M.: ,i(f) > y},

which depends on the choice of y. It follows from Theorem 2.1 that X*,(y) is
always compact and convex. From (2.35), it is empty when y > M(f) and non-
empty when y < M(f). Letting yT M(f), we conclude that {Y e- h'f: U =
M(f)} is a nonempty compact and convex set.
Theorem 2.1 also supplies a necessary and sufficient condition for * (y) to

be nonempty, namely, condition (2.4) applied to X u {h} instead of X. It turns
out that A,(y) is nonempty if and only if y _ q(f). Consequently, we have
M(f) = q(f).
REMARK 2.4. The condition of Theorem 2.2 that f be dominated at infinity

by some 4 e- (F cannot be omitted. For instance, take X = [1, + oo) and
{hj, j E J} as the single function h(x) = x2 + x - 2. Thus M* consists of all
pgE B(X) with p(go) = 1 and 8(h) _ t1. Finally, letf(x) = x2. Clearly, M(f) =
q(f) = ,, but, nevertheless, we have it(f) < q for all y E.4-
REMARK 2.5. The assertion M(f) = q(f ) ofTheorem 2.2 is obviously related

to the so called fundamental theorem of linear programming (see [5], pp. 558,
561). Of special interest would be the case where not only the supremum M(f)
is attained by at least one measure p0 E .1, but where also the infimum q(f) is
attained by a pair a E R, ,B(*) E RJ . This situation will be taken up in Section 3.
We easily verify that the measure 4u0 must be carried by the measurable set S of
points x E X for which a + YE Pjhj(x) = f (x); moreover, yo (hj) = 'j whenever
1j > 0. Conversely, every p0 E M* with these properties does attain M(f).

3. Admissible measures

In this section, X denotes an arbitrary measurable space and X' a given non-
empty convex collection of (nonnegative) measures on X. We shall be interested
in the best lower bound
(3.1) L(y) = L(yIh) = inf {p(h): pe X,p(g) = y}.
Here, g = (g1, * **, g9) is a given measurable function g: X -+ Rnwhich is inte-
grable relative to each p E M. Further, h: X -. R denotes a given measurable
function which is integrable relative to each y E M. Finally, y = (Yl, * , y,,)
denotes a variable point in R'.

Clearly, L(y) < + oo if and only if y belongs to the so called moment space
(3.2) M = {y e Rn: p(g) = y for some p E.}.
Here, M is a convex subset of R' since the collection X was assumed to be
convex. We may (and shall) assume that M has a nonempty interior; for, other-
wise the components gj of g would be linearly dependent as far as the measures
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p E X# are concerned so that part of the information p(g) = y would be
redundant.
The function L(y) is clearly convex. Excluding the situation that L(y) = -

for all y E int (M), it follows that L(y) is finite everywhere on M and even con-
tinuous throughout int (M).
For each measurable function i: X -+ R, let us introduce

(3.3) !Lmin(4 = inf {#(o): p E #I;
put Itmin*(l) = -00 if f is not even improperly integrable relative to some
p E X#. If PMin(/) is finite, then a measure p on X will be said to be critical relative
to / if

(3.4) p E ., U(W) = Pmin(O).
EXAMPLE 3.1. Let X consist of all probability measures on X. In this case

(3.5) Pmin(') = inf 0 = inf {*(x): x E X}.
Moreover, Po E X is critical relative to / if and only if it is carried by the
"contact" set

(3.6) S(1/) = {x E X: I*(x) = infi}.
EXAMPLE 3.2. Let A be a fixed measure on X and let 0 _ a(x) _ b(x) be

given measurable functions on X which are integrable relative to A. Finally, let
X# consist of all measures on X of the form

(3.7) p/(A) = f p(x)A(dx), a(x) . p(x) _ b(x).

This measure p will be critical relative to a function / if and only if the corres-
ponding function p (x) is such that p (x) = a (x) for almost [A] all x with i (x) > 0
and further p(x) = b(x) for almost [2] all x with #(x) < 0. Here, we are
assuming that | Iolb dA < oX.
EXAMPLE 3.3. Let #4 consist of all measures on X of the form

(3.8) u(A) = Jf P(u,A)v(du).
Here, v denotes an arbitrary probability measure on a fixed measurable space
U, whileP is a given Markov kernel function of u E U,A c X. If f _ 0 is measur-
able then IA(0) = v(i/i), where

(3.9) 7(u) = JVI (x)P(u, dx).

Thus, p is critical relative to i if and only if the corresponding measure v is
carried by the contact set S(i7) c U.
LEMMA 3.1. Consider any function (a so called polynomial) of the specialform

n

(3.10) *(x) = h(x) djgj(x),
j=1
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where the di denote real constants. Then

n

(3.11) L(z) > 1jmin() + Y djzj forallzeM.
j=1

Moreover, given y E int (M), one can always choose this polynomial * in such a
way that

n
(3.12) L(y) = Iin(+)+ E dyj;

j= 1
here, / is unique for almost all y E int (M).

DEFINITION 3.1. A measure yo on X will be said to be admissible if tio E X
and further yo is critical relative to some polynomial / of the form (3.10).
For instance, in Example 3.1 a probability measure p0 is admissible if and

only if it is supported by the contact set S(ir) of some polynomial q.
THEOREM 3.1. Each admissible measure go assumes L(y) in the sense that

(3.13) L(y) = ,/o(h), where y = yo(g).
Conversely, if y E int (M) and L(y) is assumed by pg E X, then 1/o is admissible
(and the corresponding polynomial i is unique for almost all y E int (M)).

Consequently, if L(y) is assumed for all y E int (M), then (3.13) with pg running
through all admissible measures will yield a parametric representation of the
function L(y) at least for y E int (M).

PROOF OF LEMMA 3.1. (Another proof is given in [5], p. 574.) Consider a
measure M E X with p(g) = z. Integrating (3.10), we find that

n n

(3.14) Ml(h) = OI') + E djzj _ pjmin(q) + E djzj.
j=1 j=1

This implies (3.11). Considering p E X with p (i) close to 12mm (q) and then
taking z = p(g), we see that the constant term 12mmj(l/) in (3.11) cannot be
improved. That is, y = m,min,() + dlzl + *-- + dnzn is the best supporting
hyperplane in the direction (d1, * * *, dn) to the convex set Q in R+n1 consisting
of all points (z, y) with z E M and y _ L(z).

Conversely, consider a fixed point y E int (M). Then through the boundary
point (y, L(y)) ofQ there passes a supporting hyperplane to Q. Since y E int (M),
this hyperplane is nonvertical and of the form y = do + El= 1 djzj. That is,
L(z) _ do + 11=1 djzj for all z E M, while L(y) = do + =1 djyj. It follows
from the above remarks that necessarily do = jmin(/), where f denotes the
polynomial defined by (3.10). This yields assertion (3.12).
The uniqueness of /, for almost all y E int (M), follows from the well-known

uniqueness of a supporting hyperplane through the boundary point (y, L(y)) of
the convex body Q, again for almost all boundary points, that is, for almost all
y E int (M).
PROOF OF THEOREM 3.1. Let po E X be admissible, thus, yo(/) = pminj(/)

for some polynomial i of the form (3.10). Letting p0(g) = y, we have
n n

(3.15) L(y) _ Ho(h) = /po(ifr) + E djyj = jumjn(.) + E djyj-
j=1 j=1
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In view of (3.11), the equality sign must hold here, proving the first assertion.
From Lemma 3. 1, we have for almost all y that this can happen for at most one
polynomial '.

Conversely, let y E int (M) be fixed and suppose that L(y) is assumed by
g0o E .#; thus, pi0(g) = y and yo(h) = L(y). Next, choose the polynomial 4 in
such a way that (3.12) holds. Then

n 2n

(3.16) 'o(/) = 1o(h) - E dj,!o(gj) = L(y) - E djyj =
j=1 j=1

This shows that yo is critical for i so that it0 is admissible.
In view of Theorem 3. 1, we would like to have applicable sufficient conditions

on X, g = (g1, * ,g,,) and h in order that the infimum L(y) be assumed. In
Theorem 3.2, we take X# as the collection M, described in Theorem 2.1. Thus,
adopting the notations and assumptions of Theorem 2.1, M, is the class of
probability measures on the locally compact space X satisfying (2.1), with
X = {hj, j E J} as a system of lower semicontinuous functions on X satisfying
a certain domination type of condition (which is void when X is compact).
THEOREM 3.2. Let } = #* beasinTheorem2.1.Letfurthergj,j = 1, ,n,

be given continuous functions on X each dominated at infinity by some 4 E 4D and
let h: X -+ R be a lower semicontinuous function which is dominated below at
infinity by some 4 E (D.

Define L(y) as in (3.1) and M as in (3.2). We assert that L(y) is assumed for
each y E M in the sense that for each y E M there exists yo E M* with gou(g) = y
and gou(h) = L(y).

PROOF. Simply adjoin the (lower semicontinuous) functions gj and -gj to
the given system X' = {hp j E J} and take + yj and - yj as the corresponding
q values. Now the assertion that L(y) is assumed immediately follows from
Theorem 2.2 applied to this enlarged system and with f = -h.
The following result follows directly from Theorem 3.2 by observing that for

a compact space X all domination conditions are void. On the other hand, it
would not be very hard to prove Corollary 3.1 directly, namely, by using the
simple result (i) used in the proof of Theorem 2.1.
COROLLARY 3.1. Let X be a compact space and {hj, j E J} any collection of

lower semicontinuous functions on X. Take X as the collection of all regular
probability measures fL on X with

(3.17) fX hj(x)li(dx) . rlj for each j E J.

Here, the 'j denote given real numbers. We assume that X is nonempty. Finally,
let gj: X -+ R be continuous, j = 1, - n, and let h: X -+ R be lower semi-
continuous.

Under these assumptions the infimum L(y) in (3.1) is assumed for each y E M
so that Theorem 3.1 becomes applicable.
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4. Applications

4.1. In the present section we outline just one set of applications of the
results in Section 3. We shall take the measurable spaceX as a compact space and
# simply as the collection of all regular probability measures on X. We further
assume that the functions g1, * * *, g9 are continuous, while for the moment we
allow for h any measurable function h: X -. R which is bounded below.

Consider the finite valued function

(4.1) h(x) = lim inf h(y);

thus, h(x) _ h(x). In fact, X is precisely the largest lower semicontinuous
function satisfying X . h. We assert that

(4.2) L(y I h) = L(y I h) for each yE int (M).

One way of seeing this would be to apply Lemma 3.1. Using (3.5), this yields
that

n(n
(4.3) L(y I h) = suP[Z djyj + inf h(x) - E djgj(x)

d =1 X ~~~~j=1

for each y E int (M). Here, d runs through all n-tuples d = (d1, * * *, d") E RM.
Now observe that, since the gj are continuous, the infimum in (4.3) remains un-
changed when h is replaced by h, hence, (4.2) obtains.
As a more intuitive proof, let s > 0 be given and choose the neighborhood

U of y E int (M) such that L(zIh) > L(yIh) - s for all z E U. Next, choose
/t E X such that /t0(g) = y and 0o(h) < L(y|I) + e. We may assume (see
[6], p. 95) that p0 has a finite support (consisting of at most n + 2 points). By
a slight movement of these support points we obtain a probability measure y,
such that pl(h) < po(h) + s < L(ylh) + 2s, while z = /l2(g) still satisfies
z E U. We conclude that

(4.4) L(y I h) - < L(zI h) < L(yI h) + 2&.
This in turn yields (4.2).

4.2. From now on, we shall assume that h itself is lower semicontinuous.
As indicated by equation (4.2), this is no real loss of generality (when we want
to compute L(y) = L(y I h) fory E int (M); ify E M is on the boundary ofM, we
should replace X by an appropriate compact subset so as to get back at the
situation y E int (M); this can always be done, (see [6], p. 102)).
Knowing that h is lower semicontinuous, we have from Corollary 3.1 (or

from an easy direct proof) that L(y) is assumed for each y E M. From now on,
in this section, let us restrict y to int (M).
Then we conclude from Theorem 3.2 that the computation of L(y) can be

reduced to a study of admissible measures.



114 SIXTH BERKELEY SYMPOSIUM: KEMPERMAN

In the present case, we have from (3.5) and (3.6) that an admissible measure is
any probability measure supported by the contact set S(/) of some "poly-
nomial" of the form

(4.5) *f(x) = h(x)- E djgj(x).
j=1

Letting do = inf f, we have

(4.6) S(I) = {x e X: do + E djgj(x) = h(x)}.

Here, do is such that
n

(4.7) do + E djgj(x) < h(x) forall xE X,
j=1

and do is maximal. Since / is lower semicontinuous on the compact space X
this contact set S(/) is always compact and nonempty. We now conclude from
Theorem 3.1 that:

(i) all one needs to do in computing L(y) = L(ylh) for given y is to select
the admissible measure po in such a way that yo(g) = y; afterwards, L(y) =
go (h);

(ii) this can always be done, that is, yo can always be found;
(iii) call a polynomial ' associated to y when S(0r) carries a probability

measure go with po(g) = y. Such an associated polynomial always exists and
almost ally have exactly one associated polynomial. Finally, if q = h - 1 = 1 djgj
is associated to y then L(y) is also given by

(4.8) L(y) = do + E djyj, do = inf t.
j=

The reader may enjoy using this principle in solving the following problem.
Namely, let Z be a real random variable with 0 _ Z . 1 and the first three
moments E(Zi) = yj,j = 1, 2, 3, given. Let further 0 < a < ,B < 1 be given
numbers. Now determine the best possible upper and lower bounds on
Pr(a < Z < P). For instance, as to the lower bound L(y), either L(y) = 0 or
the admissible measure corresponding to y has one of the supports {C, 4, f,B 1},
{0, a, 42, }, {a, u, 1}, {a, v, f}, {0, w, P}. Here, 4, and 42 are fixed numbers,
while u, v, w are variable such that a < u < 41, c, < v < 42, 42 < W < f
More or less the same result holds when E(gj(Z)) = yj, j = 1, 2, 3, and
{go, g1, g2, g3} is a Chebyshev system on [0, 1], g0 1.

In this and other applications, the main advantage of the present approach
comes from the fact that often a set S(/) of the type (4.6), (4.7) must be quite
small in some sense. This happens for instance when X is an analytic manifold
and the gj and h are analytic or piecewise analytic. These aspects and further
applications will be taken up in a subsequent paper.
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5. The moments of a sum

5.1. In the present section, we shall be concerned with the following situation
where # is definitely not convex. Namely, let X = Rk and take # to be of the
form

(5.1) X# = X(n -

Here, the star denotes convolution while the Xi, i = 1, * , n, denote given
collections of probability measures on Rk. In other words, #(n) consists of all
convolutions of the form p = p *...**jun, where pi E Xi, i = 1, * * *, n. It is
useful to interpret M(n) also as the collection of all distributions ,u(A) =
Pr(Sn E A) of so called admissible sums S. = ZI + * * * + Zn of n independent
random variables Zi E Rk with the property that the ith component Zi has a
distribution yj e Xi, i = 1, * * *, n.

Let q be a fixed positive integer and assume that each measure i E Ml u
u M#n has all moments yj = I xi dp of order Iij . q. Here, j = (j1, * * *, ik)

denotes a multi-index with componentsj, E Z+ = {O, 1, 2, ... }; further IiI = 7Jr.
The moment space Mi corresponding to Xi will be defined as

(5.2) Mi = {y E R": there exists p E Xi with f xi d, = yj for alljEJ}

i = 1, * , n. Here, J denotes the set of all multi-indicesj with 1 . Iji| q and
q* their number (q* = q if k = 1). Further, a point y E R"q is regarded as having
coordinates yj with j running through J.

Similarly, let M(n) denote the moment space corresponding to M(n). Thus,
M(") is also the set of points y = (yj, j E J) in Rq such that there exists at least
one admissible sum Sn = Z, + * + Zn with E(Si) = yj for all j E J.
We shall be interested in the different relations between these moments

E(Si), j e J, that is, in the structure of M("). In many applications the class Xi
and thus the moment space Mi, i = 1, * , n, are convex, while nevertheless
M(n) itself and thus M(n) are nonconvex.

5.2. In studying M(n) it is only natural to use cumulants Kj, j E J, since these
have the addition property

(5.3) Kj(Sn) = Kj(Z ) + + Kj(Z,) for all j E J.

Let Ki = Ki[q] denote the cumulant space corresponding to Xi and Mi which
consists of all points z E R"q such that, for some u E Xi, we have Kj(p) = zj for
allj E J. Let K(n) = K(n) [q] denote the analogous cumulant space corresponding
to .(n) and M(n). In other words, z E K(n) if and only ifwe can find an admissible
sum Sn with Kj(S.) = zj for all j E J. It follows from (5.3) that

(5.4) K(n) = K + *-- + Kn,
where the addition on the right side is ordinary addition of subsets of the additive
group Rq*; thus, A + B = {z: z = a + b for some aeA, b eB}.
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From now on, let us restrict ourselves to the special case where #I = '#=
*-- = #, = #, say. Let M and K denote the moment space and cumulant
space, respectively, corresponding to the given class A. It follows from (5.4)
that

(5.5) K(") = K + + K = Kn

(in an obvious notation). We further have the important relations

(5.6) K c-IK(n) =I!Kn c conv (K).
n n

Here, (I/n)Kn = {z: nz E K"} may thus also be regarded as the set of all points
z in Rgq of the form

(5.7) z = (-iK(S.)jJ)

for some admissible sum Sn. Moreover, z belongs to the smaller set K in the
chain (5.6) if and only if (5.7) holds for some sum S, = Z, + * * * + Z" having
independent and identically distributed components Zi.
The following result due to Emerson and Greenleaf ([2], p. 180) will play an

important role.
LEMMA 5.1. Let K be a bounded subset of some Euclidean space and suppose

that,for some integerp > 1, the set (l/p)KP has a nonempty interior relative to the
minimal flat Y(K) containing K.

Then there exists a constant c > 0 depending on K only such that for any
z E conv (K) and any positive integer n we have either z E (1/n)K' or z has a distance
< c/n from the complement of conv (K), (taken relative to Y (K)).

5.3. Consider the situation where X and thus K are fixed while n is large.
By (5.6), we always have K(') c n conv (K). It follows from Lemma 5.1 that in a
certain sense n conv (K) is even a very good approximation to K('). For instance,
under the conditions of the lemma we have that (I/n)K(n) tends to conv (K) in
the Hausdorff metric.

Thus, there are several good reasons for trying to determine conv (K). The
only situation which we shall study in some more detail is that where k = 1
and

(5.8) Xf = {all probability measures on [0, c]}.

Here, c denotes a fixed positive constant. In other words, we shall be concerned
with the moment space M(") = M(n) [q] and the cumulant space K(n) = K(n) [q]
corresponding to the set of all sums Sn = Zi + * + Zn of real valued inde-
pendent random variables Zi with possibly different distributions, but such that
0 < Zi < c, i = 1, * - *, n. Also recall that K1(S) = E(S) = m, say; K2(S) =
E(S - M)2 = Var (S); K33(S) = E(S -m)3, while K4(S) = E(S - m)
3[E(S _ M)2]2
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5.4. It is well known ([4], p. 106) that the moment space M[q] corresponding
to X is precisely the convex hull of the curve

(5.9) {y: y = (t, t2, * - , tq) for some 0 _ t c}.

Moreover, y = (yi, * *, y,) E Rq belongs to M[q] if and only if Iq4 ajyj 00
for every polynomial Iq4 ajxj which is nonnegative on [0, c]; here, and in the
sequel, YO = 1. The latter condition can be replaced by a small number of poly-
nomial inequalities in Yi, * - -, Yq, involving so called Hankel determinants.
For low values of q these conditions are as follows. First 0 < Yi . c if q > 1;

moreover, yl2 _ Y2 _ cy1 if q _ 2; moreover,

(5.10) Yi Y2 >00 c-Yi CYI-Y2 >0
Y2 Y3 CyI -Y2 CY2-Y3

if q > 3; moreover,

(5.11) t~YIY2 C3_o, 1Y1 Y2 CY2 Y3_1 y~~ ~ ~ ~ ~ ~~~

CY2-y3 Cy3-y4
Y2 Y3 Y4

if q _ 4, and so on.
Next, we may write

(5.12) K[q] = UM[q], M(n)[q] = U- (K[q]n)

where U denotes the usual one to one transformation of moment points
Y = (Yi, * * *, Yq) into cumulant points K = Uy = (Kl, Kq,Kq). This transform-
ation is defined by the formal power series identity

(5.13) WI = log [1 + wj

hence,

(5.14) Kj= (Uy)j= E (-.)h r!! (1-Tj! ) **(i)

and

(5.15) yj= (U K)j r! r1!(.. )!) .j
j = 1, * * *, q. Here, each summation extends over all the q-tuples (r1, * * j,r) E
Zi such that Eiri = j. Further, h = -1 + Eri.

5.5. Let us first consider the case q = 2, the case q = 1 being trivial. By
K1 = Yi and K2 = Y2 - yi, the set K[2] is defined by

(5.16) 0 _ K1<_c, 0 _ K2 < K(C -K1 ).
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It so happens that K[2] is convex. Hence, the set K[2]' of all possible points
(KI1(S.), K2(S)) coincides with nK[2]. Thus, 0 _ E(S,) < nc and

(5.17) Var (Sn) _ E(S,) c -n E(S.)

and these inequalities cannot be improved.
5.6. Let us now turn to the case q = 3. The lower bound (5.10) on y3 iS of

the form
(5.18) Y2 = EZ2 = E(Z1 2 Z312) < (Y0y3)112
It is valid whenever Z _ 0 and is attained if and only if u E X# has a two-point
support {0, c} with 4 _ 0. In terms of cumulants this becomes

(5.19) y2 = (K1c + K2)2 < Kl(Kl + 3K1K2 + K3);

thus,

(5.20) K3 > f((K1, K2) = (K2 - )(Ks)-
The upper bound (5.10) on y3 takes the form

(5.21) K3 _ g(Kl, K2) = ((c - K1)2 - K2)(1 K2- )'

(and is assumed if and only if ,u E #4 has a two-point support {4, c}). We con-
clude that K[3] may also be described as the set of points (K1, K2, K3) in R3
satisfying (5.16), (5.20), and (5.21).
LEMMA 5.2. The K[3] is not convex. Moreover, K* = convK[3] is equal

to the convex hull of the curve

(5.22) n = {Hp, = (p, p(c - p), p(c - p)(c - 2p)); 0 _ c}.

It follows that (Z1, Z2, Z3) e K* if and only if (Z1, Z2) e K[2], (that is, 0 < Z2 _
zl(l - z1)) and, moreover,

2Z z~z~ 2z
(5.23) -cz2 + Z3 cCZ2 c-z
(if 0 < z1 < c; otherwise Z2 = Z3 = 0)-
REMARK 5.1. The Z3 projection of K3* is nothing but K[2] = Ky*. The z1

projection is easily seen to be given by

(5.24) 0 < Z2 - c2 1Z31 z2[c2 - 4z2]12.
The Z2 projection is found to be

-1c 2I _ Z3 _z.(c -zl)(c -2z,), if 0 < z<_ 4c;

(5.25) -c2z12 z3 _ c2(c - Z1), if IC < Z1 -4C;

-zl(c - z1)(2z, - c) . z3 _-c2(c -z1) 4if -C_ z1 < C.
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PROOF OF LEMMA 5.2. If K[3] were convex, then f would be convex and g
would be concave on the domain K[2] defined by (5.16). On the contrary, con-
sider the lower boundary of K[3] on the cross section K2 = (c -p)K1, where
0 <p < C 0 < K1 < p. It is given by

(5.26) K3 = f((K1, (C - p)Kl) = (C - p)KI(C - p -KI)
The latter function is strictly concave ( as soon as p < c) instead of convex. We
also conclude that in forming the convex hull K* of K[3] the lower boundary
of the cross section may as well be replaced by the pair of endpoints, namely,
the point HIo corresponding to Kl = 0 and [Ip corresponding to KI = P.

Similarly, the upper boundary ofK[3] in its cross section with K2 = P (c - K1),
0 < p < C, p < Kl _ c, is given by the convex function

(5.27) K3 = g(Kl, P(C - K1)) = P(C - Kj)(c - K1 - P).
In forming K*, this part of the upper boundary may be replaced by the pair of
endpoints Hp and H7.

It follows that indeed K* is precisely equal to the convex hull of the curve HI
described in (5.22). The linear transformation

(5.28) Y1 = Z1, Y2 = CZ1 -Z2, Y3 = C Z1 - 2Z2 + 2Z3
sends the point Hnp into a point y with coordinates yj = pJ, j = 1, 2, 3. Thus, it
sends K* onto the corresponding convex hull which happens to be M[3] (see
(5.9)). The latter is determined by the inequalities y2 < Y2 _ cy1 and (5.10).
Transforming back, we conclude that K* is determined by the inequalities
0 _ z2 . z1(c - z1) and (5.23).
THEOREM 5.1. If S,, is a sum of n independent random variables 0 - Zi < c,

then zj = (l/n)Kj(S.), j = 1, 2, 3, defines a point of K3. Hence, we have, besides
(5.17), that

2_Vr_S,)___ S. 2Var (S,,)(5.29) -C + <Var(SL) K3((S) < C_-_ _)
ES,, = Var (S,,) n -ES,,

Thus, K3(Sn) > 0 as soon as Var (Sn) > 2c(ES"). Moreover, by (5.24),

(5.30) 1K3(S.)I < Var (S,) [c2 - Var (S])

The inequalities (5.29) are sharp in the following sense. Let z = (Z1, Z2, Z3) be
a given point in int (K3). Then for n sufficiently large there exists an admissible
sum Sn with (l/n)Kj(S,,) = zj,j = 1, 2, 3.

PROOF. Combine (5.6), Lemma 5.1, and Lemma 5.2.
REMARK 5.2. The point HIp is realized by the cumulants of the measure L

with support {0, c} and mass p/c at the point c. Thus, Hl c K[3]; hence,
(1/n) Hr c (1/n)K[3]" and each tends to K3 in the sense of Lemma 5.1.

It can be shown that to each point z E int (K3*) there corresponds an integer
no such that for each integer n > nO there exists a representation of z as z =
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h I (nh/n) rIph with nh E Z, nh = a, 0 _ Ph - c, (all depending on n and z,
h = 1, 2, 3). Thisimpliesthatzcanberealizedaszj = (l/n)Kj(S"),j = 1, 2, 3, by
a sum of independent random variables Sn = Z1 + * * * + Z,, such that each Zi
takes only the values 0 and c, while Pr(Zi = c) = Ph/C for exactly nh indices
i= 1, ,n,h= 1, 2, 3.

5.7. Let us finally consider the case q = 4, restricting ourselves to a lower
bound on c4(Sn).

If Z is any random variable with a finite fourth moment, then the best lower
bound for the cumulant C4 = K4(Z) in terms of the lower cumulants is given by

2

(5.31) K4 _- - 2K2 -
K2

If 0 _ Z < c, then (5.31) follows immediately from the first inequality (5.11).
Since the validity of (5.31) is not affected by a change of location or scale, it
follows that (5.31) holds for each bounded Z and thus for each Z with a finite
fourth moment.
The argument further shows that K[4] can be defined by the inequalities

(5.16), (5.20), (5.21), (5.31), and a somewhat more complicated upper bound on
K4 which may be derived from the second inequality (5.11) (and which will
involve c).
LEMMA 5.3. The lower boundary of K4* = conv K[4] is the same as the lower

boundary of the convex hull of the curve I= {p; 0 _ p < c}, where

(5.32) -P = (p, p(c - p), p(c - p)(c - 2p), p(c - p)(C2 - 6cp + 6p2)).

Moreover, z E R4 belongs to K4* if and only if:
(i) (Z1, Z2, z3) EKK*; that is, 0 < Z2 -zI(I - z) and (5.23) hold;
(ii) we have the lower bound

(5.33) Z4> 33 -2 2Z2;2Z2 2

(iii) Z4 satisfies an analogous upper bound Z4 . h(zl, Z2, z3) which will not be
specified.
REMARK 5.3. We shall need to relate the inequalities (5.33) and

2

(5.34) Z4 _ 3 2z2,
Z2

where z2 > 0. In fact, (5.34) implies (5.33) precisely when
2 2

(5.35) Z3 > _I31 2Z2

which is equivalent to the pair of inequalities
(5.36) z2 < c2 Iz31 z2[c2-4Z2
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By (5.24) this is true if and only if (Z2, Z3) corresponds to some point z =
(Z1, Z2, Z2) E K*. In all other cases, in particular when Z2 > 4C2, we have that
(5.33) implies (5.34).
PROOF OF LEMMA 5.3. The vertical projection (in the K4 direction) of K[4]

is precisely K[3]. Hence, the vertical projection of conv K[4] = K4* is precisely
conv K[3] = K* and the latter is completely described by Lemma 5.2.

Consider the curve E described by (5.32). We easily verify that the point Ep
of the curve is realized by the first four cumulants of the probability measure p
having the two-point support {0, c} and a mass p/c at c. Hence, E c K[4] and
therefore, conv (1) c conv K[4] = K4*. By Lemma 5.2, the vertical projection
of conv (1) is precisely conv (H) = K3*.
For each point z = (zl, Z2, Z3) in K*, let us define

(5.37) +(z) = inf {I: (z1, Z2, Z3, )eK4}
and

(5.38) 0 (z) = inf{4: (z1, Z2, z3, () e conv

Clearly, both 4 and / are convex functions on K3*. Further, +(z) < i(z) since
conv (1) c K4*. We shall prove below that

2

(5.39) 2(z)= - -2z2 for allzeK*3,
Z2

and it would suffice to prove that _)
In fact, we know from (5.31) that, for each z eK[4], Z4 _ Z23/Z2- 2Z2.

Using formula (5.39) and Remark 5.3, we conclude that Z4 > O(z1, Z2, Z3) for
each z E K[4], and hence, for each z E conv K[4] = K4* since the function 0 is
convex. This in turn implies that +(z) > t/(z), and hence, +(z) = f(z) for all
z E K3*.

It only remains to verify the formula (5.39) for the function / defined by
(5.38). One proof would be to derive it from the second inequality (5.11) by a
transformation analogous to the one used in the last part of the proof of Lemma
5.2. Another proof would be as follows.

First, introduce 2(z)= jz3/Z2 - 2 Z2. Then ; is convex throughout the
region Z2 > 0, as can for instance be seen from the formula

(5.40) i(z) = sup [-1(3U2 + C2)Z2 + 3uz3].
u

It follows that the region W = {z eR4: z'eK*, z4 > (z')} is convex; z' =
(Z1, Z2, Z3) if Z = (Z1, Z2, Z3, Z4).

Second, an easy computation shows that

(5.41) z4 = i (z') for each z E 1;

7(Yp) = 0 if p = 0 or p = c. Hence, I c W, and hence, conv (X) c W; thus,
/(z) _ /(z) throughout K3.
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Third, if z E I then, using (5.38) and (5.41), we have that if(z') _ Z4 = *(Z');
thus, i (z') = fr(z').

Fourth, on the line segment z3 = AZ2, 2IA < c, z E K*, the function if(z) is
linear in Z2 while I(z) is convex so that the difference X(z) = O(z) - i(z) is
convex and nonnegative. Moreover, X(z) = 0 at both end points (which corres-
pond to points of Y), and hence, throughout the entire segment. This proves
that O(z) = f(z) throughout K* and establishes (5.39).
THEOREM 5.2. Suppose Sn = Z1 + *- + Z,, is the sum of n independent

random variables 0 . Zi < c. Then

(5.42) K4(Sn) >2 K(Sn) - 2K2(Sn).

The inequality (5.42) is sharp in the sense that given z E int (K4*) (in particular
z4 > 2Z-3/Z2-c2z2) there exists for each sufficiently large integer n an admissible
sumt Sn with (l/n)Kj(Sn) = Zj.j = 1, 2, 3, 4.

PROOF. Combine (5.6), Lemma 5.1, and Lemma 5.3.
REMARK 5.4. In view of (5.31), we also have

(5.43) K4(Sn) > K3(Sn ) - 2K2(Sn)2.=(S-K2(Sn)
As follows from Remark 5.3, (5.43) is better than (5.42) if and only if
(K2(Sn, K3(Sn)) corresponds to a point (zI, K2(Sn). K31(Sn)) of K* = convK[3],
for some choice of z1. For n large this is rarely the case. If K2 (Sn) is large, then
(5.42) is obviously much more precise than (5.43).

6. Exponential bounds

6.1. In this section we shall again be interested in a sum Sn = ZI + *. + Zn
of independent real valued random variables. We shall make two assumptions.

(i) Let a < b be given finite constants and assume that a . Zi < b for all
i= l, - - , n.
(ii) Let m be a given positive integer and c,,-* , cm given numbers. We

assume that

(6.1) E(Zi) = cj forj = 1, * , m and all i = 1, , n.

Naturally, cl, , cm must be such that there do exist such random variables
a < Zi < b; that is, c = (cl, * , cm) must be a point of the corresponding
moment space M [mi].
Most of the difficulties encountered in Section 5 concerning the precise rela-

tions between the first q moments of Sn had to do with the fact that the trans-
formation (5.14) between moments and cumulants is a nonlinear transformation
which may transform a convex set M[q] into a nonconvex set K[q].

In the present section, we want to exploit the fact that K, happens to be linear
in the higher moments yj. Fixing the lower moments as in (6.1) will make the
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cumulants Kj(Zi) with j _ 2m + 1 into an affine function of the unknown
moments Y,(Zi) = E(Z~). More precisely, (5.14) and (6.1) together imply a
relation of the form

(6.2) Ki(Zi) = aj + E bj,,y,(Zi) j = m + 1, * , 2m + 1,
r=m+ 1

valid for all i = 1,*, n. Here, the coefficients aj and bj,r are known constants
(depending only on cl, * * I, cm).
The collection M of possible moment pointsy = (ym+ 1(Zi), * IY2+ ))

is a known convex subset ofRm+ 1. Hence, from (6.2), also the collectionK of all
possible cumulant points z = (Km+i(Zi), *- *, +1+A(Z)) is a known convex
subsetK ofRm + 1, the same set for all i = 1, * , n. By (5.3), the set of all possible
cumulant points (Km+ 1 (Sn), * *, K2m+ l(SA)) of Sn is precisely the set K + K +
* + K = Kn = nK, the latter because K is convex. This leads to the statement

I' 1
(6.3) (Km + I(ASn), . nK2m+1(S.)) -K.

And for each integer n this is more or less all we can say about these cumulants,
that is, about the moments E(SJn) with j _ 2m + 1; the transformation (6.2)
cannot be used, however, for Zi replaced by S., but has to be modified since S,,
has its lower moments different from Zi.

Suppose Z1, * * *, Z,, besides satisfying (i), (ii) also satisfy:
(iii) the Zi are identically distributed.

Then

(6.4) (! Km+l(Sn), XnK2m+,(Sn)) = (Km+i(Zi) , K2m+i(Z1)),
but still the latter can be any point in K. In other words, the relation (6.3) cannot
be improved at all. That is, any relation between the moments E(Sj) with
1 . j < 2m + 1 which is universally true under the assumptions (i), (ii), and
(iii) is thus also universally true under the assumptions (i) and (ii) alone.

6.2. Let us now consider the following related problem. Namely, we still
assume (i) and (ii), but we now want to add the assumption:

(iv) let q be a given positive integer with m . q . 2m + 1 and assume that

(6.5) E(Si) = d3 for all m < j _ q,

where the dj are given numbers. Naturally (6.5) is void when q = m. Since (i),
(ii), and (iv) must have a common solution, the dj cannot be entirely arbitrary.
Note that the distributions of the Zi will be different in general.
We shall show that in this situation it is not difficult to obtain an exact formula

(in terms of a, b, the cj and dj) for the quantity

(6.6) A(t) = sup log E(exp {tSn}),
Sn

where Sn ranges through all sums of the above type, while t denotes a fixed
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constant, t * 0. Such an exact formula may be useful in connection with the
well-known inequality

(6.7) Pr(Sn _ nx) _ exp {-tnx} E(exp {tS.}) _ exp {-tnx + A(t)}
if t>0.

6.3. Let us first reformulate the above problem. In the first place, we may
rewrite (6.6) as

(6.8) A(t) = sup E logE(exp{tZi}),
Zl.*,Z =1

where (Z1, * *, Zn) ranges through the n-tuples of random variables satisfying
(i), (ii), while further Ei=1Icj(Zi) is equal to a given number when m < j _ q.
Using (6.1), (6.2), and q _ 2m + 1, the latter condition can be rewritten as

n

(6.9) E E(Zi) = ej for all m < j _ q,
,i= 1

where the ej denote given numbers, which are easily calculated from the cj and
di. We now have that in (6.8) the Zi range through the n-tuples satisfying (i), (ii)
and (6.9); in the present formulation the independence of the Zi is no longer
important. Let us now proceed to show that the supremum in (6.8) is attained
for the case where the Zi are identically distributed. This will reduce our problem
to the more or less classical one of finding

(6.10) A (t) = n sup log E(exp {tZ}),

where Z is a random variable subject only to the conditions that a . Z . b
and that E(Zi) = cj, j = 1, * * *, q, with cl, * * *, cq as given numbers.

6.4. The above problem, to determine the maximum (6.8) subject to the
conditions a < Zi < b, (6.1), and (6.9), may be generalized as follows.
Namely, consider a measurable space X and a given convex class X' of prob-

ability measures on X. Let further i and gj, j = 1, * * *, r, be given real valued
measurable functions on X which are integrable relative to each M E M. Finally,
let 0 be a given real valued and concave function defined on an interval con-
taining the range of r. Our problem will be to determine

n

(6.11) max E [E(o(Zi))].
i= 1

Here, Z1, *--, Zn will denote random variables taking values in X such that
(a) the distribution pi of Zi belongs to the given class M!, i = 1, * , n; (b) the
Zi must further satisfy the side conditions

n

(6.12) E E(gj(Zi)) = ej forj = 1, r.
i= 1

Here, the ej denote given numbers such that there do exist n-tuples of random
variables satisfying the stated properties.
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6.5. In our original problem we have X = [a, b]. Further, X may be taken
as the class of all probability measures on X satisfying I xi p (dx) = cj, j =
1, * * ,Im. Moreover, in (6.12) we take r = q - m and gj(x) = xm+j. Finally,
+(u) = log u and */ (x) = etx. Observe that log u is indeed concave on the range
(0, co)of f.
LEMMA 6.1. In the above general problem of determining (6.11), the supremum

is not decreased by adding the additional condition that Z1, * * * , Zn all have the
same distribution.

PROOF. Let Zi have distribution pui E X, i = 1, * n, and put p =
(p I + + y.)/n. Then , E X since X is convex. It suffices to prove that

(6.13) n fEVI(x()pi(dx) +(f (x)p(dx))
But this follows immediately from Jensen's inequality.

6.6. Let us return to the original problem (6.6). Applying Lemma 6.1, we con-
clude that (6.8) may be reformulated as in (6.10). Now observe that the q + 2
functions gj(x) = xi, j = 0, 1, - * *, q, and gq+I(x) = etx together form a
Chebyshev system over every subinterval of R, (see [7] p. 45, [4] pp. 6 and 376).
It follows from a classical result due to Markov (see [7], p. 61, [4], pp. 55 and 80)
that the supremum (6.10) is attained for either the upper or the lower principal
representation (depending on the sign of t) corresponding to the preassigned
moment point y = (c1, * * *, ce), (provided y E int (M[q]) which we shall assume).

Here, by a principal representation we mean a probability measure on [a, b]
having the preassigned moments cl, * * *, cq and further a finite support S con-
sisting of j(q + 1) points (an end point a or b counting only as half a point).
There are exactly two such principal representations of y. Observe that the pair
of principal representations is totally independent of t. Assuming that t > 0,
the principal representation maximizing j etxp(dx) always has the right end point
b in its support and this requirement uniquely determines the principal repre-
sentation needed; if t < 0 then the left end point a must be in the support.
THEOREM 6.1. Let Sn = ZI + * * * + Zn, where Z1, * * *, Zn are independent

random variables with possibly different distributions such that IZil < 1 and
E(ZA) =O,i = 1, ,n. Put Var(A) =S2 = nc,0 . c < 1,andlett >Obe
a given constant. Then

(6.14) E(etSn) < [ c et + 1 ect]

and this inequality cannot be improved.
PROOF. Wemustcompute(6.6)subjectto|Zil. 1,E(Zi) = 0andE(Sn) =

nc. This is a very special case ofthe general problem (6.6). We already showed that
we may assume the Zi to be identically distributed; hence, we must prove that

(6.15) E(etZ) _ et+ e
I i c +c

when itisknown thatlIZlI. 1,E(Z) = 0,E(Z2) = 82/n =c.The largestpossible
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value E(e'Z) must be attained by the principal representation corresponding to
the moments y, = 0, Y2 = c with a support S of size 3 and such that 1 E S; we
have (Yi, Y2) E int M[2] provided 0 < c < 1; the relation (6.15) is obvious
when c = or c = 1. It follows that necessarily S = {-c, 1}, while Pr (Z = 1) =
c/(I + c). This proves (6.15). If each Zi has the latter distribution, then (6.15)
holds with the equality sign and hence cannot be improved.

6.7. As a final application, suppose S,, = Z1 + * - + Z,, is a sum of
independent random variables such that a . Zi < b and E(Zi) = 0, i = 1, * * , n;
here, a < 0 < b are fixed. We want to establish the best possible upper bound on
E(exp {tSn}), t > 0, in terms of E(S2) = s2 = nc and E(S3) = p3 = nd, say.
There does exist a random variable Z with a _ Z . b and E(Z) = 0, EZ2 = c,
EZ3 = d (see (6.3)). Moreover, from (6.10) and Section 6.6,

(6.16) sup E(exp {tSn}) = (E exp {tZ})n,

where a . Z . b has as its distribution the principal representation of the set
ofmoments Yi = 0, Y2 = C, y3 = d and with b in the support S; here, we assume
that y is interior. Further, the support has 1(3 + 1) = 2 points (counting end
points half), implying that it is of the form S = {a, 4, b} with a < 4 < b. This
leads to the equations pa' + qc,j + rb' = yj, j = 0, 1, 2, 3, yo = 1, Yi = 0,
Y2 = c, y3 = d, so that = (d - ac - bc)/(ab + c). The desired optimal upper
bound is given by
(6.17) E(exp {tSn}) . (peat + qe4t + rebt)n,
which is easily computed. If desired, we can also derive a bound

(6.18) Pr(Sn _ nx) _ [e-x(peat + qe4' + rebN))]n,
provided t > 0, a < x < b. The best value of t is obtained by putting the
logarithmic derivative with respect to t equal to 0. In the special case -=
'(a + b), this leads to a simple quadratic equation; this happens when
d = (a + b)c,d = Oifa= -b.
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